Supporting Information

Palladium Oxidative Addition Complexes Enabled Synthesis of Amino-Substituted Indolyl-4(3H)-quinazolinones and Their Antitumor Activity Evaluation

Zhi Jiang, Dan-Dan Zhao, Yu-Tao Hu, Yong Rao, Shi-Yao Guo, Yao-Hao Xu, Qingjiang Li ${ }^{*}$ andZhi-Shu Huang*School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, ChinaE-mail: liqingj3@mail.sysu.edu.cn, ceshzs@mail.sysu.edu.cn
Table of Contents

1. General information 2
2. Preparation of the starting materials $\mathbf{1}$ 2
3. The general procedures for synthesis of oxidative addition complexes (OACs) 4.... 8
4. General procedures for the synthesis of amino-substituted indolyl-4(3H)- quinazolinones 3 11
5. Screening for antitumor activity of amino-substituted indolyl-4(3H)-quinazolinone derivatives 26
6. References 27
7. NMR spectrum of some starting materials and products 27

1. General information

The solvents used were dried by distillation over the drying agents indicated in parentheses and were transferred under argon: toluene (Na), tetrahydrofuran (Na) and diethyl ether (Na). Methanol, petroleum ether (PE) and ethyl acetate (EA) were purchased from Energy-chemical. Commercially available chemicals were obtained from commercial suppliers and used without further purification unless otherwise stated.

Proton $\left({ }^{1} \mathrm{H}\right)$ and carbon $\left({ }^{13} \mathrm{C}\right)$ NMR spectra were recorded at 500 (or 400), 376, and 126 (or 101) MHz, respectively. The following abbreviations are used for the multiplicities: s : singlet, d: doublet, t : triplet, q : quartet, m: multiple, $\mathrm{dd}=$ doublet of doublet for proton spectra. Coupling constants (J) are reported in hertz (Hz).

High-resolution mass spectra (HRMS) were recorded on a Bruker VPEXII spectrometer with EI and ESI modes unless otherwise stated, and the mass analysis mode of HRMS was TOF.

Analytical thin layer chromatography was performed on Polygram SIL G/UV254 plates. Visualization was accomplished with short wave UV light, or KMnO_{4} staining solutions followed by heating. Flash column chromatography was performed using silica gel (200-300 mesh) with solvents distilled prior to use.

Cell culture: HCT116 were obtained from American Type Culture Collection (Shanghai, China, ATCC). Cells were cultured in 1640 culture medium supplemented with 10% fetal bovine serum at $37^{\circ} \mathrm{C}$ in a humidified $5 \% \mathrm{CO}_{2}$ incubator.

No attempts were made to optimize yields for substrate preparation.

2. Preparation of the starting materials 1

2.1 Preparation of substrates $1 \mathrm{a} \sim 1 \mathrm{c}$ and 1 e .

General procedure A:

Following the method reported by Huang and co-workers ${ }^{[1]}$: halogenated 1 H -indole-2-carboxylic acid ($10.0 \mathrm{mmol}, 1.0$ equiv) were added to an appropriate single-necked round-bottomed flask, then added $\mathrm{CHCl}_{3}(100.0 \mathrm{ml}, 0.1 \mathrm{M})$ to dissolve. The flask was transferred to ice-bath to cool to $0{ }^{\circ} \mathrm{C}$, then $\mathrm{SOCl}_{2}(4.35 \mathrm{~mL}, 60.0 \mathrm{mmol}, 6.0$ equiv) were added dropwise. The mixture was allowed to stir at $75^{\circ} \mathrm{C}$ for 4 h and was then cooled to rt . The reaction mixture was concentrated under reduced pressure to make solid and then re-dissolve by CHCl_{3}.

The mixture was then added into 2 -aminobenzamide ($10.0 \mathrm{mmol}, 1.0$ equiv), pyridine ($0.83 \mathrm{~mL}, 10.0 \mathrm{mmol}$, 1.0 equiv) and $\mathrm{CHCl}_{3}(60.0 \mathrm{ml})$ which stirred in advance under ice-bath. Then the mixture was stirred at rt overnight. The reaction mixture was filtered, and washed by CHCl_{3} to get solid.

The dried solid of halogenated N -(2-carbamoylphenyl)-1H-indole-2-carboxamide was added to an appropriate single-necked round-bottomed flask, 2 M NaOH (25.0 ml) solution and $\mathrm{EtOH}(25.0 \mathrm{ml})$ was added to dissolve. The mixture was stirred at $85{ }^{\circ} \mathrm{C}$ for 2 h and then cooled to rt . The reaction mixture was poured into ice water to make solid precipitation by adjusting pH to $2-3$ using 4 M HCl . Then the solid precipitation was filtered to get solid. Wash the solid by water and dry it to get $\mathbf{1 a} \sim \mathbf{1 c}$ and $\mathbf{1 e}$.

2-(4-bromo-1H-indol-2-yl) quinazolin-4(3H)-one (1b)

1b

Following the general procedure A , starting from 4-bromo-1H-indole-2-carboxylic acid ($2.39 \mathrm{~g}, 10.0 \mathrm{mmol}$), the substrate $\mathbf{1 b}$ was obtained in 65% yield as a white solid powder (2.21g, 6.5 mmol$).{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}$, DMSO-d6) $\delta 12.70$ (s, $1 \mathrm{H}), 12.17(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.88-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{t}, J$ $=7.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}$, DMSO-d6) $\delta 162.0,148.5,146.5,137.9,134.6$, 131.1, 128.2, 126.8, 126.4, 126.1, 125.0, 122.6, 121.3, 114.5, 112.0, 104.7. HRMS (ESI-TOF): m / z calculated for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{OBr}[\mathrm{M}+\mathrm{H}]^{+}: 340.0080$, found: 340.0077.

2-(5-chloro-1H-indol-2-yl) quinazolin-4(3H)-one (1c)

1c

Following the general procedure A , starting from 5-chloro-1H-indole-2-carboxylic acid ($1.95 \mathrm{~g}, 10.0 \mathrm{mmol}$), the substrate 1 c was obtained in 62% yield as a pale yellow solid powder ($1.83 \mathrm{~g}, 6.2 \mathrm{mmol}$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, DMSO-d6) $\delta 12.68(\mathrm{~s}, 1 \mathrm{H}), 12.03(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{dd}, J=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.88-7.82(\mathrm{~m}$, $1 \mathrm{H}), 7.74(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.57-7.48(\mathrm{~m}, 2 \mathrm{H})$, 7.23 (dd, $J=8.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, DMSO-d6) $\delta 161.7,148.6,146.2$, 136.0, 134.7, 131.6, 128.4, 127.0, 126.5, 126.1, 124.5, 124.1, 121.3, 120.5, 114.0, 104.5. HRMS (ESI-TOF): m / z calculated for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{OCl}[\mathrm{M}+\mathrm{H}]^{+}$: 296.0585, found: 296.0583.

2-(6-bromo-1H-indol-2-yl) quinazolin-4(3H)-one (1a)

1a

Following the general procedure A , starting from 6-bromo-1H-indole-2-carboxylic acid ($2.39 \mathrm{~g}, 10.0 \mathrm{mmol}$), the substrate 1a was obtained in 62% yield as a yellow solid powder ($2.05 \mathrm{~g}, 6.2 \mathrm{mmol}$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, DMSO-d6) $\delta 12.67(\mathrm{~s}, 1 \mathrm{H}), 11.94(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{dd}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.90-7.83(\mathrm{~m}$, $1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.19 (dd, $J=8.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, DMSO-d6) $\delta 161.7$, $148.6,146.2,138.3,134.8,131.0,127.0,126.5,126.4,126.1,123.4,123.0,121.3,116.9$, 114.8, 105.0. HRMS (ESI-TOF): m / z calculated for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{OBr}[\mathrm{M}+\mathrm{H}]^{+}: 340.0080$, found: 340.0075 .

2-(7-chloro-1H-indol-2-yl) quinazolin-4(3H)-one (1e)

Following the general procedure A , starting from 7-chloro-1H-indole-2-carboxylic acid ($1.95 \mathrm{~g}, 10.0 \mathrm{mmol}$), the substrate $\mathbf{1 e}$ was obtained in 52% yield as a white solid powder $(1.53 \mathrm{~g}, 5.2 \mathrm{mmol}) .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, DMSO-d6) $\delta 12.64$ (s, 1H), $11.70(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.35$ $(\mathrm{d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\left.\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{D M S O}-\mathrm{d} 6\right) ~ \delta 161.7$,
148.7, 145.9, 134.8, 134.4, 131.7, 129.2, 127.3, 126.6, 126.0, 123.7, 121.3, 121.1, 120.7, 116.4, 106.8. HRMS (ESI-TOF): m / z calculated for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{OCl}[\mathrm{M}+\mathrm{H}]^{+}: 296.0585$, found: 296.0598.

2.2 Preparation of substrates $\mathbf{1 d}$ and $\mathbf{1 f} \sim \mathbf{1 j}$.

1d and 1f~1j

General procedure B:

Following the method reported by Huang and co-workers ${ }^{[1]}$: halogenated 1H-indole-2-carboxylic acid ($10.0 \mathrm{mmol}, 1.0$ equiv) were added to an appropriate single-necked round-bottomed flask, then added $\mathrm{CHCl}_{3}(100.0 \mathrm{ml}, 0.1 \mathrm{M})$ to dissolve. The flask was transferred to ice-bath to cool to $0{ }^{\circ} \mathrm{C}$, then SOCl_{2} ($60.0 \mathrm{mmol}, 6.0$ equiv) were added dropwise. The mixture was allowed to stir at $75^{\circ} \mathrm{C}$ for 4 h and was then cooled to rt . The reaction mixture was concentrated under reduced pressure to make solid and then re-dissolve by CHCl_{3}. The mixture was then added into halogenated 2-aminobenzoic acid ($10.0 \mathrm{mmol}, 1.0$ equiv), pyridine ($10.0 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{CHCl}_{3}(60.0 \mathrm{ml}$) which stirred in advance under ice-bath. Then the mixture was stirred at rt overnight. The reaction mixture was filtered, and washed by CHCl_{3} to get solid.

