Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

Supporting information

for

Experimental and computational study of BF₃-catalyzed transformations of *ortho*-(pivaloylaminomethyl)benzaldehydes: an unexpected difference from TFA catalysis

Györgyi Koványi-Lax, Csilla Hargitai, Péter Ábrányi-Balogh, Tamás Nagy, Gábor Tóth, Zsófia Garádi, Gábor Németh, Angéla Pandur, Simon Horváth, András Dancsó, Gyula Simig, Balázs Volk*

Table of content

Compound 13 , description of structure determination	S4
Compound 13 , HRMS	S5
Compound 13 , ¹ H NMR in CDCl ₃	S6
Compound 13 , 1 H, 1 H-COSY and selTOCSY on δ 7.78	S7
Compound 13, Steric proximities detected by NOESY	S8
Compound 13, Steric proximities detected by selNOE on signals δ 5.19, 5.06 and 6.51	S9
Compound 13 , ¹³ C and Dept-135 NMR	S10
Compound 13 , edHSQC and CH ₃ section	S11
Compound 13 , HMBC	S12
Compound 13 , selective HMBC (122–114 ppm)	S13
Compound 13 , selective HMBC (152–141 ppm)	S14
Compound 14, description of structure determination	S15
Compound 14 , HRMS	S16
Compound 14 , ¹ H NMR and Ar section in DMSO-d ₆	S17
Compound 14 , ¹ H, ¹ H-COSY and Ar section	S18
Compound 14 , DEPTQ	S19
Compound 14 , edHSQC and Ar section	S20
Compound 14 , HMBC and CH ₃ section	S21

Table of content (continuation)

Compound 15 , description of structure determination	S22
Compound 15 , ¹ H NMR and ¹³ C NMR in DMSO-d ₆	S23
Compound 15, ^1H NMR and sel-Tocsy on δ 7.49t and δ 7.36t signals	S24
Compound 15 , ROESY and section (8.0–7.2 ppm)	S25
Compound 15, HSQC and Ar section with sel-Tocsy on δ 7.36	S26
Compound 15 , HMBC	S27
Compound 15 , selective HMBC (148–121 ppm)	S28
Compound 15, HRMS	S29
Monitoring of the composition of the reaction mixture by LC-MS during the $\rm BF_3\cdot H_2O-$	
catalyzed transformation of <i>ortho</i> -(pivaloylaminomethyl)benzaldehyde (5)	S30
Monitoring of the composition of the reaction mixture by LC-MS during the $\rm BF_3\cdot H_2O-$	
catalyzed transformation of 6a	S31
Energy values obtained for the computation of the $11 ightarrow 18$ transformation	S32

S4. Compound 13, description of structure determination

The molecular formula of compound 10 was established as $C_{28}H_{32}N_2O_7$ by means of HRMS (page S5), indicating the presence of 14 double bond equivalents. Based on ¹H and ¹³C NMR data (see pages S6–S14), this compound therefore contains 5 rings and 9 double bonds, which corresponds to two phenyl groups, two pivaloyl amide moieties N-C=O (δ177.73 and δ176.86 ppm) and one conjugated C=O group (δ198.63 ppm). The ¹H, ¹H-COSY experiment (page S7) revealed the connectivity of the ¹H signals. To achieve an unambiguous assignment of the overlapping aromatic ¹H signals, selective one-dimensional TOCSY experiment on δ 7.78d signal (page S7) was also performed. Steric hydrogen-hydrogen proximities detected by two-dimensional NOESY (page S8) supported the differentiation of the two pivaloyl groups. However, due to the much higher resolution of the selective one-dimensional NOE experiments on the $\delta 5.19$, 5.06 and 6.51 signals, even the selective detections of the interacting ¹H signals (page S9) were achieved. The edited HSQC spectrum (page S11) served as the unambiguous ¹H/¹³C signal assignment even in case of the very close δMe_3 (27.40 and 27.16 ppm) signals. Quaternary carbon signals and also the connectivity of the various structural units of the molecule were identified on the basis of the HMBC spectrum (page S12). Out of the four aromatic =CH signals, only δ 7.78d gave a HMBC cross-peak with the ketone C=O (δ 198.63 ppm), its connection to this aromatic ring is thus straightforward. In order to achieve the required extremely high ¹³C chemical shift resolution in cases of close ¹³C signals, the band-selective HMBC experiment (pages S13–14) proved to be the method of choice. Finally, structure of compound 10 was also confirmed by single-crystal X-ray measurement.

S9. Compound **13**, steric proximities detected by selNOE on signals δ **5.19**, **5.06** and **6.51**

S13. Compound 13, selective HMBC (122–114 ppm)

S14. Compound 13, selective HMBC (152–141 ppm)

S15. Compound 14, description of structure determination

The molecular formula of compound **11** was established as $C_{26}H_{32}N_2O_3$ by means of HRMS (page S16), indicating the presence of 12 double bond equivalents, meaning in this case, according to ¹H and ¹³C NMR data (pages S17–S21), 3 rings and 9 double bonds. This corresponds to two phenyl groups, two pivaloyl amide moieties N-C=O (δ 177.61 and δ 175.88 ppm) and one conjugated C=O group (δ 200.34 ppm), see DEPTQ spectrum on page S16. For the aromatic =CH signals, the ¹H NMR spectrum (page S17) exhibited two different four-spin systems with d; t; t; d multiplicities. The ¹H,¹H-COSY experiment (page S18) revealed the connectivity of the ¹H atoms for both sets of signals. The edited HSQC spectrum (page S20) gave the unambiguous ¹H/¹³C signal assignment. Quaternary carbon signals and also the connectivity of the various structural units of the molecule were identified on the basis of the HMBC spectrum (page S21). Similarly to compound **10**, only one aromatic =CH atom (δ 7.71d) gave a HMBC cross-peak with the ketone C=O (δ 200.34 ppm), therefore its connection to this aromatic ring is identified, leading to a complete NMR assignment. Structure of compound **11** was also justified by single-crystal X-ray measurement.

S16. Compound 14, HRMS

S22. Compound 15, description of structure determination

The structural formula of compound 12 was established as $C_{21}H_{21}NO_2$ by means of HRMS (page S23), i.e. this compound contains 12 double bond equivalents. Taking into consideration the ¹H and ¹³C NMR data (page S24), this compound contains 3 rings and 9 double bonds. This corresponds to two phenyl groups, one pivaloyl amide unit N-C=O (δ177.42 ppm), one cross-conjugated C=O group (δ196.58 ppm) and one conjugated C=CH moiety (δ136.81 and $\delta 147.02$ ppm), see page S24 (¹³C spectrum). The character of the third ring was determined by HMBC (see below). The selTOCSY experiment (page S25) on =CH δ7.49t (7.4 Hz) revealed the four-spin system 7.27d; 7.49t; 7.31t and 7.44d, i.e. the signals of the condensed phenyl ring. SelTOCSY (page S25) on =CH δ 7.36t (7.4 Hz) showed a second four-spin system 7.30d; 7.36t; 7.30t and 7.26d for the ortho-disubstituted phenyl group. Unambiguous identification of the aromatic rings was based on the ROESY experiment (page S26). The δNCH₂ (4.29d ppm) signal showed a steric proximity to =CH δ 7.30d, marking this spin system as a stericially close one, and also to the single =CH (δ 7.81s ppm) hydrogen atom. Furthermore, the signal δ 7.81s resulted in a NOE response on δ 7.27d and thereby revealed the location of the other four-spin system (7.27d; 7.49t; 7.31t and 7.44d) in the condensed 1-oxo-1H-indene moiety. The HSQC experiment (page S27) served as the unambiguous ¹H/¹³C signal assignment in case of very close, even partly overlapping =CH signals. To facilitate the evaluation of the HSQC, we have inserted into this spectrum the one-dimensional selTOCSY spectrum with irradiation on $\delta7.36t$ (page S27). The TOCSY signals exactly picked out the corresponding C-H cross-peaks. The assignment of quaternary carbon atoms and the connectivity of the structural elements of the molecule were supported by HMBC measurements (page S28). Cross-peaks of the C=O signal (196.58 ppm) with the δ 7.81s and δ 7.44d hydrogens disclosed its position. The occasionally appearing doublet at $\delta 147.02$ ppm gave a coupling of ¹J(CH)=173 Hz. The CH₂ hydrogens ($\delta 4.29d$) resulted in HMBC responses on the aromatic carbon atoms at 127.48, 130.27 and 138.81 ppm, and provided an independent evidence for the differentiation and assignment of the disubstituted aromatic rings. By taking advantage of the extremely high ¹³C chemical shift resolution of the band-selective version of HMBC (page S29), a complete NMR assignment was finally achieved.

S23. Compound **15**, HRMS

S24. Compound **15**, ¹H NMR (600 MHz) and ¹³C NMR (150 MHz) in DMSO- d_6

S25. Compound **15**, ¹H NMR and sel-Tocsy on δ **7.49t** and δ **7.36t** signals

S30. Monitoring of the composition of the reaction mixture by LC-MS during the $BF_3 \cdot H_2O$ -catalyzed transformation of **5** (Scheme 4)

Reaction time [h]	5 [%] R _t =2.99 min	15 [%] R _t =3.94 min	M=520 g/mol (unidentified structure) R _t =4.05 min	14 [%] "BF ₃ -dimer" R _t =4.17 min	6a [%] "TFA dimer" R _t =4.23 min	M=520 g/mol (unidentified structure) R _t =4.47 min	M=622 g/mol (unidentified structure) R _t =4.94 min
3.5	9.0	<0.3	10.0	11.0	37.0	14.0	1.0
6.5	4.0	5.0	10.0	22.0	24.0	15.0	1.0
23.5	<0.3	40.0	6.0	30.0	<0.3	11.0	1.0
25.0	<0.3	44.0	<0.3	32.0	<0.3	11.0	1.0

S31. Monitoring of the composition of the reaction mixture by LC-MS during the $BF_3 \cdot H_2O$ -catalyzed transformation of **6a** (Scheme 9)

Reaction time [h]	5 [%] R _t =2.98 min	15 [%] R _t =3.94 min	M=520 g/mol (unidentified structure) R _t =4.05 min	14 [%] "BF ₃ -dimer" R _t =4.16 min	6a [%] "TFA-dimer" R _t =4.23 min	M=520 g/mol (unidentified structure) R _t =4.46 min	M=720 g/mol (unidentified structure) R _t =5.04 min
3.5	2.0	<0.3	5.0	11.0	53.0	7.0	2.0
6.5	2.0	<0.3	5.0	15.0	45.0	3.0	3.0
23.5	2.0	2.6	5.0	35.0	22.0	1.0	4.0
27.5	2.0	9.0	6.0	41.0	13.0	11.0	3.0
32.0	1.0	9.0	4.5	44.0	7.0	10.0	4.0
47.0	<0.3	17.0	5.0	46.0	2.0	9.0	1.0

S33. Energy values obtained for the computation of the $11 \rightarrow 18$ transformation. The E, ZPE, U, H and G values were computed using the M062X/6-31+G (d,2p) method.

ID	E	ZPE	U	н	G	S	Imaginary frequencies
11A	-1795.04	-1794.49	-1794.45	-1794.45	-1794.55	221.704	
TS1A	-1795.00	-1794.45	-1794.42	-1794.42	-1794.52	214.197	-1227.23
16+TFA	-1795.05	-1794.50	-1794.46	-1794.46	-1794.56	213.770	
TS2A	-1795.01	-1794.47	-1794.43	-1794.43	-1794.53	205.529	-1372.28
17A	-1795.03	-1794.48	-1794.44	-1794.44	-1794.54	220.323	
17AH ₂ O	-1871.44	-1870.87	-1870.83	-1870.83	-1870.94	231.422	
TS3A	-1871.44	-1870.86	-1870.82	-1870.82	-1870.93	221.810	-196.35
18+TFA	-1871.48	-1870.90	-1870.86	-1870.86	-1870.97	219.313	
11B	-1669.31	-1668.76	-1668.73	-1668.73	-1668.83	208.850	
TS1B	-1669.30	-1668.75	-1668.72	-1668.72	-1668.81	196.250	-1274.25
16+BF ₃ ·H ₂ O	-1669.32	-1668.77	-1668.74	-1668.74	-1668.83	206.840	
TS2B	-1669.28	-1668.74	-1668.71	-1668.71	-1668.81	209.162	-1157.79
17B	-1669.30	-1668.75	-1668.71	-1668.71	-1668.82	222.012	
17BH ₂ O	-1745.73	-1745.15	-1745.11	-1745.11	-1745.22	220.838	
TS3B	-1745.72	-1745.14	-1745.11	-1745.10	-1745.21	215.080	-209.32
18+BF ₃ ·H ₂ O	-1745.76	-1745.18	-1745.14	-1745.14	-1745.24	217.278	
H₂O	-76.4053	-76.3840	-76.3812	-76.3802	-76.4017	45.111	