Construction of azaspirocyclic skeletons mediated by the carbonyl of Weinreb amide: formal total synthesis of (\pm)-cephalotaxine

Jian Zhang, *a, ${ }^{\text {ab }}$ Jianyin Liu, ${ }^{\text {a }}$ Yuxue Fan, ${ }^{\text {a }}$ Huili Ding, ${ }^{\text {a }}$ Tianfu Liu, ${ }^{\text {a }}$ Shanshan Li, ${ }^{\text {a }}$ Minghua Jiang ${ }^{\text {a }}$ and Lu Liu ${ }^{\text {a }}$
${ }^{a}$ School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, P.R. China. ${ }^{b}$ Key Laboratory of Chemistry and Quality for TCM of the College of Gansu Province, Lanzhou 730000, P.R. China.
* Correspondence author: zhangjian@gszy.edu.cn

Table of Contents

I. General Information 1
II. Experimental Procedures and Spectroscopic Data of Compounds 1-6
III. HPLC Spectra of 9a and 9b 7-8
IV. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of Synthesized Compounds $9-30$

General procedure

All solvents were redistilled prior to use and anhydrous solvents were treated using standard techniques. All reactions were monitored by thin-layer chromatography using high silica gel GF pre-coated plates $(0.25 \mathrm{~mm})$. IR spectra were recorded on a Thermo Nicolet 6700 FT-IR Spectrometer using KBr disks and are reported in frequency of absorption (cm^{-1}). HRMS were acquired by a Waters Micromass Q-Tof Micro ${ }^{\mathrm{TM}}$ instrument using the ESI technique. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AM-400 spectrometer with TMS as an internal standard and CDCl_{3} as solvent. Flash column chromatography was conducted on silica gel (200-300 mesh).

Synthesis of compound 7a

To a solution of N -Boc proline $6 \mathrm{a}(1.9 \mathrm{~g}, 8.84 \mathrm{mmol})$ in $\mathrm{DCM}(20 \mathrm{~mL})$ was added 1,1 '-Carbonyldiimidazole $(1.72 \mathrm{~g}, 10.61 \mathrm{mmol})$ slowly. The reaction was stirred at room temperature for 1 h . Then N,O-dimethylhydroxylamine hydrochloride ($1.035 \mathrm{~g}, 10.61 \mathrm{mmol}$) was added and stirred for 3 h . After completion of reaction, water (5 mL) was added and stirred. The organic layer was treated with $1 \% \mathrm{HCl}$ solution $(3 \mathrm{~mL})$ and water $(4 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The crude product was purified by silica gel column chromatography (PET/EtOAc, 5:1) to give $7 \mathrm{a}\left(2.207 \mathrm{~g}, 97 \%\right.$ yield) as a light yellow oil. $\mathrm{R}_{f}=$ 0.25 (petroleum ether : $\mathrm{EtOAc}=1: 1$); IR (film): $\mathrm{v}_{\max }$ 2975, 2937, 2879, 1698, 1399, 1164, 1122, $999 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 1.36(\mathrm{~s}, 5 \mathrm{H}), 1.40(\mathrm{~s}, 4 \mathrm{H}), 1.76-1.96(\mathrm{~m}, 3 \mathrm{H})$, 2.08-2.19 (m, 1H), 3.14 (s, 3H), 3.34-3.45 (m, 1H), 3.47-3.55 (m, 1H), 3.67 (s, 2H), $3.73(\mathrm{~s}$, $1 \mathrm{H}), 4.53-4.57(\mathrm{~m}, 0.52 \mathrm{H}), 4.63-4.66(\mathrm{~m}, 0.46 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 23.3$, $23.9,28.3,28.4,29.5,30.4,32.2,32.3,46.5,46.8,56.4,56.7,61.1,61.2,79.2,79.4,153.7$, 154.3, 173.2, $173.7 \mathrm{ppm} ; H R M S(E S I) ~ m / z ~ c a l c d . ~ f o r ~ \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$: 281.1477, found: 281.1467.