The dried solid of halogenated 2 -(1 H -indole-2-carboxamido) benzoic acid was added to an appropriate single-necked round-bottomed flask, $\mathrm{Ac}_{2} \mathrm{O}(20.0 \mathrm{ml})$ was added to dissolve. The mixture was stirred at $120{ }^{\circ} \mathrm{C}$ for 2 h and then cooled to rt. The solid precipitation was filtered, washed by EtOH and dried to get target solid product.

The dried solid of 2-(1H-indol-2-yl)-4H-benzo [1,3] oxazin-4-one was added to an appropriate pressure tube, ammonia water (20.0 ml) was added to dissolve. The mixture
was stirred at $100{ }^{\circ} \mathrm{C}$ for 2 h and then cooled to rt . The reaction mixture was poured into water to make solid precipitation by adjusting pH to $2-3$ using 4 M HCl . Then the solid precipitation was filtered to get solid. Wash the solid by water and dry it to get $\mathbf{1 f} \sim \mathbf{1} \mathbf{j}$ and 1d.

8-chloro-2-(1H-indol-2-yl) quinazolin-4(3H)-one (1f)

Following the general procedure B , starting from 1 H -indole-2-carboxylic acid ($1.61 \mathrm{~g}, 10.0 \mathrm{mmol}$), the substrate 1f was obtained in 65% yield as a white solid powder $(1.92 \mathrm{~g}$, $6.5 \mathrm{mmol}){ }^{\mathbf{1}}{ }^{\mathbf{H}}$ NMR (500 MHz, DMSO-d6) $\delta 12.80(\mathrm{~s}, 1 \mathrm{H})$, $11.54(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.71(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{dd}, J=16.0,8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.08(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}$, DMSO-d6) $\delta 161.9,147.6,145.8$, $138.3,135.2,131.0,130.2,127.9,126.9,125.6,124.8,123.3,122.1,120.6,113.2,106.3$. HRMS (ESI-TOF): m / z calculated for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{OCl}[\mathrm{M}+\mathrm{H}]^{+}$: 296.0585, found: 296.0582.

7-chloro-2-(1H-indol-2-yl) quinazolin-4(3H)-one (1g)

Following the general procedure B , starting from 1 H -indole-2-carboxylic acid $(1.61 \mathrm{~g}, 10.0 \mathrm{mmol})$, the substrate $\mathbf{1 g}$ was obtained in 70% yield as a yellow solid powder ($2.06 \mathrm{~g}, 7.0 \mathrm{mmol}$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathbf{~ M H z}$, DMSO-d6) $\delta 12.68(\mathrm{~s}, 1 \mathrm{H}), 11.94(\mathrm{~s}, 1 \mathrm{H}), 8.17(\mathrm{dd}, J=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.89-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.63$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{dd}, J=8.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , DMSO-d6) $\delta 162.2,149.1,146.7,138.8,135.2,131.5,127.4,127.0,126.9$, 126.6, 123.9, 123.5, 121.7, 117.3, 115.3, 105.5. HRMS (ESI-TOF): m / z calculated for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{OCl}[\mathrm{M}+\mathrm{H}]^{+}: 296.0585$, found: 296.0586.

6-chloro-2-(1H-indol-2-yl) quinazolin-4(3H)-one (1h)

Following the general procedure B , starting from 1 H -indole-2-carboxylic acid ($1.61 \mathrm{~g}, 10.0 \mathrm{mmol}$), the substrate 1 h was obtained in 65% yield as a yellow solid

1h
powder ($1.92 \mathrm{~g}, 6.5 \mathrm{mmol}$); ${ }^{1} \mathbf{H}$ NMR ($500 \mathbf{~ M H z}, \mathbf{D M S O}-\boldsymbol{d}_{\boldsymbol{6}}$) $\delta 12.77(\mathrm{~s}, 1 \mathrm{H}), 11.80(\mathrm{~s}$, $1 \mathrm{H}), 8.08(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{dd}, J=8.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.68(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.06(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}$, DMSO-d \boldsymbol{d}_{6}) $\delta 160.9$, 147.5, 147.0, 137.8, 134.7, 130.4, 129.8, 129.1, 127.4, 125.1, 124.2, 122.4, 121.6, 120.0, 112.4, 105.4. HRMS (ESI-TOF): m / z calculated for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{OCl}[\mathrm{M}+\mathrm{H}]^{+}: 296.0585$, found: 296.0592.

5-chloro-2-(1H-indol-2-yl) quinazolin-4(3H)-one (1j)

Following the general procedure B , starting from 1 H -indole-2-carboxylic acid $(1.61 \mathrm{~g}, 10.0 \mathrm{mmol})$, the substrate $\mathbf{1 j}$ was obtained in 50% yield as a white solid powder ($1.47 \mathrm{~g}, 5.0 \mathrm{mmol}$); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, DMSO-d6) $\delta 12.60(\mathrm{~s}, 1 \mathrm{H}), 11.79(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}$, $J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{dd}, J=8.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{dd}, J=7.8,1.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.24(\mathrm{ddd}, J=8.2,6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{ddd}, J=8.0,6.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, DMSO-d6) $\delta 160.0,151.3,147.2,137.7,134.4,132.7,129.4,128.6$, 127.4, 126.5, 124.3, 121.6, 120.0, 118.0, 112.4, 105.5. HRMS (ESI-TOF): m / z calculated for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{OCl}[\mathrm{M}+\mathrm{H}]^{+}: 296.0585$, found: 296.0598.

2-(6-bromo-1H-indol-2-yl)-6-fluoroquinazolin-4(3H)-one (1d)

1d

Following the general procedure B , starting from 6-bromo-1H-indole-2-carboxylic acid $(2.39 \mathrm{~g}, 10.0$ mmol), the substrate $\mathbf{1 d}$ was obtained in 43% yield as a white solid powder ($1.53 \mathrm{~g}, 4.3 \mathrm{mmol}){ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0}$ MHz, DMSO-d6) $\delta 12.75(\mathrm{~s}, 1 \mathrm{H}), 11.95(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{dd}, J=8.8,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J$ $=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{dd}, J=10.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{td}, J=8.7$, $2.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.19(\mathrm{dd}, J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}$, DMSO-d6) $\delta 166.9$, $164.9,161.0,150.8,150.7,147.5,138.4,130.6,129.3,129.2,126.4,123.5,123.1,118.3$, 117.1, 114.9, 114.9, 114.8, 111.9, 111.7, 105.6. HRMS (ESI-TOF): m / z calculated for $\mathrm{C}_{16} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{OFBr}[\mathrm{M}+\mathrm{H}]^{+}: 357.9986$, found: 357.9997.

6-chloro-2-(1H-indol-2-yl)-8-methylquinazolin-4(3H)-one (1i)

$1 i$

Following the general procedure B , starting from 1 H -indole-2-carboxylic acid ($1.61 \mathrm{~g}, 10.0 \mathrm{mmol}$), the substrate 1 i was obtained in 46% yield as a white solid powder ($1.42 \mathrm{~g}, 4.6 \mathrm{mmol}$); ${ }^{\mathbf{1}} \mathbf{H}$ NMR $(500 \mathbf{~ M H z}$, DMSO-d6) $\delta 12.73$ ($\mathrm{s}, 1 \mathrm{H}$), $11.59(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.90$ (d, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~s}$, $3 H) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}$, DMSO-d6) $\delta 161.2,146.0,145.7,138.5,137.6,134.5,130.0$, 129.8, 127.5, 124.2, 122.4, 122.2, 121.6, 120.0, 112.3, 105.1, 16.9. HRMS (ESI-TOF): m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{OCl}[\mathrm{M}+\mathrm{H}]^{+}: 310.0742$, found: 310.0752.

3. The general procedures for synthesis of oxidative addition complexes

(OACs) 4

According to the method reported by Buchwald and co-workers ${ }^{[2]}$: a 50 mL reaction flask was equipped with a stir bar and charged with aryl halide ($3.0 \mathrm{mmol}, 1.0$ equiv), $\operatorname{CODPd}\left(\mathrm{CH}_{2} \mathrm{TMS}\right)_{2}{ }^{[3]}$ ($3.0 \mathrm{mmol}, 1.0$ equiv) and ${ }^{t}$ BuXPhos ($3.0 \mathrm{mmol}, 1.0$ equiv). The flask was capped with a rubber cap then evacuated and backfilled with dry nitrogen gas for 3 times. Dry, air-free, THF (24 ml) was added via needle. The reaction mixture was allowed to stir for 16 h at room temperature. After 16 h , the flask was opened to air and the mixture was concentrated with the aid of a rotatory evaporator. The crude material was triturated with pentane to provide a powder. The powder was collected on a fritted filter funnel by vacuum filtration and washed with pentane. The solid was then placed under high vacuum for 2 h to remove all remaining volatiles.

