Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Hydrogenation of Cage-Opened C₆₀ Derivatives Mediated by Frustrated Lewis Pairs

Yoshifumi Hashikawa and Yasujiro Murata*

Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan Fax: (+81)774-38-3178 E-mail: yasujiro@scl.kyoto-u.ac.jp

Contents

1. General	S 3
2. Computational Methods	S 3
3. Synthesis	S4
3.1. Reduction of 1 by HBpin	S4
3.2. Dehydroxyhydrogenation of 1	S 6
3.3. Dehydroxyhydrogenation of 4	S7
3.4. Hydrogenation of 6	S9
3.5. Conversion of 8 into 7	S13
3.6. Reductive Arylation of 1	S14
4. Single Crystal X-Ray-Structures of (H ₂ O@ 5)•CS ₂	S17
5. Natural Charges	S18
6. Differences in Energies between 7' and 8'	S22
7. References	S25

1. General

The ¹H and ¹³C NMR measurements were carried out at room temperature unless otherwise noted with a JEOL JNM ECA500 and Bruker Avance III 800US Plus instruments. The NMR chemical shifts were reported in ppm with reference to residual protons and carbons of CDCl₃ (δ 7.26 ppm in ¹H NMR, δ 77.00 ppm in ¹³C NMR) and CD₂Cl₂ (δ 5.32 ppm in ¹H NMR, δ 53.80 ppm in ¹³C NMR). APCI (atmospheric pressure chemical ionization) mass spectra were measured on a Bruker micrOTOF-Q II. The high-performance liquid chromatography (HPLC) was performed with the use of a Cosmosil Buckyprep column (250 mm in length, 4.6 mm in inner diameter) for analytical purpose. Thin layer chromatography (TLC) was performed on glass plates coated with 0.25 mm thick silica gel 60F-254 (Merck). Column chromatography was performed using PSQ 60B (Fuji Silysia).

Fullerene C₆₀ was purchased from SES Research Co. Diethyl ether was purchased from Kanto Chemical Co., Inc. Carbon disulfide, trimethylamine, NaBH₄, B(C₆F₅)₃, and acetone were purchased from FUJIFILM Wako Pure Chemical Corporation. *o*-Dichlorobenzene (ODCB) was purchased from Sigma-Aldroch Co. LLC. Triphenylsilane, pinacol borane (HBpin), and *N*,*N*-dimethylaniline were purchased from Tokyo Chemical Industry Co. Ltd.

All reactions were carried out under Ar atmosphere. Unless otherwise noted, materials purchased from commercial suppliers were used without further purification. Compounds 1, 1^{4} , 2^{2} and 6^{3} were synthesized according to literature procedures.

2. Computational Methods

All calculations were conducted using the Gaussian 09 program. All structures at the stationary states were optimized at the B3LYP-D3/6-31G(d) level of theory without any symmetry assumptions and confirmed by the frequency analyses at the same level of theory. Natural charges were obtained from the natural population analysis at the same level of theory.

3. Synthesis

3.1. Reduction of 1 by HBpin

Powdery **1** (10.0 mg, 8.92 µmol) was placed into a Schlenk tube and degassed through three vacuum-Ar cycles. ODCB (1.00 mL), ether (0.10 mL), and HBpin (1.30 µL, $\rho = 0.882$ g/mL, 8.96 µmol, 1.00 equiv) were added and the resulting solution was heated at 130 °C for 24 h (Aluminum block heater). The crude mixture was purified by column chromatography using silica gel (CS₂/acetone (40:1) to (20:1)) to give **3** (7.98 mg, 7.22 µmol, 80%) followed by unreacted **1** (1.17 mg, 1.04 µmol, 12%) as brown powders.

3: ¹H NMR (500 MHz, CDCl₃) δ 7.75 (s, 1H), 7.61 (t, 1H, *J* = 8.0 Hz), 7.55 (t, 1H, *J* = 8.0 Hz), 7.40 (d, 1H, *J* = 8.0 Hz), 7.21 (d, 1H, *J* = 8.0 Hz), 7.20 (d, 1H, *J* = 8.0 Hz), 7.15 (d, 1H, *J* = 8.0 Hz), 7.02 (d, 1H, *J* = 10.0 Hz), 6.86 (d, 1H, *J* = 10.0 Hz), 5.90 (br s, 1H), 1.24 (s, 9H), 1.16 (s, 9H); HRMS (APCI) *m*/*z*: [M]⁻ Calcd for C₈₂H₂₈N₂O₄ (**3**) 1104.2055; Found 1104.2031. (These data were matched well with the reported one.⁴)

Figure S1. ¹H NMR spectra (500 MHz, CDCl₃) of 3.

Figure 2. APCI mass spectrum (negative ion mode) of 3.

3.2. Dehydroxyhydrogenation of 1

[The reaction using Ph₃SiH]

Powdery **1** (10.0 mg, 8.92 μ mol) and B(C₆F₅)₃ (4.6 mg, 9.0 μ mol, 1.0 equiv) were placed into a Schlenk tube and degassed through three vacuum-Ar cycles. ODCB (1.00 mL) and ether (0.10 mL) were added and the resulting solution was heated at 130 °C for 24 h (Aluminum block heater). The crude mixture was purified by column chromatography using silica gel (CS₂/acetone (40:1) to (20:1)) to give **3** (4.91 mg, 4.44 μ mol, 50%) followed by unreacted **1** (1.03 mg, 0.919 μ mol, 10%) as brown powders. *Note*: The use of crystalline B(C₆F₅)₃ is important.