Synthesis of compound 8a

To a solution of $7 \mathrm{a}(472 \mathrm{mg}, 1.83 \mathrm{mmol})$ in dichloromethane (5 mL) was added trifluoroacetic acid $(0.5 \mathrm{~mL})$. The reaction mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$. The mixture was concentrated in vacuo. The crude product was then dissolved in acetonitrile (10 mL) and $\mathrm{K}_{2} \mathrm{CO}_{3}(631 \mathrm{mg}, 4.58 \mathrm{mmol})$ was added. Then the iodide $(1.07 \mathrm{~g}, 3.66 \mathrm{mmol})$ was added to the slurry of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in acetonitrile. The reaction mixture was refluxed for 10 h at $80^{\circ} \mathrm{C}$, cooled and concentrated in vacuo. The residue was then extracted with EtOAc ($5 \times 10 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The crude product was purified by silica gel column chromatography (PET/EtOAc, 5:1) to give $8 \mathrm{a}(410 \mathrm{mg}, 70 \%$ yield $)$ as a yellow oil. $\mathrm{R}_{f}=0.75(\mathrm{DCM}: \mathrm{MeOH}=$ 10:1); IR (film): $\mathrm{v}_{\text {max }} 2938,2834,1668,1590,1516,1463,1261,1156,1029 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 1.77-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.97(\mathrm{~m}, 1 \mathrm{H}), 2.08-2.13(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}$ $=8.4 \mathrm{~Hz}), 2.47-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}), 2.83-2.90(\mathrm{~m}, 1 \mathrm{H}), 3.15(\mathrm{~s}, 3 \mathrm{H}), 3.30$ (td, 1H, J = 8.4, 2.8 Hz), $3.48(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H})$, 6.69-6.75 (m, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 23.1,29.1,32.5,35.0,53.3,55.8$, 55.8, 56.8, 61.3, 63.6, 111.2, 112.1, 120.4, 133.1, 147.2, 148.7, $175.0 \mathrm{ppm} ;$ HRMS (ESI) m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}: 323.1971$, found: $\mathbf{3 2 3 . 1 9 7 3}$.

Synthesis of compound 9a

A solution of $8 \mathrm{a}(853 \mathrm{mg}, 2.65 \mathrm{mmol})$ in acetonitrile $(15 \mathrm{~mL})$ was added to a slurry of $\mathrm{K}_{2} \mathrm{CO}_{3}(805 \mathrm{mg}, 5.83 \mathrm{mmol})$ in acetonitrile $(5 \mathrm{~mL})$. Then the allyl bromide $(0.47 \mathrm{~mL}, 5.3$ mmol) was added to the solution. The reaction mixture was refluxed for 11 h at $80^{\circ} \mathrm{C}$. The reaction mixture was cooled to room temperature, filtered and concentrated by rotary evaporation. The crude product was purified by silica gel column chromatography (DCM/MeOH, 50:1) to give 9a ($935 \mathrm{mg}, 97 \%$ yield) as a light yellow oil. $\mathrm{R}_{f}=0.50(\mathrm{DCM}$: $\mathrm{MeOH}=10: 1$); IR (film): $\mathrm{v}_{\text {max }} 2936,2833,1647,1590,1515,1463,1262,1156,1029 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 1.75-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.95(\mathrm{~m}, 1 \mathrm{H}), 2.13(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{dd}$, $1 \mathrm{H}, J=13.6,7.6 \mathrm{~Hz}), 2.66-2.80(\mathrm{~m}, 5 \mathrm{H}), 3.02-3.11(\mathrm{~m}, 2 \mathrm{H}), 3.13(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}$, $3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 5.00-5.05(\mathrm{~m}, 2 \mathrm{H}), 5.77-5.88(\mathrm{~m}, 1 \mathrm{H}), 6.69-6.71(\mathrm{~m}, 2 \mathrm{H}), 6.75(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $8.4 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 22.7,32.9,34.2,35.6,37.5,50.9,51.0,55.8$,
$55.9,60.1,70.7,111.1,112.0,117.1,120.5,133.4,135.9,147.2,148.7,175.6 \mathrm{ppm} ;$ HRMS (ESI) m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}: 363.2284$, found: 363.2267 .