The structures of oxidative addition complexes $\mathbf{4 a} \sim \mathbf{4} \mathbf{j}$:

The details of different OACs including appearances, synthesis and yields:

Name	Appearance	Methods	Yield
4b		Following the general method of synthesis of OACs: Starting from $\mathbf{1 b}$ ($576 \mathrm{mg}, 1.7$ mmol), oxidative addition complex $\mathbf{4 b}$ $(1.29 \mathrm{~g})$ was obtained as a red powder.	87\%
4 c		Following the general method of synthesis of OACs: Starting from $\mathbf{1 c}(1.09 \mathrm{~g}, 3.7$ mmol), oxidative addition complex $\mathbf{4 a}$ $(2.43 \mathrm{~g})$ was obtained as a dull yellow powder.	80\%
4a		Following the general method of synthesis of OACs: Starting from $\mathbf{1 a}(1.02 \mathrm{~g}, 3.0$ mmol), oxidative addition complex $\mathbf{4 a}$ $(2.27 \mathrm{~g})$ was obtained as a dark yellow powder.	87\%
4 e		Following the general method of synthesis of OACs: Starting from $\mathbf{1 e}(590 \mathrm{mg}, 2.0$ mmol), oxidative addition complex $\mathbf{4 e}$ $(1.35 \mathrm{~g})$ was obtained as a celadon powder.	82\%

4. General procedures for the synthesis of amino-substituted

indolyl-4(3H)- quinazolinones 3

Take synthesis of 3aa~3ak as an example, general procedures as follows: A reaction tube was equipped with a stir bar and charged with the Pd-based OAC $\mathbf{4 a}$ ($174.0 \mathrm{mg}, 0.2$ mmol, 1.0 equiv) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(130.0 \mathrm{mg}, 0.4 \mathrm{mmol}, 2.0$ equiv). The tube was capped, evacuated and backfilled with nitrogen. Then added dry THF (2.0 ml) into the tube and stir it for few minutes. Then amine nucleophile ($0.3 \mathrm{mmol}, 1.5$ equiv) was dissolved by moderate dry THF, and use injector to transfer the mixtures into the tube. After 10 minutes, LiHDMS ($0.4 \mathrm{mmol}, 2,0$ equiv) was added into the tube. The mixture was allowed to stir at room temperature for 1.5 h , then added acetic acid $(24.0 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$, 2.0 equiv) in $\mathrm{DCM}(2.0 \mathrm{ml})$ into the tube and allowed the mixture stir for 30 minutes to stop the reaction. Then the mixture was filtered through a pad of Celite. The Celite pad was washed with additional $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and MeOH . The combined organic fractions were concentrated with the aid of a rotatory evaporator. The resulting residue was purified by flash column chromatography on silica gel to get the pure coupling product.

2-(1H-indol-2-yl)-8-morpholinoquinazolin-4(3H)-one (3fa)

Following the general procedures, $4 f(165 \mathrm{mg}, 0.2 \mathrm{mmol})$, $\mathrm{Cs}_{2} \mathrm{CO}_{3}(130 \mathrm{mg}, 0.4 \mathrm{mmol})$, LiHDMS ($300 \mu \mathrm{~L}, 1.3 \mathrm{M}$ in THF, 0.4 mmol) and morpholine ($27 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$) was used; The product 3fa was obtained as a yellow solid ($27.6 \mathrm{mg}, 40 \%$ yield) after column chromatography (eluent $=$ petroleum ether/EtOAc $2: 1 \mathrm{v} / \mathrm{v}) ;\left(\mathrm{PE} / \mathrm{EA}=2 / 1, \mathrm{R}_{\mathrm{F}} \approx 0.4\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz}$, DMSO-d $\boldsymbol{d}_{\boldsymbol{6}}$) $\delta 12.52(\mathrm{~s}, 1 \mathrm{H}), 11.21(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.59(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{t}$,
$J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 4 \mathrm{H}), 3.31(\mathrm{~s}, 4 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}(\mathbf{1 0 1} \mathbf{~ M H z}$, DMSO- $\boldsymbol{d}_{\boldsymbol{6}}$) $\delta 162.1,148.0,144.0,141.6,137.5,130.5,127.5,126.6,124.0,122.4,121.6$, 121.5, 120.1, 118.4, 112.6, 105.1, 66.2, 51.8. HRMS (ESI-TOF): m / z calculated for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 347.1503$, found: 347.1493.

2-(1H-indol-2-yl)-7-morpholinoquinazolin-4(3H)-one (3ga)

Following the general procedures, $\mathbf{4 g}$ ($165 \mathrm{mg}, 0.2 \mathrm{mmol}$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(130 \mathrm{mg}, 0.4 \mathrm{mmol})$, LiHDMS ($300 \mu \mathrm{~L}, 1.3 \mathrm{M}$ in THF, 0.4 mmol) and morpholine ($27 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$) was used; The product 3ga was obtained as a yellow solid (40.1 $\mathrm{mg}, 58 \%$ yield) after column chromatography (eluent $=$ petroleum ether/EtOAc 2:1 v/v); (PE/EA $=2 / 1, \mathrm{R}_{\mathrm{F}} \approx 0.3$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, DMSO-d $\boldsymbol{d}_{\boldsymbol{6}}$) $12.27(\mathrm{~s}, 1 \mathrm{H}), 11.72(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $2 \mathrm{H}), 7.52(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.05(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{t}, J=4.8 \mathrm{~Hz}, 4 \mathrm{H}), 3.32(\mathrm{~s}, 4 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, DMSO- $\boldsymbol{d}_{\boldsymbol{6}}$) δ $161.3,155.4,150.4,146.8,137.5,130.3,127.5,127.0,123.9,121.5,119.9,114.5,112.4$, 112.1, 108.4, 104.6, 65.9, 47.1. HRMS (ESI-TOF): m / z calculated for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}: 347.1503$, found: 347.1491.

2-(1H-indol-2-yl)-6-morpholinoquinazolin-4(3H)-one (3ha)

3ha

Following the general procedures, $4 \mathrm{~h}(165 \mathrm{mg}, 0.2$ mmol), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($130 \mathrm{mg}, 0.4 \mathrm{mmol}$), LiHDMS (300 $\mu \mathrm{L}, 1.3 \mathrm{M}$ in THF, 0.4 mmol) and morpholine ($27 \mu \mathrm{~L}$, 0.3 mmol) was used; The product $\mathbf{3 h a}$ was obtained in as a yellow solid ($37.4 \mathrm{mg}, 54 \%$ yield) after column chromatography (eluent $=$ petroleum ether/EtOAc 2:1 v/v); $\left(\mathrm{PE} / \mathrm{EA}=2 / 1, \mathrm{R}_{\mathrm{F}} \approx\right.$ 0.4). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}$, DMSO-d6) $\delta 12.50-12.42(\mathrm{~m}, 1 \mathrm{H}), 11.68(\mathrm{~s}, 1 \mathrm{H}), 7.66-$ 7.56 (m, 4H), $7.51(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.04$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{t}, J=4.8 \mathrm{~Hz}, 4 \mathrm{H}), 3.25(\mathrm{t}, J=4.8 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 6}$ MHz, DMSO-d6) $\delta 161.7,149.3,143.8,141.7,137.5,130.4,127.9,127.6,123.7,123.5$, 121.7, 121.3, 119.8, 112.3, 108.2, 103.9, 66.0, 48.1. HRMS (ESI-TOF): m / z calculated for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 347.1503$, found: 347.1490.

2-(1H-indol-2-yl)-5-morpholinoquinazolin-4(3H)-one (3ja)

3ja

Following the general procedures, $\mathbf{4 j}$ ($165 \mathrm{mg}, 0.2 \mathrm{mmol}$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(130 \mathrm{mg}, 0.4 \mathrm{mmol})$, LiHDMS $(300 \mu \mathrm{~L}, 1.3 \mathrm{M}$ in THF, 0.4 mmol) and morpholine ($27 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$) was used; The product $\mathbf{3 j a}$ was obtained in as a yellow solid ($27.7 \mathrm{mg}, 40 \%$ yield) after column chromatography (eluent $=$ petroleum ether/EtOAc 5:1 v/v); $\left(\mathrm{PE} / \mathrm{EA}=6 / 1, \mathrm{R}_{\mathrm{F}} \approx 0.6\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(500 \mathbf{~ M H z}$, DMSO-d6) $\delta 15.26(\mathrm{~s}, 1 \mathrm{H}), 11.83(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.54(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{t}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}), 2.65(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , DMSO-d6) $\delta 164.2,151.9,148.4,144.7,137.1,134.1,129.5,129.4,128.1$, $125.0,124.2,120.8,120.1,119.0,113.4,113.4,66.6,52.7$.

2-(4-morpholino-1H-indol-2-yl) quinazolin-4(3H)-one (3ba)

3ba

Following the general procedures, $\mathbf{4 b}(174 \mathrm{mg}, 0.2 \mathrm{mmol})$, $\mathrm{Cs}_{2} \mathrm{CO}_{3}(130 \mathrm{mg}, 0.4 \mathrm{mmol})$, LiHDMS ($300 \mu \mathrm{~L}, 1.3 \mathrm{M}$ in THF, 0.4 mmol) and morpholine ($27 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$) was used; The product 3ba was obtained in as a yellow solid ($27.0 \mathrm{mg}, 39 \%$ yield) after column chromatography (eluent $=$ petroleum ether/EtOAc 2:1 v/v); (PE/EA $\left.=2 / 1, R_{\mathrm{F}} \approx 0.3\right) .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0}$
MHz, DMSO-d6) $\delta 12.51(\mathrm{~s}, 1 \mathrm{H}), 11.76(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.47(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.92-3.82(\mathrm{~m}, 4 \mathrm{H}), 3.23-3.13(\mathrm{~m}, 4 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}(\mathbf{1 2 6} \mathbf{~ M H z}$, DMSO-d6) $\delta 162.3,149.3,147.0,146.6,139.6,135.2,128.7,127.3,126.6,126.5,125.4$, 121.5, 121.2, 107.0, 106.2, 105.0, 67.0, 51.7. HRMS (ESI-TOF): m / z calculated for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 347.1503$, found: 347.1491.