[The reaction using Et₃N]

Powdery **1** (10.0 mg, 8.92 µmol) and B(C₆F₅)₃ (4.6 mg, 9.0 µmol, 1.0 equiv) were placed into a Schlenk tube and degassed through three vacuum-Ar cycles. ODCB (1.00 mL), ether (0.10 mL), and Et₃N (1.25 µL, $\rho = 0.726$ g/mL, 8.97 µmol, 1.01 equiv) were added and the resulting solution was heated at 130 °C for 24 h (Aluminum block heater). The crude mixture was purified by column chromatography using silica gel (CS₂/acetone (40:1)) to give **3** (4.91 mg, 4.44 µmol, 50%) as a brown powder. In this reaction, **1** was completely consumed. *Note*: The use of crystalline B(C₆F₅)₃ is important.

3.3. Dehydroxyhydrogenation of 4

Powdery **4** (10.3 mg, 9.49 μ mol) and B(C₆F₅)₃ (4.8 mg, 9.4 μ mol, 1.0 equiv) were placed into a Schlenk tube and degassed through three vacuum-Ar cycles. ODCB (1.00 mL) and ether (0.10 mL) were added and the resulting solution was heated at 130 °C for 24 h (Aluminum block heater). The crude mixture was purified by column chromatography using silica gel (CS₂/acetone (40:1)) to give **5** (10.0 mg, 9.36 μ mol, 99%) as a brown powder. *Note*: The use of crystalline B(C₆F₅)₃ is important.

5: ¹H NMR (500 MHz, CDCl₃) δ 8.56 (d, 1H, *J* = 5.2 Hz), 8.26 (d, 2H, *J* = 7.5 Hz), 7.89 (d, 1H, *J* = 8.0 Hz), 7.83–7.72 (m, 2H), 7.65 (s, 1H), 7.45–7.11 (m, 8H); HRMS (APCI) *m/z*: [M]⁻ Calcd for C₈₀H₁₆N₂O₄ (**5**) 1068.1116; Found 1068.1103. (These data were matched well with the reported one.^{2c})

Figure S3. ¹H NMR spectra (500 MHz, CDCl₃) of 5.

Figure 4. APCI mass spectrum (negative ion mode) of 5.

3.4. Hydrogenation of 6

Powdery **6** (10.0 mg, 8.81 μ mol), B(C₆F₅)₃ (4.6 mg, 8.9 μ mol, 1.0 equiv), and Ph₃SiH (2.3 mg, 8.8 μ mol, 1.0 equiv) were placed into a Schlenk tube and degassed through three vacuum-Ar cycles. ODCB (1.00 mL) and ether (0.10 mL) were added and the resulting solution was heated at 130 °C for 24 h (Aluminum block heater). The crude mixture was purified by column chromatography using silica gel (CS₂/acetone (200:1) to (40:1)) to give **7** (0.97 mg, 0.85 μ mol, 10%) and **8** (0.62 mg, 0.55 μ mol, 6%), followed by unreacted **6** (7.99 mg, 7.04 μ mol, 80%) as reddish brown powders. *Note*: The use of crystalline B(C₆F₅)₃ is important.

7: ¹H NMR (500 MHz, CDCl₃) δ 7.62 (t, 1H, *J* = 8.0 Hz), 7.39 (t, 1H, *J* = 8.0 Hz), 7.29 (d, 1H, *J* = 8.0 Hz), 7.21 (d, 1H, *J* = 8.0 Hz), 7.03 (d, 1H, *J* = 8.0 Hz), 6.88 (d, 1H, *J* = 10.3 Hz), 6.84 (d, 1H, *J* = 8.0 Hz), 6.65 (d, 1H, *J* = 6.9 Hz), 6.05 (d, 1H, *J* = 10.3 Hz), 3.50 (d, 1H, *J* = 6.9 Hz), 1.22 (s, 9H), 1.17 (s, 9H), -10.70 (s, 1.70H); ¹³C NMR (201 MHz, CDCl₃) δ 193.55, 186.10, 184.09, 168.23, 167.81, 164.21, 161.20, 155.98, 152.57, 152.15, 152.01, 151.98, 151.01, 150.68, 150.61, 150.13, 149.77, 149.72, 149.62, 149.56, 149.44, 149.07, 147.96, 147.25, 147.04, 145.99, 145.60, 145.01, 144.06, 143.86, 143.78, 143.24, 143.20, 143.15, 143.11, 142.70, 142.30, 142.00, 141.74, 140.93, 140.20, 139.45, 139.27, 138.99, 138.02, 137.70, 137.57, 137.47, 137.44, 136.95, 136.92, 136.79, 136.60, 136.49, 136.46, 133.55, 132.28, 131.93, 131.06, 130.83, 128.74, 126.91, 125.15, 121.99, 120.91, 120.01, 119.82, 119.67, 117.48, 116.99, 116.82, 71.92, 62.19, 54.76, 37.58, 37.10, 29.90, 29.88 (The sum of carbon signals must be 78 in theory. Observed 78.); HRMS (APCI) *m/z*: [M]⁻ Calcd for C₈₂H₂₈N₂O₄S (7) 1136.1775; Found 1136.1733.