Synthesis of compound 10a

To a solution of $9 \mathrm{a}(288 \mathrm{mg}, 0.80 \mathrm{mmol})$ in dry THF $(5 \mathrm{~mL})$ was added a 1.0 M solution of allylmagnesium chloride in THF ($2.40 \mathrm{~mL}, 2.40 \mathrm{mmol}$) maintained under inert atmosphere at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred for 0.5 h . The mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{~mL})$ solution. The aqueous layer was extracted with EtOAc and the combined organic phases were washed with brine $(1 \times 10 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The crude oil was purified by silica gel column chromatography ($\mathrm{DCM} / \mathrm{MeOH}$, 80:1-10:1) to give 10a ($235 \mathrm{mg}, 86 \%$ yield) as a pale yellow oil. $\mathrm{R}_{f}=0.55(\mathrm{DCM}: \mathrm{MeOH}=$ 10:1); IR (film): $\mathrm{v}_{\max } 3071,2938,2831,1687,1515,1463,1262,1156,1030 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 1.77(\mathrm{~d}, 2 \mathrm{H}, J=7.2,2.0 \mathrm{~Hz}), 1.84-1.91(\mathrm{~m}, 4 \mathrm{H}), 2.04(\mathrm{~d}, 1 \mathrm{H}, J=5.2$ $\mathrm{Hz}), 2.16(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}), 2.52-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.61-2.78(\mathrm{~m}, 5 \mathrm{H}), 3.21-3.25(\mathrm{~m}, 1 \mathrm{H}), 3.83$ $(\mathrm{s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 5.01(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=14.0 \mathrm{~Hz}), 5.77-5.87(\mathrm{~m}, 1 \mathrm{H}), 6.39(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=15.2,1.6$ $\mathrm{Hz}), 6.66(\mathrm{t}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 6.75(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 6.78-6.88(\mathrm{dt}, 1 \mathrm{H}, J=22.0,6.8 \mathrm{~Hz})$ ppm; ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 18.1,23.2,33.0,35.5,35.5,50.8,51.2,55.8,55.8,72.7$, $111.0,112.0,117.1,120.6,126.8,133.1,135.9,141.8,147.2,148.7,202.1 \mathrm{ppm}$; HRMS (ESI) m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})^{+}: 344.2226$, found: 344.2217 .

Synthesis of compound 11a

A solution of $10 \mathrm{a}(154 \mathrm{mg}, 0.45 \mathrm{mmol})$ and Grubbs (II) catalyst (38 mg) in dry DCM (5 mL) was refluxed for 1 h at $40^{\circ} \mathrm{C}$. Then the mixture was concentrated. The crude material was purified by silica gel column chromatography $(\mathrm{DCM} / \mathrm{MeOH}, 80: 1-20: 1)$ to give 11a (122 $\mathrm{mg}, 90 \%$ yield) as a brown oil. $\mathrm{R}_{f}=0.45(\mathrm{DCM}: \mathrm{MeOH}=15: 1)$; IR (film): $\mathrm{v}_{\max } 2936,2832$, $1700,1587,1515,1463,1261,1156,1028 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 1.83(\mathrm{~d}, 1 \mathrm{H}, J$ $=8.0 \mathrm{~Hz}), 1.89-1.96(\mathrm{~m}, 1 \mathrm{H}), 2.01-2.14(\mathrm{~m}, 2 \mathrm{H}), 2.53-2.79(\mathrm{~m}, 6 \mathrm{H}), 3.04(\mathrm{~s}, 1 \mathrm{H}), 3.16-3.20$ $(\mathrm{m}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 6.10(\mathrm{~d}, 1 \mathrm{H}, J=4.0 \mathrm{~Hz}), 6.68-6.77(\mathrm{~m}, 3 \mathrm{H}), 7.60-7.63(\mathrm{~m}$, 1H) ppm; ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta: 21.8,35.7,36.8,39.2,51.5,51.8,55.7,55.8,70.9$,
111.1, 112.0, 120.4, 132.9, 133.4, 147.3, 148.7, 162.4, $212.6 \mathrm{ppm} ;$ HRMS (ESI) m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+}: 302.1756$, found: 302.1760 .