2-(5-morpholino-1H-indol-2-yl) quinazolin-4(3H)-one (3ca)

0.3 mmol) was used; The product 3ca was obtained as a yellow solid ($20.7 \mathrm{mg}, 30 \%$ yield) after column chromatography (eluent = petroleum ether/EtOAc 2:1 $\mathrm{v} / \mathrm{v}) ;(\mathrm{PE} / \mathrm{EA}=$ $2 / 1, R_{\mathrm{F}} \approx 0.3$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, DMSO- \boldsymbol{d}_{6}) $\delta 12.55(\mathrm{~s}, 1 \mathrm{H}), 11.58(\mathrm{~s}, 1 \mathrm{H}), 8.14(\mathrm{dd}, J$ $=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-7.81(\mathrm{~m}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.51-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{dd}, J=8.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H})$, $3.83-3.68(\mathrm{~m}, 4 \mathrm{H}), 3.10-3.02(\mathrm{~m}, 4 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{D M S O}-\boldsymbol{d}_{\boldsymbol{6}}$) $\delta 161.8$, $148.9,146.6,145.9,134.7,133.2,129.9,127.9,126.8,126.1,126.1,121.1,117.7,112.9$, 106.1, 104.7, 66.4, 50.8. HRMS (ESI-TOF): m / z calculated for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 347.1503, found: 347.1519 .

2-(6-morpholino-1H-indol-2-yl) quinazolin-4(3H)-one (3aa)

Following the general procedures, $\mathbf{4 a}(174 \mathrm{mg}, 0.2$ mmol), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($130 \mathrm{mg}, 0.4 \mathrm{mmol}$), LiHDMS (300 $\mu \mathrm{L}, 1.3 \mathrm{M}$ in THF, 0.4 mmol) and morpholine ($27 \mu \mathrm{~L}$, 0.3 mmol) was used; The product 3aa was obtained as a yellow solid ($49.8 \mathrm{mg}, 72 \%$ yield) after column chromatography (eluent $=$ petroleum ether/EtOAc $2: 1 \mathrm{v} / \mathrm{v}) ;\left(\mathrm{PE} / \mathrm{EA}=2 / 1, R_{\mathrm{F}} \approx 0.3\right) .{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d6) $\delta 12.46$ (s, 1H), 11.46 (s, 1H), 8.13 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.82(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~s}, 1 \mathrm{H}), 7.53-7.43(\mathrm{~m}, 2 \mathrm{H}), 6.93$ $(\mathrm{s}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{t}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}), 3.12(\mathrm{t}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO-d6) $\delta 162.3,149.8,149.4,147.1,139.6,135.1,128.9,127.2$, 126.5, 126.3, 122.4, 121.9, 121.4, 113.0, 105.9, 97.3, 66.7, 50.0. HRMS (ESI-TOF): m / z calculated for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 347.1503$, found: 347.1499.

2-(7-morpholino-1H-indol-2-yl) quinazolin-4(3H)-one (3ea)

Following the general procedures, $\mathbf{4 e}(165 \mathrm{mg}, 0.2 \mathrm{mmol})$, $\mathrm{Cs}_{2} \mathrm{CO}_{3}(130 \mathrm{mg}, 0.4 \mathrm{mmol})$, LiHDMS ($300 \mu \mathrm{~L}, 1.3 \mathrm{M}$ in THF, 0.4 mmol) and morpholine ($27 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$) was used; The product 3ea was obtained as a yellow solid $(35.2 \mathrm{mg}, 51 \%$ yield) after column chromatography (eluent $=$ petroleum ether/EtOAc 2:1 v/v); (PE/EA $\left.=2 / 1, R_{\mathrm{F}} \approx 0.3\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(500 \mathbf{~ M H z}, \mathbf{D M S O}-\mathrm{d} 6) ~ \delta 12.66$ (s, 1H), $11.03(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.1$
$\mathrm{Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.04$ (t, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-3.85(\mathrm{~m}, 4 \mathrm{H}), 3.07(\mathrm{t}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR (126 MHz , DMSO-d6) $\delta 162.3,149.4,146.9,139.3,135.1,131.9,130.5$, 129.2, 127.7, 126.7, 126.4, 121.5, 121.4, 116.8, 112.6, 107.5, 67.0, 51.9. HRMS (ESI-TOF): m / z calculated for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 347.1503$, found: 347.1498 .

6-fluoro-2-(6-morpholino-1H-indol-2-yl) quinazolin-4(3H)-one (3da)

3da

Following the general procedures, $\mathbf{4 d}(178 \mathrm{mg}, 0.2$ $\mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(130 \mathrm{mg}, 0.4 \mathrm{mmol})$, LiHDMS ($300 \mu \mathrm{~L}, 1.3 \mathrm{M}$ in THF, 0.4 mmol) and morpholine ($27 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$) was used; The product 3da was obtained as a yellow solid ($30.5 \mathrm{mg}, 42 \%$ yield) after column chromatography (eluent $=$ petroleum ether/EtOAc $2: 1 \mathrm{v} / \mathrm{v}) ;\left(\mathrm{PE} / \mathrm{EA}=2 / 1, R_{\mathrm{F}}\right.$ ≈ 0.3). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{D M S O}-\boldsymbol{d}_{6}$) $\delta 12.54(\mathrm{~s}, 1 \mathrm{H}), 11.48(\mathrm{~s}, 1 \mathrm{H}), 8.21-8.15(\mathrm{~m}$, $1 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 1 \mathrm{H})$, $7.20(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 3.83-3.75(\mathrm{~m}, 4 \mathrm{H}), 3.16-3.08(\mathrm{~m}$, 4H). ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}$, DMSO- $_{\mathbf{6}}$) $\delta 174.7,170.3,167.4,165.4,161.6,149.9,148.3$, 139.8, 130.1, 129.7, 128.5, 122.5, 121.9, 113.1, 106.5, 97.2, 66.7, 49.9. HRMS (ESI-TOF): m / z calculated for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~F}[\mathrm{M}+\mathrm{H}]^{+}: 365.1408$, found: 365.1415 .

2-(1H-indol-2-yl)-8-methyl-6-morpholinoquinazolin-4(3H)-one (3ia)

3ia

Following the general procedures, $\mathbf{4 i}(176 \mathrm{mg}, 0.2$ $\mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(130 \mathrm{mg}, 0.4 \mathrm{mmol})$, LiHDMS (300 $\mu \mathrm{L}, 1.3 \mathrm{M}$ in THF, 0.4 mmol) and morpholine ($27 \mu \mathrm{~L}$, 0.3 mmol) was used; The product 3ia was obtained as a yellow solid ($24.5 \mathrm{mg}, 34 \%$ yield) after column chromatography (eluent $=$ petroleum ether/EtOAc $5: 1 \mathrm{v} / \mathrm{v}) ;\left(\mathrm{PE} / \mathrm{EA}=2 / 1, R_{\mathrm{F}} \approx 0.5\right)$. ${ }^{1} \mathbf{H}$ NMR (500 MHz, DMSO-d6) $\delta 12.43(\mathrm{~s}, 1 \mathrm{H}), 11.49(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.56(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}), 3.23(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 4 \mathrm{H}), 2.69(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , DMSO-d6) $\delta 162.1,148.8,142.5,140.5,137.4,136.6,130.7,129.6,123.8$, 123.7, 121.7, 121.3, 119.8, 112.2, 106.0, 103.6, 66.0, 48.2, 17.5. HRMS (ESI-TOF): m / z
calculated for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 361.1659$, found: 361.1663.

2-(6-(isopropylamino)-1H-indol-2-yl) quinazolin-4(3H)-one (3ab)

3ab

Following the general procedures, $\mathbf{4 a}(174 \mathrm{mg}, 0.2$ $\mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(130 \mathrm{mg}, 0.4 \mathrm{mmol}), \operatorname{LiHDMS}(300 \mu \mathrm{~L}$, 1.3 M in THF, 0.4 mmol) and propan-2-amine ($26 \mu \mathrm{~L}$, 0.3 mmol) was used; The product $\mathbf{3 a b}$ was obtained as a yellow solid ($38.1 \mathrm{mg}, 60 \%$ yield) after column chromatography (eluent $=$ petroleum ether/EtOAc $2: 1 \mathrm{v} / \mathrm{v}) ;\left(\mathrm{PE} / \mathrm{EA}=3 / 1, R_{\mathrm{F}} \approx 0.3\right) .{ }^{1} \mathbf{H}$ NMR (500 MHz, DMSO-d6) $\delta 12.32(\mathrm{~s}, 1 \mathrm{H}), 11.11(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, 7.79 (t, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.65 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.29(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{~s}, 1 \mathrm{H}), 3.53(\mathrm{~s}, 1 \mathrm{H})$, 1.17 (d, $J=6.3 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}$, DMSO-d6) $\delta 162.3,149.7,147.2,146.8$, 140.7, 135.0, 127.0, 127.0, 126.5, 125.9, 122.4, 121.2, 119.6, 112.1, 106.6, 92.0, 43.9, 22.9. HRMS (ESI-TOF): m / z calculated for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 319.1553$, found: 319.1553.