8: ¹H NMR (500 MHz, CDCl₃) δ 7.59 (t, 1H, J = 8.0 Hz), 7.50 (t, 1H, J = 8.0 Hz), 7.40 (d, 1H, J = 4.6 Hz), 7.24 (d, 1H, J = 8.0 Hz), 7.22 (d, 1H, J = 8.0 Hz), 7.21 (d, 1H, J = 10.3 Hz), 7.20 (d, 1H, J = 8.0 Hz), 7.11 (d, 1H, J = 8.0 Hz), 6.65 (d, 1H, J = 10.3 Hz), 3.85 (d, 1H, J = 4.6 Hz), 1.20 (s, 9H), 1.10 (s, 9H), -11.06 (s, 1.70H); HRMS (APCI) m/z: [M]⁻ Calcd for C₈₂H₂₈N₂O₄S (8) 1136.1775; Found 1136.1777. (These data were matched well with the reported one.⁵)

Figure S5. ¹H NMR spectra (500 MHz, CDCl₃) of 7.

Figure S6. ¹³C NMR spectra (201 MHz, CDCl₃) of 7.

Figure 7. APCI mass spectrum (negative ion mode) of 7.

Figure S8. ¹H NMR spectra (500 MHz, CDCl₃) of 8.

Figure 9. APCI mass spectrum (negative ion mode) of 8.

3.5. Conversion of 8 into 7

Powdery **8** (8.0 mg, 7.0 μ mol) and B(C₆F₅)₃ (3.7 mg, 7.2 μ mol, 1.0 equiv) were placed into a Schlenk tube and degassed through three vacuum-Ar cycles. ODCB (1.00 mL) and ether (0.10 mL) were added and the resulting solution was heated at 130 °C for 24 h (Aluminum block heater). The crude mixture was purified by column chromatography using silica gel (CS₂/acetone (200:1) to (100:1)) to give **7** (0.21 mg, 0.18 μ mol, 3%), unreacted **8** (6.74 mg, 5.93 μ mol, 84%), and **6** (0.80 mg, 0.70 μ mol, 10%) as reddish brown powders.

3.6. Reductive Arylation of 1

Powdery **1** (10.0 mg, 8.92 µmol) and B(C₆F₅)₃ (4.6 mg, 9.0 µmol, 1.0 equiv) were placed into a Schlenk tube and degassed through three vacuum-Ar cycles. ODCB (1.00 mL), ether (0.10 mL), and PhNMe₂ (1.14 µL, $\rho = 0.956$ g/mL, 8.99 µmol, 1.01 equiv) were added and the resulting solution was heated at 130 °C for 24 h (Aluminum block heater). The crude mixture was purified by column chromatography using silica gel (CS₂/acetone (40:1) to (20:1)) to give **9** (4.57 mg, 3.73 µmol, 42%) followed by unreacted **1** (5.89 mg, 5.25 µmol, 59%) as brown powders. *Note*: The use of crystalline B(C₆F₅)₃ is important.

9: ¹H NMR (500 MHz, CD₂Cl₂) δ 8.35 (d, 2H, J = 8.5 Hz), 7.68 (t, 1H, J = 8.0 Hz), 7.57 (t, 1H, J = 8.0 Hz), 7.49 (d, 1H, 8.0 Hz), 7.26 (d, 1H, 8.0 Hz), 7.22 (d, 1H, 8.0 Hz), 7.18 (d, 1H, 8.0 Hz), 7.05 (d, 1H, J = 10.3 Hz), 6.87 (d, 2H, 8.5 Hz), 6.86 (d, 1H, 10.3 Hz), 4.45 (s, 1H), 3.05 (s, 6H), 1.24 (s, 9H), 1.16 (s, 9H); ¹³C NMR (201 MHz, CD₂Cl₂) δ 197.47, 194.49, 169.36, 168.73, 164.68, 163.19, 154.64, 153.18, 151.29, 150.26, 150.11, 149.85, 149.68, 149.56, 149.50, 149.08, 148.83, 148.76, 148.39, 148.18, 147.97, 147.91, 147.73, 147.53, 147.27, 147.05, 146.59, 146.09, 146.01, 145.80, 145.63, 144.44, 144.41, 143.91, 143.84, 143.76, 143.15, 142.88, 141.83, 141.70, 141.66, 141.25, 141.12, 140.79, 139.98, 139.16, 138.53, 137.69, 137.59, 137.54, 137.27, 137.21, 137.15, 136.71, 136.31, 135.80, 135.34, 134.14, 133.98, 133.37, 132.82, 132.15, 132.13, 130.71, 130.48, 128.52, 128.45, 127.31, 127.25, 120.39, 119.94, 117.80, 117.22, 111.66, 98.73, 96.90, 60.09, 55.16, 40.53, 38.11, 37.84, 30.13, 29.94 (The sum of carbon signals must be 83 in theory. Observed 83.); HRMS (APCI) m/z: [M]⁺ Calcd for C₉₀H₃₇N₃O₄ (**9**) 1223.2790; Found 1223.2755.

Figure S10. ¹H NMR spectra (500 MHz, CD₂Cl₂) of 9.

Figure S11. ¹³C NMR spectra (201 MHz, CD₂Cl₂) of 9.

Figure 12. APCI mass spectrum (negative ion mode) of 9.

4. Single Crystal X-Ray-Structures of (H₂O@5)•CS₂

Single crystals of H₂O@**5** were obtained from a CS₂ solution by slow evaporation. Intensity data were collected at 100 K on a Bruker Single Crystal CCD X-ray Diffractometer (SMART APEX II) with Mo K α radiation ($\lambda = 0.71073$ Å) and graphite monochromater. A total of 5401 reflections were measured at the maximum 2 θ angle of 50.05°, of which 4814 were independent reflections ($R_{int} = 0.0410$). The structure was solved by direct methods (SHELXT-2014/5⁶) and refined by the full-matrix least-squares on F^2 (SHELXL-2018/3⁶). All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were placed using AFIX instructions except for the encapsulated H₂O molecule. A part of the fullerene skeleton was refined using SIMU and ISOR instructions. The crystal data are as follows: C₈₁H₁₈N₂O₅S₂; FW = 1163.09, crystal size 0.21 × 0.08 × 0.04 mm³, monoclinic, C2/c, a = 30.736(8) Å, b = 9.788(2) Å, c = 32.682(8) Å, $\beta = 107.241(3)^\circ$, V = 9391(4) Å³, Z = 8, $D_c = 1.645$ g cm⁻³. The refinement converged to $R_1 = 0.1154$, $wR_2 = 0.2766$ ($I > 2\sigma(I)$), GOF = 1.084. The data was deposited at the Cambridge Crystallographic Data Centre (CCDC 2088803).