Synthesis of compound 12

A solution of 2-propanol (5 mL) was added to aluminium isopropoxide ($773 \mathrm{mg}, 3.78$ mmol) under inert atmosphere. Then a solution of $11 \mathrm{a}(38 \mathrm{mg}, 0.13 \mathrm{mmol})$ in 2-propanol (5 mL) was added and the mixture was refluxed for 1 h at $130^{\circ} \mathrm{C}$. The solvent was steamed and the residue was stirred for 3 h at $130{ }^{\circ} \mathrm{C}$. The resulting residue was cooled to $0{ }^{\circ} \mathrm{C}$ and acidified with a 1 N aqueous solution of HCl to $\mathrm{pH}=7$. The resulting solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by silica gel chromatography ($\mathrm{DCM} / \mathrm{MeOH}, 50: 1-5: 1$) to give 12 ($27 \mathrm{mg}, 71 \%$ yield) as a colorless oil. $\mathrm{R}_{f}=0.33\left(\mathrm{DCM}: \mathrm{MeOH}=10: 1\right.$); IR (film): $\mathrm{v}_{\max } 3438$, 2964, 1647, 1517, 1261, 1159, $1023 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 1.77-1.89(\mathrm{~m}, 3 \mathrm{H})$, 2.05-2.15 (m, 2H), 2.50-2.60 (m, 2H), 2.69-2.82 (m, 4H), 2.96-3.02 (m, 1H), 3.34-3.39 (m, $1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 4.23(\mathrm{~s}, 1 \mathrm{H}), 5.76-5.81(\mathrm{~m}, 2 \mathrm{H}), 6.69-6.73(\mathrm{~m}, 2 \mathrm{H}), 6.79(\mathrm{~d}$, $1 \mathrm{H}, J=8.0 \mathrm{~Hz}) . ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 22.9,35.3,38.1,39.0,52.8,55.8,72.6,80.5$, $111.8,112.0,120.6,130.9,132.1,134.3,147.5,148.8 \mathrm{ppm}$; HRMS (ESI) m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})^{+}: 304.1913$, found: 304.1899.

Synthesis of compound 7b

The synthesis method is similar to 7a, a white solid. And the spectroscopic and analytical datas of compound 7 b are as follows:
$\mathrm{R}_{f}=0.25$ (petroleum ether : $\mathrm{EtOAc}=3: 1$); IR (film): $\mathrm{v}_{\max }$ 2973, 2939, 2865, 1693, 1669, $1377,1161 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 1.42(\mathrm{~s}, 12 \mathrm{H}), 1.55-1.71(\mathrm{~m}, 3 \mathrm{H}), 1.97(\mathrm{~d}$, $1 \mathrm{H}, J=12.0 \mathrm{~Hz}$), $3.16(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 1 \mathrm{H}), 4.89(\mathrm{br} \mathrm{s}, 0.40 \mathrm{H}), 5.03$ (br s, 0.60 H) ppm; ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta: 19.6,24.9,26.4,28.0,28.4,32.1,36.1$, 42.3, 50.7, 61.2, 79.6, 155.3, $173.5 \mathrm{ppm} ; H R M S ~(E S I) ~ m / z ~ c a l c d . ~ f o r ~\left(~ \mathrm{C}_{13} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}\right.$ $(\mathrm{M}+\mathrm{Na})^{+}: 295.1634$, found: 295.1618.