2-(6-(butylamino)-1H-indol-2-yl) quinazolin-4(3H)-one (3ac)

Following the general procedures, $\mathbf{4 a}(174 \mathrm{mg}, 0.2$ $\mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($130 \mathrm{mg}, 0.4 \mathrm{mmol}$), LiHDMS (300 $\mu \mathrm{L}, 1.3 \mathrm{M}$ in THF, 0.4 mmol) and butan-1-amine ($16 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$) was used; The product 3ac was obtained as a yellow solid ($23.2 \mathrm{mg}, 35 \%$ yield) after column chromatography (eluent $=$ petroleum ether/EtOAc $3: 1 \mathrm{v} / \mathrm{v}$); $\left(\mathrm{PE} / \mathrm{EA}=3 / 1, R_{\mathrm{F}} \approx 0.3\right) .{ }^{1} \mathbf{H}$ NMR (500 MHz, DMSO- $\boldsymbol{d}_{\boldsymbol{6}}$) $\delta 12.31$ ($\mathrm{s}, 1 \mathrm{H}$), $11.13(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.79(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.29 (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.66(\mathrm{~s}, 1 \mathrm{H}), 3.02(\mathrm{q}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$, $1.58(\mathrm{p}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.42(\mathrm{~h}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.20-1.06(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $3 H) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, ~ D M S O-d_{6}$) $\delta 161.9,149.2,147.4,146.7,140.2,134.6,126.6$, 126.4, 126.0, 121.8, 120.7, 119.2, 111.4, 106.1, 90.7, 42.9, 30.8, 20.0, 13.9. HRMS (ESI-TOF): m / z calculated for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 333.1710$, found: 333.1702 .

2-(6-(cyclohexylamino)-1H-indol-2-yl) quinazolin-4(3H)-one (3ad)

3ad

Following the general procedures, $\mathbf{4 a}(174 \mathrm{mg}, 0.2$ $\mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(130 \mathrm{mg}, 0.4 \mathrm{mmol})$, LiHDMS (300 $\mu \mathrm{L}, 1.3 \mathrm{M}$ in THF, 0.4 mmol) and cyclohexanamine ($21 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$) was used; The product $\mathbf{3 a d}$ was obtained as a yellow solid ($30.0 \mathrm{mg}, 42 \%$ yield) after column chromatography (eluent $=$ petroleum ether/EtOAc 3:1 v/v); (PE/EA $\left.=2 / 1, R_{\mathrm{F}} \approx 0.4\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{5 0 0} \mathbf{~ M H z}$, DMSO-d6) $\delta 12.29(\mathrm{~s}, 1 \mathrm{H}), 11.06(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{dd}, J=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.76(\mathrm{~m}$, $1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 6.51(\mathrm{dd}, J=8.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.18$ $(\mathrm{s}, 1 \mathrm{H}), 2.03-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.75(\mathrm{dt}, J=12.2,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.40-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.22-$ 1.12 (m, 4H). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}$, DMSO-d6) $\delta 161.8,149.2,146.7,146.2,140.2$, 134.5, 126.6, 126.4, 126.0, 125.4, 121.9, 120.7, 119.1, 111.5, 106.1, 91.4, 51.1, 32.5, 25.7, 24.7. HRMS (ESI-TOF): m / z calculated for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 359.1866$, found: 359.1855.

2-(6-(isopentylamino)-1H-indol-2-yl) quinazolin-4(3H)-one (3ae)

$3 a e$

Following the general procedures, $\mathbf{4 a}$ ($174 \mathrm{mg}, 0.2$ $\mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(130 \mathrm{mg}, 0.4 \mathrm{mmol})$, LiHDMS (300 $\mu \mathrm{L}, 1.3 \mathrm{M}$ in THF, 0.4 mmol) and 3-methylbutan-1-amine ($35 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$) was used; The product 3ae was obtained as a yellow solid ($38.1 \mathrm{mg}, 55 \%$ yield) after column chromatography (eluent $=$ petroleum ether/EtOAc 3:1 v/v); (PE/EA = 3/1, $R_{\mathrm{F}} \approx 0.3$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z , ~ D M S O - d 6) ~} \delta 12.33$ $(\mathrm{s}, 1 \mathrm{H}), 11.19(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 2 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H}), 3.03(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.72(\mathrm{dp}, J=13.5,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{q}, J$ $=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 0.93(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\left.\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{D M S O}-\mathrm{d} 6\right) ~ \delta 162.3,149.7$, $147.8,147.2,140.7,135.0,127.0,126.9,126.5,125.9,122.3,121.1,119.6,111.9,106.7$, 91.2, 41.8, 38.0, 25.9, 23.0. HRMS (ESI-TOF): m / z calculated for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 347.1866, found: 347.1862.

2-(6-((cyclopropylmethyl)amino)-1H-indol-2-yl) quinazolin-4(3H)-one (3af)

Following the general procedures, $\mathbf{4 a}(174 \mathrm{mg}, 0.2$ mmol), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($130 \mathrm{mg}, 0.4 \mathrm{mmol}$), LiHDMS (300 $\mu \mathrm{L}, \quad 1.3 \mathrm{M}$ in THF, 0.4 mmol) and cyclopropylmethanamine ($26 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$) was used; The product 3af was obtained as a yellow solid (33.0 mg , 50% yield) after column chromatography (eluent $=$ petroleum ether/EtOAc 5:1 v/v); $\left(\mathrm{PE} / \mathrm{EA}=2 / 1, R_{\mathrm{F}} \approx 0.5\right)$. ${ }^{1}$ H NMR (500 MHz , DMSO-d6) $\delta 12.32(\mathrm{~s}, 1 \mathrm{H}), 11.15(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.80(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.30(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.59-6.48(\mathrm{~m}, 2 \mathrm{H}), 5.77(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{t}, J=5.6 \mathrm{~Hz}$, $2 \mathrm{H}), 1.27-1.22(\mathrm{~m}, 1 \mathrm{H}), 0.50(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 0.26(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , DMSO-d6) $\delta 162.3,149.7,147.8,147.2,140.6,135.0,127.0,127.0,126.5$, 125.9, 122.3, 121.2, 119.7, 111.9, 106.6, 91.4, 48.3, 11.0, 4.1. HRMS (ESI-TOF): m/z calculated for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 331.1553$, found: 331.1549.

2-(6-(((tetrahydrofuran-2-yl) methyl) amino)-1H-indol-2-yl) quinazolin-4(3H)-one

 (3ag)

Following the general procedures, $\mathbf{4 a}(174 \mathrm{mg}, 0.2$ $\mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($130 \mathrm{mg}, 0.4 \mathrm{mmol}$), LiHDMS (300 $\mu \mathrm{L}, \quad 1.3 \mathrm{M}$ in THF, 0.4 mmol) and Tetrahydrofurfurylamine ($31 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$) was used; The product 3ag was obtained as a yellow solid ($40.3 \mathrm{mg}, 56 \%$ yield) after column chromatography (eluent $=$ petroleum ether/EtOAc $2: 1 \mathrm{v} / \mathrm{v}) ;\left(\mathrm{PE} / \mathrm{EA}=2 / 1, R_{\mathrm{F}} \approx 0.3\right)$. ${ }^{1} \mathbf{H}$ NMR ($500 \mathbf{M H z}$, DMSO-d6) $\delta 12.33(\mathrm{~s}, 1 \mathrm{H}), 11.16(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.80(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.30(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.69(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{p}, J=$ $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H})$, 2.00 (ddd, $J=19.6,10.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.86$ (qp, $J=13.2,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.63(\mathrm{dp}, J=14.5$, $7.4,6.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}$, DMSO-d6) $\delta 162.3,149.7,147.6,147.2,140.6$, $135.0,130.1,127.1,126.5,125.9,122.3,121.2,119.8,111.8,106.6,91.5,77.4,67.6,48.3$, 29.6, 25.7. HRMS (ESI-TOF): m / z calculated for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 361.1659$, found:

2-(6-(((tetrahydro-2H-pyran-4-yl)methyl)amino)-1H-indol-2-yl)quinazolin-4(3H)-on e (3ah)

3ah

Following the general procedures, 4a (174 mg, 0.2 mmol), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(130 \mathrm{mg}, 0.4 \mathrm{mmol})$, LiHDMS ($300 \mu \mathrm{~L}, 1.3 \mathrm{M}$ in THF, 0.4 mmol) and (tetrahydro-2H-pyran-4-yl)methanamine ($34 \mu \mathrm{~L}$, 0.3 mmol) was used; The product 3ah was obtained as a pale yellow solid ($40.4 \mathrm{mg}, 54 \%$ yield) after column chromatography (eluent $=$ petroleum ether/EtOAc $2: 1 \mathrm{v} / \mathrm{v}) ;\left(\mathrm{PE} / \mathrm{EA}=2 / 1, R_{\mathrm{F}} \approx 0.3\right) .{ }^{1} \mathbf{H} \mathbf{N M R}(500 \mathbf{M H z}$, DMSO-d6) $\delta 12.32$ (s, 1H), 11.12 (s, 1H), $8.10(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.65(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.53(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.79(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{dd}, J=11.5,4.1 \mathrm{~Hz}, 2 \mathrm{H})$, 3.29 (t, $J=11.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.93(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.91-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{~d}, J=12.6$ $\mathrm{Hz}, 2 \mathrm{H}$), 1.28 (dd, $J=12.2,4.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{D M S O}-\mathrm{d6}$) $\delta 161.9$, $149.2,147.4,146.7,140.2,134.6,126.6,126.5,126.0,125.4,121.9,120.7,119.2,111.3$, 106.1, 90.9, 66.9, 49.5, 34.1, 30.9. HRMS (ESI-TOF): m / z calculated for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}: 375.1816$, found: 375.1806.