Figure S13. Single crystal X-ray structure of $(H_2O@5) \cdot CS_2$. Thermal ellipsoids are shown at 50% probability.

5. Natural Charges

For the calculations to be simplified, 6-*t*-butylpyridin-2-yl groups were replaced with 2-pyridyl groups for **2'** and **6'**. The calculations were performed at the B3LYP-D3/6-31G(d) level of theory using Gaussian 09.⁷

Figure S14. Natural charges q of 2', 4-keto-form, and 6' (B3LYP-D3/6-31G(d)).

 Table S1. Optimized structure of 2' (B3LYP-D3/6-31G(d))

Standard orientation:

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	3.956568	-0.193956	1.295735
2	6	0	3.775285	1.089298	0.998279
3	6	0	2.824759	1.596474	-0.056318
4	6	0	1.587075	2.297062	0.547863
5	6	0	1.244510	2.286320	1.900151
6	6	0	1.826150	1.784429	3.203374
7	6	0	0.583615	1.443965	4.121891
8	6	0	-0.623065	1.694961	3.272939
9	6	0	-1.939418	1.242376	3.127234
10	6	0	-2.510279	-0.155252	3.083221
11	6	0	-1.836070	-1.381007	3.001700
12	6	0	-0.341857	-1.644147	3.110417
13	6	0	-0.031586	-2.666297	2.025856
14	6	0	1.077035	-2.619680	1.183732
15	6	0	2.403213	-2.107288	1.641709
16	6	0	3.265896	-1.329992	0.592214
17	7	0	3.954026	-3.607853	0.009941
18	8	0	2.963241	1.746009	3.605479
19	8	0	2.812979	-2.295509	2.765638
20	7	0	3.585168	3.865755	-0.563580
21	6	0	2.381414	-0.864709	-0.543369
22	6	0	1.286575	0.842208	-1.913793
23	8	0	0.644016	1.281474	5.313963
24	6	0	1.517821	-1.868315	-1.129425
25	6	0	0.592735	2.727724	-0.436682
26	8	0	0.453573	-1.030712	3.785307
27	6	0	-0.650722	2.226970	-2.531882
28	6	0	4.317492	4.741581	-1.263427
29	6	0	-1.828117	2.907291	-2.019512
30	6	0	3.623549	2.580777	-0.932395
31	6	0	0.520745	2.075419	-1.754809
32	6	0	0.792893	-0.169582	-2.747202
33	6	0	2.233453	0.460148	-0.891453
34	6	0	-1.790023	3.456062	-0.750474

35	6	0	-0.425478	-0.016546	-3.497562
36	6	0	-0.945376	3.263366	1.387211
37	6	0	-1.133932	1.169035	-3.400777
38	6	0	0.885583	-1.551513	-2.329101
39	6	0	0.873831	-2.833797	-0.235787
40	6	0	-0.567366	3.385868	0.010078
41	6	0	5 508531	-1 853558	-0 524039
42	6	0	4 301899	-2 315628	0.012184
12	6	0	4.001077	2.515020	0.248524
43	6	0	0.210174	2.337303	0.666054
44	6	0	0.207477	2 220590	2 785445
45	0	0	-0.30/4//	-2.230580	-2.785445
46	6	0	6.390334	-2.781510	-1.0/448/
47	6	0	-0.122515	2.591545	2.256055
48	6	0	-2.585942	1.133985	-3.342788
49	6	0	5.116191	4.384883	-2.349686
50	6	0	-4.585262	1.540182	0.648949
51	6	0	-3.259002	-0.091108	-3.332913
52	6	0	-2.358761	3.081941	1.478654
53	6	0	6.038889	-4.131507	-1.071802
54	6	0	4.404726	2.119346	-1.998896
55	6	0	-2.824655	2.051807	2.301967
56	6	0	4.809509	-4.490236	-0.518572
57	6	0	-1.119779	-1.291774	-3.525650
58	6	0	-5.060673	0.434046	-0.158287
59	6	0	-4.316726	-1.113097	1.609382
60	6	0	-2.913872	3.274307	0.157804
61	6	0	-1.409876	-3.649845	0.255355
62	6	0	-3.014347	2.209568	-2.474180
63	6	0	-4.357184	-0.302915	-2.405150
64	6	0	-3.963711	1.283978	1.874355
65	6	0	5 160005	3 040154	-2 720186
66	6	0	-1 277320	-3 148097	1 545567
67	6	0	-3 787394	-0.061190	2 362633
68	6	0	-1 757210	0.725158	-1 549502
60	6	0	4.000050	2 015427	1 507256
70	0	0	-4.090030	2.013427	-1.597550
70	0	0	-2.3/4580	-2.438425	2.170938
/1	6	0	-2.510276	-1.332307	-3.42/665
-72	6	0	-3.141415	-2.311309	-2.558949
73	6	0	-0.905458	-3.176052	-1.962148
74	6	0	-4.566861	-1.947393	-0.575089
75	6	0	-2.352171	-3.215624	-1.842058
76	6	0	-2.664033	-3.507882	-0.456918
77	6	0	-3.590405	-2.348557	1.516071
78	6	0	-4.948500	-0.867990	0.323877
79	6	0	-3.739713	-2.876012	0.166771
80	6	0	-4.274628	-1.669821	-1.915728
81	1	0	4.612844	-0.480571	2.110725
82	1	0	4.283469	1.857022	1.569404
83	1	0	4.258898	5.777894	-0.935688
84	1	0	5.743737	-0.794445	-0.501569
85	1	0	7.337064	-2.455230	-1.496479
86	1	0	5.686071	5.138088	-2.884943
87	1	0	6.697384	-4.888733	-1.485907
88	1	0	4.411113	1.064249	-2.254204
89	1	0	4.493212	-5.531314	-0.495828
90	1	0	5 770748	2 714230	-3 557818
20		v	5.110140	2.717230	5.557010