Synthesis of compound 8b

To a solution of $7 \mathrm{~b}(1.341 \mathrm{~g}, 4.93 \mathrm{mmol})$ in dichloromethane $(5 \mathrm{~mL})$ was added $\mathrm{CF}_{3} \mathrm{COOH}$ $(0.5 \mathrm{~mL})$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h . The mixture was concentrated in vacuo. The crude product was then dissolved in acetonitrile (15 mL), and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.7 \mathrm{~g}, 12.33$ mmol) was added. Then the 3,4-dimethoxyphenethyl 4-nitrobenzenesulfonate ($2.7 \mathrm{~g}, 7.4$ $\mathrm{mmol})$ was added to the slurry of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in acetonitrile. The reaction mixture was refluxed for 6 h at $80^{\circ} \mathrm{C}$, cooled, and concentrated in vacuo. The residue was then extracted with EtOAc $(5 \times 15 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The crude product was purified by silica gel column chromatography (DCM/MeOH, $50: 1$) to give $8 \mathrm{~b}\left(1.33 \mathrm{~g}, 80 \%\right.$ yield) as a yellow oil. $\mathrm{R}_{f}=0.45(\mathrm{DCM}: \mathrm{MeOH}$ $=15: 1$); IR (film): $\mathrm{v}_{\text {max }} 2941,1670,1517,1455,1238,1026 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta: 1.29-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.75(\mathrm{~m}, 5 \mathrm{H}), 2.19(\mathrm{td}, 1 \mathrm{H}, J=10.3,3.5 \mathrm{~Hz}), 2.33-2.39(\mathrm{~m}, 1 \mathrm{H})$, 2.70-2.76 (m, 3H), $3.15(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=11.2,4.1 \mathrm{~Hz}), 3.28(\mathrm{~s}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 6.67-6.75(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 19.4,23.5$, 27.0, 31.1, 32.1, 49.4, 55.7, 55.8, 57.0, 58.6, 61.7, 111.3, 112.0, 120.6, 130.1, 147.8, 149.0, 170.1 ppm ; HRMS (ESI) m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}: 337.2127$, found: 337.2122 .

Synthesis of compound 9b

The synthesis method is similar to 9 a , a pale yellow oil. And the spectroscopic and analytical datas of compound 9 b are as follows:
$\mathrm{R}_{\mathrm{f}}=0.55$ ($\mathrm{DCM}: \mathrm{MeOH}=10: 1$); IR (film): $\mathrm{v}_{\text {max }} 2933,1652,1515,1464,1261,1030 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta: 1.49-1.53(\mathrm{~m}, 3 \mathrm{H}), 1.62(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=12.8,4.9 \mathrm{~Hz}$), 1.85-1.90 (m, 1H), 2.45 (q, 1H, J = 6.8 Hz), 2.63-2.69 (m, 5H), 2.93-2.99 (m, 1H), 3.41 (s, 3H), $3.66(\mathrm{~s}$, $3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~S}, 3 \mathrm{H}), 5.02(\mathrm{td}, 2 \mathrm{H}, J=15.6,2.1 \mathrm{~Hz}), 5.90-5.96(\mathrm{~m}, 1 \mathrm{H}), 6.64-6.68$ $(\mathrm{m}, 2 \mathrm{H}), 6.76(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 20.3,24.0,29.4,34.9$, 36.2, 46.4, 53.1, 55.8, 56.0, 67.4, 111.3, 112.1, 116.6, 120.6, 133.1, 135.9, 147.3, 148.8, 173.3 ppm; HRMS (ESI) m/z calcd. for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}: 377.2440$, found: 377.2424.

Synthesis of compound 10b

The synthesis method is similar to 10a, a pale yellow oil. And the spectroscopic and analytical datas of compound 10 b are as follows:
$\mathrm{R}_{f}=0.60(\mathrm{DCM}: \mathrm{MeOH}=10: 1) ; \mathrm{IR}(\mathrm{film}): \mathrm{v}_{\max } 3071,2936,2832,1690,1626,1515,1262$, $1030 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 1.40-1.61(\mathrm{~m}, 5 \mathrm{H}), 1.67-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.81(\mathrm{dd}$, $3 \mathrm{H}, J=6.8,1.6 \mathrm{~Hz}), 2.33-2.52(\mathrm{~m}, 5 \mathrm{H}), 2.57-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.98(\mathrm{dt}, 1 \mathrm{H}, J=12.0,3.9 \mathrm{~Hz})$, $3.84(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 5.01(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=28.8,17.2 \mathrm{~Hz}), 5.89-5.95(\mathrm{~m}, 1 \mathrm{H}), 6.61-6.64(\mathrm{~m}$, $2 \mathrm{H}), 6.74(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}), 6.86-6.93(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 18.1$, $19.4,24.9,30.0,31.2,34.7,45.5,54.4,55.7,55.8,69.3,111.1,112.2,116.3,120.7,126.8$, 133.0, 136.1, 141.7, 147.3, 148.7, 203.5 ppm ; HRMS (ESI) m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{NO}_{3}$ $(\mathrm{M}+\mathrm{H})^{+}: 358.2382$, found: 358.2369.