2-(6-((2-(thiophen-2-yl) ethyl) amino)-1H-indol-2-yl) quinazolin-4(3H)-one (3ai)

Following the general procedures, $\mathbf{4 a}(174 \mathrm{mg}, 0.2$

3ai mmol), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($130 \mathrm{mg}, 0.4 \mathrm{mmol}$), LiHDMS ($300 \mu \mathrm{~L}, \quad 1.3 \mathrm{M}$ in THF, 0.4 mmol) and 2-(thiophen-2-yl)ethan-1-amine ($38 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$) was used; The product 3ai was obtained as a yellow solid ($38.5 \mathrm{mg}, 50 \%$ yield) after column chromatography (eluent $=$ petroleum ether/EtOAc 3:1 v/v); ($\mathrm{PE} / \mathrm{EA}=2 / 1, R_{\mathrm{F}} \approx 0.6$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{D M S O}-\boldsymbol{d}_{\mathbf{6}}\right) \delta 12.34$ (s, 1H), $11.18(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.29(\mathrm{~m}, 2 \mathrm{H}), 6.98(\mathrm{~s}, 2 \mathrm{H}), 6.59(\mathrm{~s}$, $1 \mathrm{H}), 6.53(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~s}, 1 \mathrm{H}), 3.31(\mathrm{~s}, 2 \mathrm{H}), 3.11(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- $\boldsymbol{d}_{\boldsymbol{6}}$) $\delta 161.9,149.2,146.7,142.0,140.1,134.6,126.9,126.7$,
126.6, 126.0, 125.5, 125.2, 123.9, 122.0, 120.7, 119.4, 106.1, 91.1, 45.2, 28.9. HRMS (ESI-TOF): m / z calculated for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+}: 387.1274$, found: 387.1262.

2-(6-((3-methoxyphenyl)amino)-1H-indol-2-yl)quinazolin-4(3H)-one (3aj)

3aj

Following the general procedures, $\mathbf{4 a}(174 \mathrm{mg}, 0.2$ mmol), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($130 \mathrm{mg}, 0.4 \mathrm{mmol}$), LiHDMS (300 $\mu \mathrm{L}, 1.3 \mathrm{M}$ in THF, 0.4 mmol) and 3-methoxyaniline ($36 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$) was used; The product 3aj was obtained as a yellow solid ($22.9 \mathrm{mg}, 30 \%$ yield) after column chromatography (eluent $=$ petroleum ether/EtOAc 5:1 v/v); (PE/EA = 2/1, $R_{\mathrm{F}} \approx 0.7$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{5 0 0} \mathbf{~ M H z}$, DMSO-d6) $\delta 12.47(\mathrm{~s}, 1 \mathrm{H}), 11.44(\mathrm{~s}, 1 \mathrm{H}), 8.27(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H}), 7.53-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H})$, $7.14(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.40(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{D M S O}-\mathrm{d} 6$) $\delta 162.3,160.7$, 149.5, 147.0, $145.6,140.9,139.5,135.1,130.3,129.0,127.2,126.5,126.3,122.6,122.5,121.4,114.6$, 109.5, 106.0, 105.3, 102.3, 98.8, 55.3. HRMS (ESI-TOF): m / z calculated for

2-(6-((4-(trifluoromethoxy)phenyl)amino)-1H-indol-2-yl)quinazolin-4(3H)-one (3ak)

 Following the general procedures, $\mathbf{4 a}(174 \mathrm{mg}$, $0.2 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($130 \mathrm{mg}, 0.4 \mathrm{mmol}$), LiHDMS ($300 \mu \mathrm{~L}, 1.3 \mathrm{M}$ in THF, 0.4 mmol) and 4-(trifluoromethoxy)aniline ($41 \mu \mathrm{~L}, 0.3$ mmol) was used; The product 3ak was obtained as dark yellow solid ($41.0 \mathrm{mg}, 47 \%$ yield) after column chromatography $($ eluent $=$ petroleum ether/EtOAc 5:1 v/v); $(\mathrm{PE} / \mathrm{EA}=2 / 1$, $R_{\mathrm{F}} \approx 0.7$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz , DMSO-d6) $\delta 12.50(\mathrm{~s}, 1 \mathrm{H}), 11.48(\mathrm{~s}, 1 \mathrm{H}), 8.45(\mathrm{~s}, 1 \mathrm{H})$, $8.14(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H})$, $7.53(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.15(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}){ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\left.\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{D M S O}-\mathrm{d} 6\right) ~ \delta$ $162.3,149.4,147.0,144.0,141.0,141.0,140.4,139.4,135.1,130.1,129.3,127.2,126.5$, 126.4, 123.0, 122.8, 122.7, 121.8, 121.4, 119.8, 117.2, 114.5, 106.0, 99.7. HRMS (ESI-TOF): m / z calculated for $\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~F}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 437.1220$, found: 437.1212.

7-(cyclohexylamino)-2-(1H-indol-2-yl) quinazolin-4(3H)-one (3gd)

Following the general procedures, $\mathbf{4 g}(165 \mathrm{mg}, 0.2$ mmol), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($130 \mathrm{mg}, 0.4 \mathrm{mmol}$), LiHDMS (300 $\mu \mathrm{L}, 1.3 \mathrm{M}$ in THF, 0.4 mmol) and cyclohexanamine ($21 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$) was used; The product $\mathbf{3 g h}$ was obtained as a yellow solid ($40.8 \mathrm{mg}, 57 \%$ yield) after column chromatography (eluent $=$ petroleum ether/EtOAc $2: 1 \mathrm{v} / \mathrm{v}) ;\left(\mathrm{PE} / \mathrm{EA}=2 / 1, R_{\mathrm{F}} \approx\right.$ 0.4). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, DMSO-d6) $\delta 12.05(\mathrm{~s}, 1 \mathrm{H}), 11.65(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.05(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{dd}, J=8.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.83-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.31-$ 1.17 (m, 4H). ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}$, DMSO-d6) $\delta 161.7,153.5,147.0,138.0,130.8$, $130.1,127.9,127.5,124.3,121.9,120.4,114.8,112.8,109.7,105.0,51.2,32.7,25.9,25.0$. HRMS (ESI-TOF): m / z calculated for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 359.1866$, found: 359.1862.

2-(1H-indol-2-yl)-7-(isopentylamino) quinazolin-4(3H)-one (3ge)

Following the general procedures, $\mathbf{4 g}(165 \mathrm{mg}, 0.2$ mmol), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(130 \mathrm{mg}, 0.4 \mathrm{mmol}), \mathrm{LiHDMS}(300$ $\mu \mathrm{L}, \quad 1.3 \mathrm{M}$ in THF, 0.4 mmol and 3-methylbutan-1-amine ($35 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$) was used; The product 3ge was obtained as a yellow solid (41.5 $\mathrm{mg}, 60 \%$ yield) after column chromatography (eluent $=$ petroleum ether/EtOAc $2: 1 \mathrm{v} / \mathrm{v}$); $\left(\mathrm{PE} / \mathrm{EA}=2 / 1, R_{\mathrm{F}} \approx 0.3\right) .{ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz, DMSO-d6) $\delta 12.08(\mathrm{~s}, 1 \mathrm{H}), 11.71(\mathrm{~s}, 1 \mathrm{H})$, $7.80(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{dd}, J=9.8,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 3.13(\mathrm{q}$, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.79-1.64(\mathrm{~m}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.93(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, 6 \mathrm{H}$). ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}$, DMSO-d6) $\delta 161.7,154.5,151.4,146.9,137.9,131.0$, 128.0, 127.4, 124.2, 121.8, 120.3, 114.3, 112.8, 110.0, 104.8, 104.3, 41.1, 37.7, 25.9, 22.9. HRMS (ESI-TOF): m / z calculated for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 347.1866$, found: 347.1855.

Following the general procedures, $\mathbf{4 g}(165 \mathrm{mg}, 0.2$ mmol), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(130 \mathrm{mg}, 0.4 \mathrm{mmol})$, LiHDMS ($300 \mu \mathrm{~L}$, 1.3 M in THF, 0.4 mmol) and cyclopropylmethanamine ($26 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$) was used; The product 3gf was obtained as a yellow solid ($40.9 \mathrm{mg}, 62 \%$ yield) after column chromatography (eluent $=$ petroleum ether/EtOAc 3:1 v/v); $\left(\mathrm{PE} / \mathrm{EA}=3 / 1, R_{\mathrm{F}} \approx\right.$ 0.5). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, DMSO-d6) $\delta 12.07(\mathrm{~s}, 1 \mathrm{H}), 11.69(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.61(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{dd}, J=8.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.03(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.15-1.06(\mathrm{~m}, 1 \mathrm{H}), 0.51(\mathrm{q}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.26(\mathrm{q}, J=$ $4.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (101 MHz, DMSO-d6) $\delta 161.2,154.0,150.9,146.4,137.4,130.5$, $127.5,126.9,123.8$, 121.4, 119.8, 113.9, 112.3, 109.7, 104.2, 104.0, 46.9, 10.2, 3.6. HRMS (ESI-TOF): m / z calculated for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 331.1553$, found: 331.1548.

2-(1H-indol-2-yl)-7-(((tetrahydrofuran-2-yl)methyl)amino)quinazolin-4(3H)-one (3gg)

Following the general procedures, $\mathbf{4 g}(165 \mathrm{mg}, 0.2$ mmol), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(130 \mathrm{mg}, 0.4 \mathrm{mmol})$, LiHDMS (300 $\mu \mathrm{L}, \quad 1.3 \mathrm{M}$ in THF, 0.4 mmol) and tetrahydrofurfurylamine ($31 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$) was used; The product $\mathbf{3 g g}$ was obtained as a yellow solid (40.3 $\mathrm{mg}, 56 \%$ yield) after column chromatography (eluent $=$ petroleum ether/EtOAc $2: 1 \mathrm{v} / \mathrm{v})$; $\left(\mathrm{PE} / \mathrm{EA}=2 / 1, R_{\mathrm{F}} \approx 0.3\right) .{ }^{1} \mathbf{H} \mathbf{N M R}(500 \mathbf{M H z}$, DMSO-d6) $\delta 12.08(\mathrm{~s}, 1 \mathrm{H}), 11.68(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=11.9 \mathrm{~Hz}$, $2 \mathrm{H}), 7.52(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.89-$ $6.76(\mathrm{~m}, 2 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 4.04(\mathrm{p}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{q}, J=$ $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{qt}, J=13.3,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.03-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{th}, J=13.3,7.0$, $6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.70-1.55(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}$, DMSO-d6) $\delta 161.7,154.5$, 151.3, 146.9, 137.9, 130.9, 130.1, 128.0, 127.4, 124.2, 121.9, 120.3, 114.4, 112.8, 110.3, 104.7, 77.2, 67.7, 47.3, 29.4, 25.6. HRMS (ESI-TOF): m / z calculated for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}: 361.1659$, found: 361.1645 .

2-(1H-indol-2-yl)-7-((thiophen-2-ylmethyl)amino)quinazolin-4(3H)-one (3gi)

Following the general procedures, $\mathbf{4 g}(165 \mathrm{mg}, 0.2$ mmol), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(130 \mathrm{mg}, 0.4 \mathrm{mmol}), \mathrm{LiHDMS}(300$ $\mu \mathrm{L}, \quad 1.3 \mathrm{M}$ in THF, 0.4 mmol) and thiophen-2-ylmethanamine ($34 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$) was used; The product 3 gi was obtained as a yellow solid ($44.6 \mathrm{mg}, 60 \%$ yield) after column chromatography (eluent $=$ petroleum ether/EtOAc 5:1 v/v); $\left(\mathrm{PE} / \mathrm{EA}=3 / 1, R_{\mathrm{F}} \approx 0.5\right) .{ }^{1} \mathbf{H} \mathbf{N M R}(500 \mathbf{~ M H z}$, DMSO-d6) $\delta 12.12(\mathrm{~s}, 1 \mathrm{H}), 11.66(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.58(\mathrm{~m}, 2 \mathrm{H})$, $7.51(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{dd}, J=5.0,3.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.86(\mathrm{dd}, J=8.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, DMSO-d6) δ 161.3, 153.4, 150.8, 146.5, 143.2, 137.5, 130.4, 129.6, $127.5,127.0,124.8,124.7,123.8,121.4,119.9,114.3,112.4,110.5,104.8,104.4,41.6$. HRMS (ESI-TOF): m / z calculated for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+}: 373.1118$, found: 373.1126.

2-(1H-indol-2-yl)-7-((3-methoxyphenyl)amino)quinazolin-4(3H)-one (3gj)

Following the general procedures, $\mathbf{4 g}(165 \mathrm{mg}, 0.2$ $\mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($130 \mathrm{mg}, 0.4 \mathrm{mmol}$), LiHDMS (300 $\mu \mathrm{L}, 1.3 \mathrm{M}$ in THF, 0.4 mmol) and 3-methoxyaniline ($36 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$) was used; The product $\mathbf{3 g j}$ was obtained as a yellow solid $(49.6 \mathrm{mg}, 65 \%$ yield $)$ after column chromatography (eluent = petroleum ether/EtOAc 5:1 $\mathrm{v} / \mathrm{v}) ;\left(\mathrm{PE} / \mathrm{EA}=4 / 1, R_{\mathrm{F}} \approx 0.4\right) .{ }^{1} \mathbf{H}$ NMR (500 MHz, DMSO-d6) $\delta 12.27(\mathrm{~s}, 1 \mathrm{H}), 11.73(\mathrm{~s}$, $1 \mathrm{H}), 8.91(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.29(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , DMSO-d6) δ 161.6, 160.6, 151.2, 150.3, 147.3, 142.9, 138.0, 130.7, 130.7, 128.0, 124.4, 121.9, 120.4, 116.4, 113.0, 112.8, 108.4, 108.0, 106.4, 105.1, 55.5. H RMS (ESI-TOF): m / z calculated for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 383.1503$, found: 383.1501.

2-(1H-indol-2-yl)-7-((4-(trifluoromethoxy)phenyl)amino) quinazolin-4(3H)-one (3gk)

3gk

Following the general procedures, $\mathbf{4 g}$ (165 mg , 0.2 mmol), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($130 \mathrm{mg}, 0.4 \mathrm{mmol}$), LiHDMS ($300 \mu \mathrm{~L}, 1.3 \mathrm{M}$ in THF, 0.4 mmol) and 4-(trifluoromethoxy)aniline ($41 \mu \mathrm{~L}, 0.3$ mmol) was used; The product $\mathbf{3 g k}$ was obtained as a yellow solid ($49.7 \mathrm{mg}, 57 \%$ yield) after column chromatography (eluent $=$ petroleum ether/EtOAc $5: 1 \mathrm{v} / \mathrm{v})$; $\left(\mathrm{PE} / \mathrm{EA}=4 / 1, R_{\mathrm{F}} \approx 0.5\right) .{ }^{1} \mathbf{H} \mathbf{N M R}(500 \mathbf{~ M H z}$, DMSO-d6) $\delta 12.31(\mathrm{~s}, 1 \mathrm{H}), 11.71(\mathrm{~s}, 1 \mathrm{H}), 9.05(\mathrm{~s}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-$ $7.60(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~s}, 4 \mathrm{H}), 7.26(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}(\mathbf{1 2 6} \mathbf{~ M H z}$, DMSO-d6) δ 161.6, 151.1, 149.9, 147.3, 143.3, 141.1, 138.0, 130.7, 128.1, 128.0, 124.4, 122.9, 121.9, 121.7, 121.5, 120.4, 119.7, 116.4, 113.4, 112.8, 108.5, 105.1. HRMS (ESI-TOF): m / z calculated for $\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~F}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 437.1220$, found: 437.1205.

7-((3-hydroxypropyl)amino)-2-(1H-indol-2-yl)quinazolin-4(3H)-one (3gl)

Following the general procedures, $\mathbf{4 g}(165 \mathrm{mg}, 0.2$ mmol), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($130 \mathrm{mg}, 0.4 \mathrm{mmol}$), LiHDMS (300 $\mu \mathrm{L}, \quad 1.3 \mathrm{M}$ in THF, 0.4 mmol) and 3-aminopropan-1-ol ($23 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$) was used; The product $\mathbf{3 g l}$ was obtained as a yellow solid $(39.4 \mathrm{mg}, 59 \%$ yield) after column chromatography (eluent = petroleum ether/EtOAc 2:1 $\mathrm{v} / \mathrm{v}) ;\left(\mathrm{PE} / \mathrm{EA}=2 / 1, R_{\mathrm{F}} \approx 0.3\right){ }^{\mathbf{1}}{ }^{\mathbf{H}}$ NMR (500 MHz, DMSO-d6) $\delta 12.06(\mathrm{~s}, 1 \mathrm{H}), 11.68(\mathrm{~s}$, $1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.66(\mathrm{~s}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{q}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.21(\mathrm{q}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H})$, 1.77 (p, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}$). ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}$, DMSO-d6) $\delta 161.7,154.5,151.4,146.9$, $137.9,130.9,130.1,128.0,127.4,124.2,121.9,120.3,114.5,112.8,110.1,104.7,59.0$, 49.1, 32.1. HRMS (ESI-TOF): m / z calculated for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 335.1503$, found: 335.1491 .

Following the general procedures, $\mathbf{4 g}(165 \mathrm{mg}, 0.2 \mathrm{mmol})$, $\mathrm{Cs}_{2} \mathrm{CO}_{3}(130 \mathrm{mg}, 0.4 \mathrm{mmol})$, LiHDMS ($300 \mu \mathrm{~L}, 1.3 \mathrm{M}$ in THF, 0.4 mmol) and diethylamine ($32 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$) was used; The product $\mathbf{3 g m}$ was obtained as a pale yellow solid ($30.5 \mathrm{mg}, 46 \%$ yield) after column chromatography (eluent $=$ petroleum ether/EtOAc 2:1 v/v); (PE/EA $\left.=/ 1, R_{\mathrm{F}} \approx 0.3\right) .{ }^{1} \mathbf{H} \mathbf{N M R}(500 \mathbf{~ M H z}$, DMSO-d6) $\delta 12.07$ (s, 1H), 11.68 (s, 1H), 7.90 (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.59$ (m, 2H), $7.52(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{dd}, J=$ $9.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{p}, J=7.1,6.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.18(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, DMSO-d6) δ 161.2, 151.9, 150.7, 146.5, 137.5, 130.4, 129.6, 127.5, 123.8, 121.4, 119.8, 112.3, 111.8, 109.2, 104.9, 104.3, 44.1, 12.4. HRMS (ESI-TOF): m / z calculated for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 333.1710$, found: 333.1716.

2-(1H-indol-2-yl)-7-(4-methylpiperazin-1-yl)quinazolin-4(3H)-one (3gn)

Following the general procedures, $\mathbf{4 g}(165 \mathrm{mg}, 0.2 \mathrm{mmol})$, $\mathrm{Cs}_{2} \mathrm{CO}_{3}(130 \mathrm{mg}, 0.4 \mathrm{mmol})$, LiHDMS ($300 \mu \mathrm{~L}, 1.3 \mathrm{M}$ in THF, 0.4 mmol) and 1-methylpiperazine ($34 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$) was used; The product $\mathbf{3 g n}$ was obtained as a yellow solid ($43.0 \mathrm{mg}, 60 \%$ yield) after column chromatography (eluent $=$ petroleum ether/EtOAc $1: 1 \mathrm{v} / \mathrm{v}) ;\left(\mathrm{PE} / \mathrm{EA}=2 / 1, R_{\mathrm{F}} \approx 0.1\right)$.
${ }^{1} \mathbf{H}$ NMR (500 MHz, DMSO-d6) $\delta 12.29(\mathrm{~s}, 1 \mathrm{H}), 11.79(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.62(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=$ $9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 3.43(\mathrm{~s}, 4 \mathrm{H}), 2.63(\mathrm{~s}, 4 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR (126 MHz, DMSO-d6) δ 161.7, 155.4, 150.9, 147.2, 138.0, 130.8, 127.9, 127.5, 124.4, 121.9, 120.4, 115.2, 112.9, 112.3, 109.1, 105.1, 54.2, 46.7, 45.4. HRMS (ESI-TOF): m / z calculated for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 360.1819$, found: 360.1816 .

5. Screening for antitumor activity of amino-substituted indolyl-4(3H)-quinazolinone derivatives

Inhibition ratio detection: Seed 5000 cells each well into 96 well plates. After 24 h, cells were exposed to Compound ($10 \mu \mathrm{M}$ and $50 \mu \mathrm{M}$) treatment for 24 h . Then cells were fixed in 70% ethanol (precooled at $-20{ }^{\circ} \mathrm{C}$) at $4{ }^{\circ} \mathrm{C}$ overnight. After fixation, cells were stained with $10 \mu \mathrm{~g} / \mathrm{mL}$ Propidium Iodide at room temperature for 4 h , then the data was measured with high content screening system. The inhibition ratio is calculated as follow:

$$
\text { Inhibition ratio }=100 \%-\left(\text { Data }_{(\text {compound })} / \text { Data }_{\text {(control) }}\right) * 100 \%
$$

Half maximal (50\%) inhibitory concentration detection: Seed 5000 cells each well into 96 well plates. After 24 h , cells were exposed to 3gj or 3gn (0.1, 1, 5, 10, 25 and 50 $\mu \mathrm{M})$ treatment for 24 h . Then cells were fixed in 70% ethanol (precooled at $-20{ }^{\circ} \mathrm{C}$) at $4{ }^{\circ} \mathrm{C}$ overnight. After fixation, cells were stained with $10 \mu \mathrm{~g} / \mathrm{mL}$ Propidium Iodide at room temperature for 4 h , then the inhibition ratio were measured with high content screening system. Finally, the half maximal (50%) inhibitory concentration (IC_{50}) was fitting by Nonlinear regression using GraphPad Prism 8.0.1.

Figure S1. The screening of antitumor activity

Figure S2. The detection of half maximal (50%) inhibitory concentration (IC_{50}) for $\mathbf{3 g j}$ and $\mathbf{3 g n}$

6. References

[1] L. Gao, Z. Xu, Y. Rao, Y.-T. Lu, Y.-T. Hu, H. Yu, Y.-H. Xu, Q.-Q. Song, J.-M. Ye and Z.-S. Huang, Eur. J. Med. Chem., 2018, 147, 90.
[2] M. R. Uehling, R. P. King, S. W. Krska, T. Cernak and S. L. Buchwald, Science, 2019, 363, 405.
[3] H. G. Lee, P. J. Milner, M. T. Colvin, Loren Andreas and S. L. Buchwald, Inorg. Chem. Acta., 2014, 422,188.
7. NMR spectrum of some starting materials and products

${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 f}, 500 \mathrm{MHz}$, DMSO- d_{6}

${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 g}, 500 \mathrm{MHz}$, DMSO- d_{6}

${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 g}, 126 \mathrm{MHz}$, DMSO- d_{6}

${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 h}, 500 \mathrm{MHz}$, DMSO- d_{6}

${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 h}, 126 \mathrm{MHz}$, DMSO- d_{6}

1j

${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 j}, 101 \mathrm{MHz}$, DMSO- d_{6}

${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 b}, 500 \mathrm{MHz}$, DMSO- d_{6}

${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 b}, 126 \mathrm{MHz}$, DMSO- d_{6}

${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 c}, 400 \mathrm{MHz}$, DMSO- d_{6}

${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 c}, 101 \mathrm{MHz}$, DMSO- d_{6}

${ }^{1} \mathrm{H}$ NMR of 1a, 400 MHz , DMSO- d_{6}

${ }^{13} \mathrm{C}$ NMR of 1a, 101 MHz , DMSO- d_{6}

${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 e}, 400 \mathrm{MHz}$, DMSO- d_{6}

${ }^{13} \mathrm{C}$ NMR of 1e, 101 MHz , DMSO- d_{6}

${ }^{1} \mathrm{H}$ NMR of 1i, 500 MHz , DMSO- d_{6}

${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 d}, 500 \mathrm{MHz}$, DMSO- d_{6}

${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 d}, 126 \mathrm{MHz}$, DMSO- d_{6}

${ }^{1} \mathrm{H}$ NMR of 3aa, 500 MHz , DMSO- d_{6}

${ }^{13} \mathrm{C}$ NMR of 3aa, 126 MHz , DMSO- d_{6}

${ }^{1} \mathrm{H}$ NMR of 3ba, 500 MHz , DMSO- d_{6}

${ }^{13} \mathrm{C}$ NMR of 3ba, 126 MHz , DMSO- d_{6}

${ }^{1} \mathrm{H}$ NMR of 3ca, 400 MHz , DMSO- d_{6}

${ }^{13} \mathrm{C}$ NMR of 3ca, 101 MHz , DMSO- d_{6}

${ }^{1} \mathrm{H}$ NMR of 3ea, 500 MHz , DMSO- d_{6}

${ }^{13} \mathrm{C}$ NMR of 3fa, 101 MHz , DMSO- d_{6}

${ }^{1} \mathrm{H}$ NMR of 3ga, 400 MHz , DMSO- d_{6}

${ }^{1} \mathrm{H}$ NMR of 3ha, 500 MHz , DMSO- d_{6}

3ia
${ }^{1} \mathrm{H}$ NMR of 3ia, 500 MHz , DMSO- d_{6}

${ }^{13} \mathrm{C}$ NMR of 3ia, 126 MHz , DMSO- d_{6}

${ }^{1} \mathrm{H}$ NMR of 3da, 500 MHz , DMSO- d_{6}

${ }^{13} \mathrm{C}$ NMR of 3da, 126 MHz , DMSO- d_{6}

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 j a}, 500 \mathrm{MHz}$, DMSO- d_{6}

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3} \mathbf{j} \mathbf{a}, 126 \mathrm{MHz}$, DMSO- d_{6}

${ }^{1} \mathrm{H}$ NMR of 3ai, 500 MHz , DMSO- d_{6}

${ }^{13} \mathrm{C}$ NMR of 3ai, 126 MHz , DMSO- d_{6}

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 a g}, 500 \mathrm{MHz}$, DMSO- d_{6}

${ }^{13} \mathrm{C}$ NMR of 3ag, 126 MHz , DMSO- d_{6}

${ }^{1} \mathrm{H}$ NMR of 3ac, 500 MHz , DMSO- d_{6}

${ }^{13} \mathrm{C}$ NMR of 3ac, 126 MHz , DMSO- d_{6}
(10000

${ }^{1} \mathrm{H}$ NMR of 3af, 500 MHz , DMSO- d_{6}

${ }^{1} \mathrm{H}$ NMR of 3aj, 500 MHz , DMSO- d_{6}

${ }^{13} \mathrm{C}$ NMR of 3aj, 126 MHz , DMSO- d_{6}

${ }^{13} \mathrm{C}$ NMR of 3ak, 126 MHz , DMSO- d_{6}

${ }^{1} \mathrm{H}$ NMR of 3ad, 500 MHz , DMSO- d_{6}

${ }^{13} \mathrm{C}$ NMR of 3ad, 126 MHz , DMSO- d_{6}

${ }^{13} \mathrm{C}$ NMR of 3ae, 126 MHz , DMSO- d_{6}

${ }^{1} \mathrm{H}$ NMR of 3ah, 500 MHz , DMSO- d_{6}

${ }^{13} \mathrm{C}$ NMR of 3ah, 126 MHz , DMSO- d_{6}

${ }^{1} \mathrm{H}$ NMR of 3ab, 500 MHz , DMSO- d_{6}

${ }^{13} \mathrm{C}$ NMR of 3ab, 126 MHz , DMSO- d_{6}

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 g n}, 126 \mathrm{MHz}$, DMSO- d_{6}

${ }^{13} \mathrm{C}$ NMR of 3ge, 126 MHz , DMSO- d_{6}

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 g d}$, 400 MHz , DMSO- d_{6}

${ }^{13} \mathrm{C}$ NMR of 3gd, 126 MHz , DMSO- d_{6}

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 g f}, 400 \mathrm{MHz}$, DMSO- d_{6}

${ }^{13}$ C NMR of 3gf, 101 MHz , DMSO- d_{6}

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 g m}, 500 \mathrm{MHz}$, DMSO- d_{6}

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 g m}, 101 \mathrm{MHz}$, DMSO- d_{6}

${ }^{1}$ H NMR of $\mathbf{3 g g}, 500 \mathrm{MHz}$, DMSO- d_{6}

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 g k}, 126 \mathrm{MHz}$, DMSO- d_{6}

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 g j}$, 500 MHz , DMSO- d_{6}

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3} \mathbf{g} \mathbf{j}, 126 \mathrm{MHz}$, DMSO- d_{6}
(

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 g l}, 126 \mathrm{MHz}$, DMSO- d_{6}