The total electronic energy was calculated to be -3236.211551 Hartree.

S	tanc	lard	orient	tai	non:	

				•		57	6	0
Center	Atomic	Atomic	Coor	dinates (Angst	roms)	58	6	0
Number	Number	Туре	Х	Y	Z	59	6	0
				-		60	6	0
1	6	0	-3.690557	1.119115	-2.925423	61	6	0
2	6	0	-2.276658	1.196985	-3.252778	62	6	0
3	6	0	-1.567681	0.032425	-3.499608	63	6	0
4	6	0	-2.221232	-1.261912	-3.415266	64	7	0
5	6	0	-3.567665	-1.343156	-3.061541	65	6	0
6	6	0	-4.317912	-0.124627	-2.810829	66	6	0
7	6	0	-1.668617	2.256938	-2.469247	67	8	0
8	6	0	-0.226945	-0.093333	-2.995553	68	8	0
9	6	0	-1.260387	-2.182883	-2.849669	69	6	0
10	6	0	-4.001972	-2.348565	-2.105820	70	6	0
11	6	0	-5.220038	-0.377233	-1.700207	71	6	0
12	6	0	-3.978619	2.172634	-1.975186	72	6	0
13	6	0	-3.069557	-3.235331	-1.559656	73	7	0
14	6	0	-1.671460	-3.154222	-1.945151	74	6	0
15	6	0	-3.113136	-3.548378	-0.145026	75	6	0
16	6	0	-0.850871	-3.411069	-0.781102	76	6	0
17	6	0	-0.370355	2.125812	-1.924856	77	6	0
18	6	0	-0.020099	-1.475552	-2.617934	78	6	0
19	6	0	-1.745502	-3.655231	0.322669	79	8	0
20	6	0	0.827507	-1.780655	-1.555895	80	8	0
21	6	0	0.382445	0.921931	-2.249928	81	6	0
22	6	0	-5.013365	-1.746099	-1.255351	82	6	0
23	6	0	-5.482238	0.629893	-0.769494	83	6	0
24	6	0	-0.072129	2.753653	-0.625260	84	6	0
25	6	0	-4.868743	1.939092	-0.918734	85	6	0
26	6	0	-2.746641	2.896762	-1.734509	86	6	0
27	6	0	-5.518513	0.316042	0.648526	87	1	0
28	6	0	-4.566234	2.448233	0.402473	88	1	0
29	6	0	-2.487702	3.430237	-0.484630	89	1	0
30	6	0	0.381083	-2.762117	-0.570492	90	1	0
31	6	0	-5.049009	-2.046357	0.111710	91	1	0
32	6	0	1.501739	0.553385	-1.421386	92	1	0
33	6	0	-4.932046	1.426534	1.372347	93	1	0
34	6	0	-3.420958	3.209440	0.611486	94	1	0
35	6	0	-1.144670	3.378030	0.038296	95	1	0

26	6	0	1 260020	2 220704	1 450009
30	0	0	-1.200020	3.230794	0.160067
3/	6	0	1.090208	2.327032	0.160067
38	6	0	1.748914	-0.755384	-1.115046
39	6	0	2.193259	-1.953169	1.015556
40	6	0	-2.628967	3.017746	1.805826
41	6	0	-2.913810	1.969361	2.686725
42	6	0	-1.874103	1.175940	3.326560
43	6	0	-4.093353	1.175880	2.461877
44	6	0	-4.074253	-2.957336	0.674463
45	6	0	1.833660	1.790425	2.716842
46	6	0	-5.287266	-0.987573	1.082038
47	6	0	-4.426495	-1.228230	2.227524
48	6	0	1.008250	2.301147	1.552133
49	6	0	0.830516	-2.531043	0.787604
50	6	0	-0.096866	-2.637902	1.823986
51	6	0	-0.275989	2.573773	2.156034
52	6	0	-0.563028	1.657905	3.236480
53	6	0	-3.797405	-0.169270	2.888888
54	6	0	-2.410765	-0.234912	3.367366
55	6	0	0.785346	1.425732	3.846297
56	6	0	-3.696179	-2.440848	1.982983
57	6	0	-1 392025	-3 162921	1 574429
58	6	0	-0 237407	-1.656550	2 981691
50	6	0	-2 378525	-2 501008	2.001001
59	6	0	1 721705	1 420408	2.410020
61	6	0	-1./51/95	-1.439408	0.660057
62	6	0	2.211000	1.102429	0.176247
62	0	0	2.859015	-1.192438	-0.1/634/
63	6	0	3.668809	0.019516	0.358490
64	/	0	3.312337	1.233099	0.165895
65	6	0	3.753201	-2.123540	-1.028514
66	6	0	2.866323	2.651810	-1.647827
67	8	0	2.756401	-2.121638	2.076607
68	8	0	3.023175	1.767984	2.901224
69	6	0	3.011507	4.006437	-1.339309
70	6	0	3.682147	4.826002	-2.244381
71	6	0	4.185943	4.263858	-3.417564
72	6	0	4.000594	2.896976	-3.625224
73	7	0	3.357333	2.100782	-2.763115
74	6	0	3.828194	-3.504932	-0.826726
75	6	0	4.615098	-4.297279	-1.665135
76	6	0	5.329085	-3.717502	-2.713717
77	6	0	5.247341	-2.338833	-2.924183
78	6	0	4.460039	-1.545770	-2.091934
79	8	0	0.643631	-1.046288	3.542055
80	8	0	1.063621	1.266287	5.007259
81	6	0	6.726078	-1.508968	2.096537
82	6	0	5.509121	-1.418339	1.423016
83	6	0	4.947789	-0.169373	1.113278
84	6	0	5.648730	0.986365	1.510907
85	6	0	6.859497	0.894498	2.186562
86	6	0	7.408811	-0.356026	2.480777
87	1	0	2.612496	4.401557	-0.411286
88	1	0	3.810497	5.884628	-2.036088
89	1	0	4.713111	4.865064	-4.151897
90	1	0	4.384655	2.415192	-4.522465
91	1	0	3.293835	-3.971276	-0.004466
92	1	0	4.669389	-5.368724	-1.492657
93	1	0	5,942995	-4.334819	-3,363690
94	1	0	5.795763	-1.877795	-3.741152

4.376643 -0.476865 -2.274471

Table S2. Optimized structure of 4-keto-form (B3LYP-D3/6-31G(d))

96	1	0	7.135685	-2.489481	2.323444
97	1	0	5.003732	-2.332078	1.154687
98	1	0	5.213299	1.951922	1.291058
99	1	0	7.374812	1.802475	2.488260

100 1 0 8.356706 -0.429767 3.007724

The total electronic energy was calculated to be -3467.2768334 Hartree.

Table S3. Optimized structure of 6' (B3LYP-D3/6-31G(d))

Stand	lard	orientation:	

Center	Atomic	Atomic	Coordinates (Angstroms)				Atomic Coordinates (Angstrom		
Number	Number	Туре	Х	Y	Z				
1	6	0	3.799468	0.317295	1.475004				
2	6	0	3.808213	-0.936309	1.027266				
3	6	0	3.002590	-1.439803	-0.145266				
4	6	0	1.832075	-2.350711	0.295039				
5	6	0	1.477941	-2.582589	1.623565				
6	6	0	1.999513	-2.220246	2.996760				
7	6	0	0.720943	-2.025103	3.911556				
8	6	0	-0.432105	-2.446046	3.077558				
9	6	0	-1.767712	-2.058500	3.061953				
10	6	0	-2.864303	0.317652	3.058606				
11	6	0	-2.262776	1.569781	2.975552				
12	6	0	-0.787476	1.889869	3.267096				
13	6	0	-0.370057	2.755722	2.053475				
14	6	0	0.791312	2.660712	1.282036				
15	6	0	2.073413	2.111168	1.826277				
16	6	0	3.068102	1.449402	0.806778				
17	16	0	-2.290848	-0.855025	4.267879				
18	7	0	3.668871	3.807551	0.482432				
19	8	0	3.120302	-2.177514	3.443653				
20	8	0	2.364033	2.183083	2.999981				
21	7	0	4.058551	-3.536182	-0.831256				
22	6	0	2.326947	1.003745	-0.433312				
23	6	0	1.509498	-0.662091	-2.028458				
24	8	0	0.760313	-1.634993	5.053389				
25	6	0	1.456040	1.989863	-1.028701				
26	6	0	0.898538	-2.727830	-0.771661				
27	8	0	-0.100117	1.436903	4.145976				
28	6	0	-0.282009	-2.114786	-2.880520				
29	6	0	4.938071	-4.238925	-1.556474				
30	6	0	-1.444467	-2.885221	-2.478582				
31	6	0	3.972409	-2.220130	-1.053546				
32	6	0	0.835826	-1.957993	-2.023102				
33	6	0	1.002893	0.373616	-2.821469	-			
34	6	0	2.337311	-0.292584	-0.903820	Tł			

35	6	0	-1.433916	-3.511448	-1.249462
36	6	0	-0.142617	0.200202	-3.677183
37	6	0	-0.678704	-3.518133	0.923526
38	6	0	-0.780894	-1.028342	-3.702314
39	6	0	0.967195	1.723933	-2.306609
40	6	0	0.701643	2.888799	-0.153441
41	6	0	-0.247547	-3.479346	-0.440720
42	6	0	5.326952	2.186532	-0.149832
43	6	0	4.078290	2.538562	0.375340
44	6	0	-3.682382	-2.654789	-0.743347
45	6	0	-0.451984	3.496485	-0.684604
46	6	0	-0.210364	2.370028	-2.838404
47	6	0	6.181000	3.202464	-0.572982
48	6	0	0.134093	-3.021525	1.900907
49	6	0	-2.235711	-1.074672	-3.728094
50	6	0	5.766347	-3.672598	-2.525026
51	6	0	-4.270933	-1.713532	0.195350
52	6	0	-2.979336	0.108186	-3.697090
53	6	0	-2.092566	-3.279255	0.980142
54	6	0	5.763117	4.528697	-0.458391
55	6	0	4.767609	-1.554944	-1.995012
56	6	0	-2.620422	-2.369591	1.925601
57	6	0	4.498734	4.775539	0.075810
58	6	0	-0.907798	1.432323	-3.688415
59	6	0	-4.827837	-0.645933	-0.611341
60	6	0	-4.354664	0.896152	1.207672
61	6	0	-2.579935	-3.388844	-0.362748
62	6	0	-1.618800	3.672075	0.137400
63	6	0	-2.644736	-2.214126	-2.936561
64	6	0	-4.134537	0.213612	-2.821160
65	6	0	-3.715021	-1.484815	1.482203
66	6	0	5.677052	-2.297172	-2.743821
67	6	0	-1.575333	3.210535	1.444452
68	6	0	-3.790363	-0.113200	2.017622
69	6	0	-4.488082	-0.866298	-2.008682
70	6	0	-3.752075	-2.106474	-2.083210
71	6	0	-2.705494	2.489029	1.986271
72	6	0	-2.302960	1.394782	-3.692015
73	6	0	-3.049025	2.301722	-2.837524
74	6	0	-0.915638	3.250817	-2.033447
75	6	0	-4.566019	1.779064	-0.967478
76	6	0	-2.368212	3.224254	-2.033241
77	6	0	-2.804880	3.473766	-0.676715
78	6	0	-3.813467	2.235102	1,199170
79	6	0	-4.869881	0.642173	-0.112569
80	6	0	-3.886120	2.758943	-0.151964
81	6	0	-4.176575	1.567101	-2.292465
82	1	0	4.358170	0.582921	2.366459
83	1	0	4.373158	-1.694505	1.555107
84	1	0	4.978083	-5.306720	-1.349107
85	1	0	5.614808	1.142581	-0.215933
86	1	0	7.157954	2.961965	-0.983596
87	1	0	6.459166	-4.291255	-3.086999
88	1	0	6.397752	5.351500	-0.772570
89	1	0	4.667486	-0.483181	-2.135216
90	1	0	4.130413	5.793789	0.184660

The total electronic energy was calculated to be -3634.4345584 Hartree.

1

0

6.303942 -1.810890 -3.486363

91

6. Differences in Energies between 7' and 8'

For the calculations to be simplified, 6-*t*-butylpyridin-2-yl groups were replaced with 2-pyridyl groups for **7'** and **8'**.

Figure S15. Difference in energies (units in kcal/mol) between two structural isomers, **7'** and **8'**, calculated at the B3LYP-D3/6-31G(d) level of theory (298 K).

Table S4. Optimized structure of 7' (B3LYP-D3/6-31G(d))

Standard orientation:

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	3.897887	0.898650	1.132940	
2	6	0	3 986539	-0.428995	1 100326	
3	6	ů 0	3 140481	-1 322153	0 222361	
4	6	0	2.014840	-2.067690	0.978134	
5	6	0	1 682631	-1 841679	2 308539	
6	6	0	2.207477	-0.986650	3.430792	
7	6	0	0.929348	-0.493901	4.224312	
8	6	0	-0 215254	-1 248766	3 659618	
9	6	0	-1.570368	-0.943393	3.550031	
10	6	0	-2 853312	1 239569	2 814301	
11	6	0	-2 367488	2 449695	2 325995	
12	6	0	-0.935120	2.948080	2.323775	
13	6	0	-0.525631	3 271217	1.030800	
14	6	0	0.634467	2 875766	0.367229	
15	6	ů 0	1 835786	2 343463	1 166954	
16	6	0	2 961387	1 716154	0.277191	
17	16	0	-2 150926	0 563864	4 303095	
18	7	0	3.387398	4.083166	-0.283695	
19	8	0	3.332306	-0.762177	3.807049	
20	8	0	1.406701	1.327211	2.067939	
21	7	0	4.304269	-3.466552	0.275301	
22	6	0	2.291291	0.861959	-0.777451	
23	6	0	1.576542	-1.259904	-1.756124	
24	8	0	0.959811	0.355523	5.086442	
25	6	0	1.356280	1.559234	-1.625236	
26	6	0	1.080258	-2.812242	0.125639	
27	8	0	-0.247606	2.975369	3.468739	
28	6	0	-0.156624	-2.980227	-2.034841	
29	6	0	5.182642	-4.354203	-0.207186	
30	6	0	-1.279132	-3.613141	-1.367168	
31	6	0	4.101679	-2.341339	-0.420002	
32	6	0	0.966289	-2.509033	-1.308985	
33	6	0	1.004871	-0.556540	-2.820667	
34	6	0	2.395139	-0.510191	-0.833017	
35	6	0	-1.226115	-3.785127	0.001271	