Synthesis of compound 11b

The synthesis method is similar to 11 a , a brown oil. And the spectroscopic and analytical datas of compound 11 b are as follows:
$\mathrm{R}_{f}=0.45(\mathrm{DCM}: \mathrm{MeOH}=10: 1) ; \mathrm{IR}(\mathrm{film}): \mathrm{v}_{\max } 2934,2833,1709,1589,1515,1464,1261$, $1142,1029,803 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 1.33-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.79(\mathrm{~m}, 5 \mathrm{H})$, 2.17-2.28 (m, 4H), $2.43(\mathrm{dt}, 1 \mathrm{H}, J=19.3,2.7 \mathrm{~Hz}), 2.67-2.77(\mathrm{~m}, 3 \mathrm{H}), 3.07(\mathrm{q}, 1 \mathrm{H}, J=3.5 \mathrm{~Hz})$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 6.16(\mathrm{dt}, 1 \mathrm{H}, J=6.0,2.12 \mathrm{~Hz}), 6.63-6.65(\mathrm{~m}, 2 \mathrm{H}), 6.73(\mathrm{~d}, 1 \mathrm{H}, J=$ $8.6 \mathrm{~Hz}), 7.60-7.63(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 21.3,25.5,33.5,34.5,35.2$, $48.9,55.1,55.7,55.8,67.9,111.2,112.2,120.5,132.8,133.2,147.2,148.7,162.5,211.6 \mathrm{ppm}$ HRMS (ESI) m/z calcd. for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})^{+}: 316.1913$, found: 316.1900 .

Figure 1. HPLC Spectrum of 9a

9a

Retention time[min]	Peak width[min]	Peak area	Peak height	Peak area\%
9.768	0.46	162.43	4.57	49.67
12.165	0.42	164.57	5.27	50.33

Figure 2. HPLC Spectrum of 9b

9b

Retention time[min]	Peak width[min]	Peak area	Peak height	Peak area\%
12.282	2.32	130.19	3.67	49.52
26.064	0.84	132.74	2.09	50.48

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

7a

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

7a

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

8a

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

8a

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

9 a

8.	Nㅜㅇ	欠ヲ	ぜロのす	¢8\％	8®にず\％	－$-\bigcirc \bigcirc$
$\stackrel{\text { ® }}{ }$	¢	¢๓	－¢ ごコ	走运穴		
1	す1	17	アす	V｜	\V\％	31%

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

9a

${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

10a

\pm	を®ะ	∞ 응	$\stackrel{\infty}{\sim}$	Ш응			
ํㅜㅇ	込ずす	¢ ¢ ¢ ¢	¢	－ํ̇ご			
｜	1／ 1	1		113	\Downarrow ？	Y V	Y？

${ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

10a

[^0]${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

11a

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

11a

 T ஸ ஸ00000		かのゼ
		เค่ เค่ เค่

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right)$

12

ゅヶ	¢ை\％	$\stackrel{\circ}{\circ}$	＋${ }_{\text {－}}$	¢980900	ஜ\％	¢5\％
$\stackrel{\sim}{ \pm}$	ल్ల్ర心్ల	$\stackrel{\sim}{1}$	ご三		เை่	$\infty \times$
い	111	1	$\overline{1}$	1尤1	｜｜	171

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

12

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

7b

-173.48
-156.31

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

7b

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

8b

ターロ゚がた

7113
${ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

8b

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$9 b$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

9b

[^1]
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

10b

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

10b

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^0]: $\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl}(\mathrm{ppm})\end{array}$

[^1]:

