Construction of azaspirocyclic skeletons mediated by the carbonyl

of Weinreb amide: formal total synthesis of (±)-cephalotaxine

Jian Zhang,^{*a,b} Jianyin Liu,^a Yuxue Fan,^a Huili Ding,^a Tianfu Liu,^a Shanshan Li,^a Minghua Jiang ^a and Lu Liu ^a

^aSchool of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, P.R. China. ^bKey Laboratory of Chemistry and Quality for TCM of the College of Gansu Province, Lanzhou 730000, P.R. China.

* Correspondence author: zhangjian@gszy.edu.cn

Table of Contents

I. General Information	1
II. Experimental Procedures and Spectroscopic Data of Compounds	1-6
III. HPLC Spectra of 9a and 9b	7-8
IV. ¹ H and ¹³ C NMR Spectra of Synthesized Compounds	9-30

General procedure

All solvents were redistilled prior to use and anhydrous solvents were treated using standard techniques. All reactions were monitored by thin-layer chromatography using high silica gel GF pre-coated plates (0.25 mm). IR spectra were recorded on a Thermo Nicolet 6700 FT-IR Spectrometer using KBr disks and are reported in frequency of absorption (cm⁻¹). HRMS were acquired by a Waters Micromass Q-Tof MicroTM instrument using the ESI technique. ¹H and ¹³C NMR spectra were recorded on a Bruker AM-400 spectrometer with TMS as an internal standard and CDCl₃ as solvent. Flash column chromatography was conducted on silica gel (200–300 mesh).

Synthesis of compound 7a

To a solution of N-Boc proline 6a (1.9 g, 8.84 mmol) in DCM (20 mL) was added 1,1'-Carbonyldiimidazole (1.72 g, 10.61 mmol) slowly. The reaction was stirred at room temperature for 1 h. Then N,O-dimethylhydroxylamine hydrochloride (1.035 g, 10.61 mmol) was added and stirred for 3 h. After completion of reaction, water (5 mL) was added and stirred. The organic layer was treated with 1% HCl solution (3 mL) and water (4 mL), dried over Na₂SO₄, filtered and concentrated. The crude product was purified by silica gel column chromatography (PET/EtOAc, 5:1) to give 7a (2.207 g, 97% yield) as a light yellow oil. R_f = 0.25 (petroleum ether : EtOAc = 1:1); IR (film): v_{max} 2975, 2937, 2879, 1698, 1399, 1164, 1122, 999 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ : 1.36 (s, 5H), 1.40 (s, 4H), 1.76-1.96 (m, 3H), 2.08-2.19 (m, 1H), 3.14 (s, 3H), 3.34-3.45 (m, 1H), 3.47-3.55 (m, 1H), 3.67 (s, 2H), 3.73 (s, 1H), 4.53-4.57 (m, 0.52H), 4.63-4.66 (m, 0.46H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ : 23.3, 23.9, 28.3, 28.4, 29.5, 30.4, 32.2, 32.3, 46.5, 46.8, 56.4, 56.7, 61.1, 61.2, 79.2, 79.4, 153.7, 154.3, 173.2, 173.7 ppm; HRMS (ESI) m/z calcd. for C₁₂H₂₂N₂O₄Na (M+Na)⁺ : 281.1477, found: 281.1467.

Synthesis of compound 8a

To a solution of 7a (472 mg, 1.83 mmol) in dichloromethane (5 mL) was added trifluoroacetic acid (0.5 mL). The reaction mixture was stirred for 1 h at 0 °C. The mixture was concentrated in vacuo. The crude product was then dissolved in acetonitrile (10 mL) and K_2CO_3 (631 mg, 4.58 mmol) was added. Then the iodide (1.07 g, 3.66 mmol) was added to the slurry of K₂CO₃ in acetonitrile. The reaction mixture was refluxed for 10 h at 80 °C, cooled and concentrated in vacuo. The residue was then extracted with EtOAc (5×10 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated. The crude product was purified by silica gel column chromatography (PET/EtOAc, 5:1) to give 8a (410 mg, 70% yield) as a yellow oil. $R_f = 0.75$ (DCM : MeOH = 10:1); IR (film): v_{max} 2938, 2834, 1668, 1590, 1516, 1463, 1261, 1156, 1029 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ: 1.77-1.85 (m, 2H), 1.91-1.97 (m, 1H), 2.08-2.13 (m, 1H), 2.36 (q, 1H, J = 8.4 Hz), 2.47-2.54 (m, 1H), 2.74 (t, 2H, J = 8.0 Hz), 2.83-2.90 (m, 1H), 3.15 (s, 3H), 3.30 (td, 1H, J = 8.4, 2.8 Hz), 3.48 (t, 1H, J = 7.6 Hz), 3.63 (s, 3H), 3.80 (s, 3H), 3.82 (s, 3H), 6.69-6.75 (m, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ: 23.1, 29.1, 32.5, 35.0, 53.3, 55.8, 55.8, 56.8, 61.3, 63.6, 111.2, 112.1, 120.4, 133.1, 147.2, 148.7, 175.0 ppm; HRMS (ESI) m/z calcd. for $C_{17}H_{27}N_2O_4 (M+H)^+$: 323.1971, found: 323.1973.

Synthesis of compound 9a

A solution of 8a (853 mg, 2.65 mmol) in acetonitrile (15 mL) was added to a slurry of K_2CO_3 (805 mg, 5.83 mmol) in acetonitrile (5 mL). Then the allyl bromide (0.47 mL, 5.3 mmol) was added to the solution. The reaction mixture was refluxed for 11 h at 80 °C. The reaction mixture was cooled to room temperature, filtered and concentrated by rotary evaporation. The crude product was purified by silica gel column chromatography (DCM/MeOH, 50:1) to give 9a (935 mg, 97% yield) as a light yellow oil. $R_f = 0.50$ (DCM : MeOH = 10:1); IR (film): v_{max} 2936, 2833, 1647, 1590, 1515, 1463, 1262, 1156, 1029 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ : 1.75-1.81 (m, 2H), 1.88-1.95 (m, 1H), 2.13 (m, 1H), 2.27 (dd, 1H, J = 13.6, 7.6 Hz), 2.66-2.80 (m, 5H), 3.02-3.11 (m, 2H), 3.13 (s, 3H), 3.59 (s, 3H), 3.83 (s, 3H), 3.85 (s, 3H), 5.00-5.05 (m, 2H), 5.77-5.88 (m, 1H), 6.69-6.71 (m, 2H), 6.75 (d, 1H, J = 8.4 Hz) ppm; ¹³C NMR (100 MHz, CDCl₃) δ : 22.7, 32.9, 34.2, 35.6, 37.5, 50.9, 51.0, 55.8,

55.9, 60.1, 70.7, 111.1, 112.0, 117.1, 120.5, 133.4, 135.9, 147.2, 148.7, 175.6 ppm; HRMS (ESI) m/z calcd. for C₂₀H₃₁N₂O₄ (M+H)⁺ : 363.2284, found: 363.2267.

Synthesis of compound 10a

To a solution of 9a (288 mg, 0.80 mmol) in dry THF (5 mL) was added a 1.0 M solution of allylmagnesium chloride in THF (2.40 mL, 2.40 mmol) maintained under inert atmosphere at -78 °C. The reaction mixture was stirred for 0.5 h. The mixture was quenched with saturated NH₄Cl (1 mL) solution. The aqueous layer was extracted with EtOAc and the combined organic phases were washed with brine (1×10 mL), dried over Na₂SO₄, filtered and concentrated. The crude oil was purified by silica gel column chromatography (DCM/MeOH, 80:1-10:1) to give 10a (235 mg, 86% yield) as a pale yellow oil. R_f = 0.55 (DCM : MeOH = 10:1); IR (film): v_{max} 3071, 2938, 2831, 1687, 1515, 1463, 1262, 1156, 1030 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ : 1.77 (d, 2H, *J* = 7.2, 2.0 Hz), 1.84-1.91 (m, 4H), 2.04 (d, 1H, *J* = 5.2 Hz), 2.16 (q, 1H, J = 8.0 Hz), 2.52-2.57 (m, 1H), 2.61-2.78 (m, 5H), 3.21-3.25 (m, 1H), 3.83 (s, 3H), 3.84 (s, 3H), 5.01 (t, 2H, *J* = 14.0 Hz), 5.77-5.87 (m, 1H), 6.39 (dd, 1H, *J* = 15.2, 1.6 Hz), 6.66 (t, 2H, *J* = 8.0 Hz), 6.75 (d, 1H, *J* = 8.0 Hz), 6.78-6.88 (dt, 1H, *J* = 22.0, 6.8 Hz) ppm; ¹³C NMR (100 MHz, CDCl₃) δ : 18.1, 23.2, 33.0, 35.5, 35.5, 50.8, 51.2, 55.8, 55.8, 72.7, 111.0, 112.0, 117.1, 120.6, 126.8, 133.1, 135.9, 141.8, 147.2, 148.7, 202.1 ppm; HRMS (ESI) m/z calcd. for C₂₁H₃₀NO₃ (M+H)⁺ : 344.2226, found: 344.2217.

Synthesis of compound 11a

A solution of 10a (154 mg, 0.45 mmol) and Grubbs (II) catalyst (38 mg) in dry DCM (5 mL) was refluxed for 1 h at 40 °C. Then the mixture was concentrated. The crude material was purified by silica gel column chromatography (DCM/MeOH, 80:1-20:1) to give 11a (122 mg, 90% yield) as a brown oil. R_f = 0.45 (DCM : MeOH = 15:1); IR (film): v_{max} 2936, 2832, 1700, 1587, 1515, 1463, 1261, 1156, 1028 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ : 1.83 (d, 1H, *J* = 8.0 Hz), 1.89-1.96 (m, 1H), 2.01-2.14 (m, 2H), 2.53-2.79 (m, 6H), 3.04 (s, 1H), 3.16-3.20 (m, 1H), 3.83 (s, 3H), 3.85 (s, 3H), 6.10 (d, 1H, *J* = 4.0 Hz), 6.68-6.77 (m, 3H), 7.60-7.63 (m, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ : 21.8, 35.7, 36.8, 39.2, 51.5, 51.8, 55.7, 55.8, 70.9,

111.1, 112.0, 120.4, 132.9, 133.4, 147.3, 148.7, 162.4, 212.6 ppm; HRMS (ESI) m/z calcd. for $C_{18}H_{24}NO(M+H)^+$: 302.1756, found: 302.1760.

Synthesis of compound 12

A solution of 2-propanol (5 mL) was added to aluminium isopropoxide (773 mg, 3.78 mmol) under inert atmosphere. Then a solution of 11a (38 mg, 0.13 mmol) in 2-propanol (5 mL) was added and the mixture was refluxed for 1 h at 130 °C. The solvent was steamed and the residue was stirred for 3 h at 130 °C. The resulting residue was cooled to 0 °C and acidified with a 1N aqueous solution of HCl to pH = 7. The resulting solution was extracted with CH₂Cl₂. The combined organic layers were dried over Na₂SO₄, filtered and concentrated. The residue was purified by silica gel chromatography (DCM/MeOH, 50:1-5:1) to give 12 (27 mg, 71% yield) as a colorless oil. $R_f = 0.33$ (DCM : MeOH = 10:1); IR (film): v_{max} 3438, 2964, 1647, 1517, 1261, 1159, 1023 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ : 1.77-1.89 (m, 3H), 2.05-2.15 (m, 2H), 2.50-2.60 (m, 2H), 2.69-2.82 (m, 4H), 2.96-3.02 (m, 1H), 3.34-3.39 (m, 1H), 3.84 (s, 3H), 3.86 (s, 3H), 4.23 (s, 1H), 5.76-5.81 (m, 2H), 6.69-6.73 (m, 2H), 6.79 (d, 1H, *J* = 8.0 Hz).; ¹³C NMR (100 MHz, CDCl₃) δ : 22.9, 35.3, 38.1, 39.0, 52.8, 55.8, 72.6, 80.5, 111.8, 112.0, 120.6, 130.9, 132.1, 134.3, 147.5, 148.8 ppm; HRMS (ESI) m/z calcd. for C₁₈H₂₆NO₃ (M+H)⁺ : 304.1913, found: 304.1899.

Synthesis of compound 7b

The synthesis method is similar to 7a, a white solid. And the spectroscopic and analytical datas of compound 7b are as follows:

 $R_f = 0.25$ (petroleum ether : EtOAc = 3:1); IR (film): v_{max} 2973, 2939, 2865, 1693, 1669, 1377, 1161 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ : 1.42 (s, 12H), 1.55-1.71 (m, 3H), 1.97 (d, 1H, *J* = 12.0 Hz), 3.16 (s, 3H), 3.45 (s, 1H), 3.74 (s, 3H), 3.88 (s, 1H), 4.89 (br s, 0.40H), 5.03 (br s, 0.60H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ : 19.6, 24.9, 26.4, 28.0, 28.4, 32.1, 36.1, 42.3, 50.7, 61.2, 79.6, 155.3, 173.5 ppm; HRMS (ESI) m/z calcd. for C₁₃H₂₄N₂O₄Na (M+Na)⁺ : 295.1634, found: 295.1618.

Synthesis of compound 8b

To a solution of 7b (1.341 g, 4.93 mmol) in dichloromethane (5 mL) was added CF₃COOH (0.5 mL). The reaction mixture was stirred at 0 °C for 2 h. The mixture was concentrated in vacuo. The crude product was then dissolved in acetonitrile (15 mL), and K₂CO₃ (1.7 g, 12.33 mmol) was added. Then the 3,4-dimethoxyphenethyl 4-nitrobenzenesulfonate (2.7 g, 7.4 mmol) was added to the slurry of K₂CO₃ in acetonitrile. The reaction mixture was refluxed for 6 h at 80 °C, cooled, and concentrated in vacuo. The residue was then extracted with EtOAc (5×15 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated. The crude product was purified by silica gel column chromatography (DCM/MeOH, 50:1) to give 8b (1.33 g, 80% yield) as a yellow oil. R_{*f*} = 0.45 (DCM : MeOH = 15:1); IR (film): v_{max} 2941, 1670, 1517, 1455, 1238, 1026 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ : 1.29-1.34 (m, 1H), 1.63-1.75 (m, 5H), 2.19 (td, 1H, *J* = 10.3, 3.5 Hz), 2.33-2.39 (m, 1H), 2.70-2.76 (m, 3H), 3.15 (s, 3H), 3.26 (dt, 1H, *J* = 11.2, 4.1 Hz), 3.28 (s, 1H), 3.63 (s, 3H), 3.80 (s, 3H), 3.82 (s, 3H), 6.67-6.75 (m, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ : 19.4, 23.5, 27.0, 31.1, 32.1, 49.4, 55.7, 55.8, 57.0, 58.6, 61.7, 111.3, 112.0, 120.6, 130.1, 147.8, 149.0, 170.1 ppm; HRMS (ESI) m/z calcd. for C₁₈H₂₉N₂O₄ (M+H)⁺ : 337.2127, found: 337.2122.

Synthesis of compound 9b

The synthesis method is similar to 9a, a pale yellow oil. And the spectroscopic and analytical datas of compound 9b are as follows:

 R_f = 0.55 (DCM : MeOH = 10:1); IR (film): v_{max} 2933, 1652, 1515, 1464, 1261, 1030 cm⁻¹; ¹H NMR (400 MHz, CDCl3) δ: 1.49-1.53 (m, 3H), 1.62 (dd, 2H, *J* = 12.8, 4.9 Hz), 1.85-1.90 (m, 1H), 2.45 (q, 1H, *J* = 6.8 Hz), 2.63-2.69 (m, 5H), 2.93-2.99 (m, 1H), 3.41 (s, 3H), 3.66 (s, 3H), 3.83 (s, 3H), 3.84 (S, 3H), 5.02 (td, 2H, *J* = 15.6, 2.1 Hz), 5.90-5.96 (m, 1H), 6.64-6.68 (m, 2H), 6.76 (d, 1H, *J* = 8.0 Hz) ppm; ¹³C NMR (100 MHz, CDCl₃) δ: 20.3, 24.0, 29.4, 34.9, 36.2, 46.4, 53.1, 55.8, 56.0, 67.4, 111.3, 112.1, 116.6, 120.6, 133.1, 135.9, 147.3, 148.8, 173.3 ppm; HRMS (ESI) m/z calcd. for C₂₁H₃₃N₂O₄ (M+H)⁺ : 377.2440, found: 377.2424.

Synthesis of compound 10b

The synthesis method is similar to 10a, a pale yellow oil. And the spectroscopic and analytical datas of compound 10b are as follows:

 $R_f = 0.60$ (DCM : MeOH = 10:1); IR (film): v_{max} 3071, 2936, 2832, 1690, 1626, 1515, 1262, 1030 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ : 1.40-1.61 (m, 5H), 1.67-1.72 (m, 2H), 1.81 (dd, 3H, J = 6.8, 1.6 Hz), 2.33-2.52 (m, 5H), 2.57-2.68 (m, 2H), 2.98 (dt, 1H, J = 12.0, 3.9 Hz), 3.84 (s, 3H), 3.85 (s, 3H), 5.01 (dd, 2H, J = 28.8, 17.2 Hz), 5.89-5.95 (m, 1H), 6.61-6.64 (m, 2H), 6.74 (t, 1H, J = 8.0 Hz), 6.86-6.93 (m, 1 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ : 18.1, 19.4, 24.9, 30.0, 31.2, 34.7, 45.5, 54.4, 55.7, 55.8, 69.3, 111.1, 112.2, 116.3, 120.7, 126.8, 133.0, 136.1, 141.7, 147.3, 148.7, 203.5 ppm; HRMS (ESI) m/z calcd. for C₂₂H₃₂NO₃ (M+H)⁺ : 358.2382, found: 358.2369.

Synthesis of compound 11b

The synthesis method is similar to 11a, a brown oil. And the spectroscopic and analytical datas of compound 11b are as follows:

 R_f = 0.45 (DCM : MeOH = 10:1); IR (film): v_{max} 2934, 2833, 1709, 1589, 1515, 1464, 1261, 1142, 1029, 803 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ: 1.33-1.42 (m, 2H), 1.64-1.79 (m, 5H), 2.17-2.28 (m, 4H), 2.43 (dt, 1H, *J* =19.3, 2.7 Hz), 2.67-2.77 (m, 3H), 3.07 (q, 1H, *J* = 3.5 Hz), 3.80 (s, 3H), 3.82 (s, 3H), 6.16 (dt, 1H, *J* = 6.0, 2.12 Hz), 6.63-6.65 (m, 2H), 6.73 (d, 1H, *J* = 8.6 Hz), 7.60-7.63 (m, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ: 21.3, 25.5, 33.5, 34.5, 35.2, 48.9, 55.1, 55.7, 55.8, 67.9, 111.2, 112.2, 120.5, 132.8, 133.2, 147.2, 148.7, 162.5, 211.6 ppm; HRMS (ESI) m/z calcd. for C₁₉H₂₆NO₃ (M+H)⁺ : 316.1913, found: 316.1900.

Figure 1. HPLC Spectrum of 9a

Tested by Agilent 1260 VWD

Signal: VWD1A, Wave length = 254 nm

Retention time[min]	Peak width[min]	Peak area	Peak height	Peak area%
9.768	0.46	162.43	4.57	49.67
12.165	0.42	164.57	5.27	50.33

Figure 2. HPLC Spectrum of 9b

Tested by Agilent 1260 VWD

Signal: VWD1A, Wave length = 254 nm

Retention time[min]	Peak width[min]	Peak area	Peak height	Peak area%
12.282	2.32	130.19	3.67	49.52
26.064	0.84	132.74	2.09	50.48

< 173.75 < 173.16	~ 154.35	$ \begin{array}{c} & & & & & & & & & & & & & & & & & & &$	232. 34 32. 18 32. 18 30. 39 29. 50 28. 40 23. 95 23. 29 23. 29

7a

) 100 f1 (ppm) -10

00	71 20	07	42	06 19	0 0 0	۲00 ۲00 1000	0 ~ 6	0
•					0 0 3	0.0000	040	1
21	~1 00	က္	0	1 12				
P	オオ	с?	2		0 1 1	က္မ္လာပ္လက္	0 0 0	\tilde{c}
					7.7.7	ດດດດວຍ	[0, 0, 0]	2
) (10		אר וו		

	~148.72 ~147.20		110.54 -117.08 111.97 111.14	$\underbrace{+77.32}_{76.68}$		37.48 35.61 34.16 32.92	-22.66
--	--------------------	--	---------------------------------------	-------------------------------	--	----------------------------------	--------

¹³C NMR (100 MHz, CDCl₃)

9a

4.05 4 3.843.83

 $\begin{array}{c} 3.25\\ 3.25\\ 3.25\\ 3.25\\ 3.25\\ 3.22\\ 3.22\\ 3.22\\ 3.22\\ 3.22\\ 3.22\\ 3.22\\ 3.22\\ 3.22\\ 3.22\\ 5.22\\ 5.27\\$

$\begin{array}{c} 85\\ 83\\ 22\\ 119\\ 118\\ 116\\ 04\\ 04\end{array}$	77777777777777777777777777777777777777
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
V	

¹H NMR (400 MHz, CDCl₃)



11a



35	66	36 93	42	01 11	4 8 0 2	122 152	2025	53
2.	7.	53	0	1.2	.0.0.0	<u>86</u> 8 4	0.0012	
16	14	13	12	==	777 777 70	5155	3539	21
	11	$\mathbf{Y}$		12		YY	112	

¹³C NMR (100 MHz, CDCl₃)

-212.61

11a





. 45	. 93	. 56	. 18	45 332 68 61	83	83	96 07 30	88
148	134 132 130	120	111	80. 777. 722.	55.	52.	32.38	22.
11	111	1	N	I SP 1	Ĩ	1	121	

¹³C NMR (100 MHz, CDCI₃)

0 Ò. но 12









¹H NMR (400 MHz, CDCl₃)



 33.85

 32.85

 33.85

 33.85

 33.85

 33.85

 33.85

 33.85

 33.85

 33.85

 33.85

 33.75

 33.75

 33.75

 33.75

 33.75

 33.75

 33.75

 33.75

 33.75

 33.75

 33.75

 33.75

 33.75

 33.75

 33.75

 33.75

 33.75

 33.75

 33.75

 33.75

 33.75

 33.75

 33.75

 33.75

 33.75

 33.75

 33.75

 33.75

 33.75

 33.75

 33.75

 33.75

 33.75

 33.75

 33.75

 33.75

 33.75

 33.75

 33.75

 33.75





¹H NMR (400 MHz, CDCl₃)









¹H NMR (400 MHz, CDCl₃)

Ô ó

10b



49 66 124 124 97	79	74 21 09	1 805	00 C1 C2	L	01041
	<u> </u>	~ 120. ~ 116. ~ 1112.	77.3 77.0 76.6	55.8 55.7 54.4	-45.4	$\sum_{i=1}^{34.7} \frac{134.7}{29.9}$

¹³C NMR (100 MHz, CDCI₃)

0 Ó. Ó

10b











110 100 f1 (ppm) 170 160 -10