36	6	0	-0.136022	-1.049443	-3.548266
37	6	0	-0.446110	-3.020591	2.026343
38	6	0	-0.713796	-2.245883	-3.156177
39	6	0	0.896038	0.883264	-2.755465
40	6	0	0.561298	2.657046	-1.068800
41	6	0	-0.032377	-3.440522	0.721259
42	6	0	4.884503	2.451155	-1.213081
43	6	0	3.776871	2.812926	-0.433339
44	6	0	-3.505952	-2.894844	0.244708
45	6	0	-0.605657	3.028744	-1.777319
46	6	0	-0.307012	1.269645	-3.450729
47	6	0	5.603048	3,448893	-1.862022
48	6	0	0.358090	-2.189806	2.751606
49	6	0	-2 165296	-2 357406	-3 129534
50	6	0	5 896638	-4 167450	-1 390478
51	6	0	-4 132354	-1 718764	0.824237
52	6	0	-2 964642	-1.264521	-3 477451
52	6	0	-1.867064	-2 823062	2 031707
55	6	0	-1.00/004	4 776904	1.712161
54	6	0	3.197373	4.770894	-1./12101
55	0	0	4.777032	-2.055764	-1.012109
56	6	0	-2.424606	-1.664969	2.620784
57	6	0	4.087906	5.038172	-0.912019
58	6	0	-0.959311	0.077033	-3.943328
59	6	0	-4.755359	-1.017741	-0.280570
60	6	0	-4.370430	1.070418	0.902894
61	6	0	-2.365687	-3.408720	0.822230
62	6	0	-1.786656	3.445782	-1.072056
63	6	0	-2.513402	-3.182103	-1.993203
64	6	0	-4.119858	-0.922993	-2.664550
65	6	0	-3.575131	-1.038637	1.939939
66	6	0	5.687312	-2.987653	-2.104659
67	6	0	-1.740410	3.475363	0.309490
68	6	0	-3.739374	0.425464	1.990812
69	6	0	-4.415339	-1.682271	-1.529652
70	6	0	-3.616677	-2.838359	-1.199222
71	6	0	-2.847338	2.944698	1.079352
72	6	0	-2.350487	-0.020515	-3.911828
73	6	0	-3.137134	1.085846	-3.395455
74	6	0	-1.049415	2.336290	-2.970096
75	6	0	-4.630042	1.154225	-1.438797
76	6	0	-2.501053	2.253956	-2.954409
77	6	0	-2.958146	2.929126	-1.760604
78	6	0	-3.919060	2.361023	0.433651
79	6	0	-4.869571	0.358418	-0.244373
80	6	0	-4.010046	2.387809	-1.014950
81	6	0	-4.229051	0.526236	-2.620291
82	1	0	4.522034	1.458727	1.823937
83	1	0	4.666168	-0.944870	1.767308
84	1	0	5,167648	1.406621	-1.291164
85	1	0	6,465480	3,198060	-2.472566
86	1	0	6.593879	-4.922868	-1.737491
87	1	0	5,727107	5,588610	-2.199679
88	1	0	4.582918	-1.129235	-2.141636
89	•	0	6 222015	-2 707014	_3 030521
90	1	0	5 310259	-2.757710	0 383652
01	1	0	3 729019	6 059025	0.363033
71 02	1	0	3./38918	2 195705	-0.70481/
92 02	1	0	2.2/1951	3.185700	1./12456
73	1	0	1.184223	1.705700	2.904415

The total electronic energy was calculated to be - 3635.6737951 Hartree.

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	3.853846	0.184806	1.445100
2	6	0	3.821972	-1.038519	0.923010
3	6	0	2.985287	-1.448336	-0.263761
4	6	0	1.792230	-2.353994	0.126191
5	6	0	1.425298	-2.664652	1.436599
6	6	0	1.936403	-2.379345	2.829018
7	6	0	0.659203	-2.308456	3.765799
8	6	0	-0.489505	-2.658382	2.899801
9	6	0	-1.824119	-2.273347	2.912827
10	6	0	-2.853101	0.109778	3.063822
11	6	0	-2.186209	1.325638	3.043661
12	6	0	-0.713428	1.651574	3.423672
13	6	0	-0.313667	2.561543	2.218121
14	6	0	0.845897	2.532645	1.445943
15	6	0	2.099636	1.907035	1.940139
16	6	0	3.112284	1.367003	0.879263
17	16	0	-2.391301	-1.185665	4.204502
18	7	0	3.754107	3.736755	0.906591
19	8	0	3.055583	-2.299832	3.277699
20	8	0	2.350748	1.790004	3.130486
21	7	0	4.036732	-3.521743	-1.012691
22	6	0	2.365706	1.021912	-0.392181
23	6	0	1.509191	-0.517854	-2.088519
24	8	0	0.711468	-2.045849	4.944147
25	6	0	1.505150	2.058757	-0.911487
26	6	0	0.861971	-2.650770	-0.967428
27	8	0	0.033408	0.473583	3.516586
28	6	0	-0.304306	-1.882523	-3.032721
29	6	0	4.894096	-4.209958	-1.776689
30	6	0	-1.476625	-2.665004	-2.686673
31	6	0	3.927379	-2.204895	-1.221740
32	6	0	0.814216	-1.799611	-2.166638
33	6	0	1.017067	0.577383	-2.807442
34	6	0	2.348649	-0.239993	-0.946038
35	6	0	-1.475915	-3.377471	-1.505713

6	0	-0.133751	0.480126	-3.667549
6	0	-0.727671	-3.549126	0.663085
6	0	-0.788950	-0.734744	-3.776332
6	0	1.004053	1.890109	-2.201229
6	0	0.760703	2.889656	0.034522
6	0	-0.292464	-3.411416	-0.692615
6	0	5.306415	2.211488	-0.116787
6	0	4.111798	2.497423	0.554433
6	0	-3.717283	-2.539263	-0.943790
6	0	-0.384774	3.553460	-0.441764
6	0	-0.168276	2.587089	-2.677849
6	0	6.160562	3.264871	-0.430161
6	0	0.082167	-3.126645	1.677383
6	0	-2.244268	-0.761405	-3.805049
6	0	5.678039	-3.627752	-2.772368
6	0	-4 299713	-1.665152	0.062087
6	0	-2.971255	0.425883	-3 684925
6	ů 0	-2 142441	-3 312097	0.732522
6	0	5 796485	1 561/05	-0.063372
6	0	4 679104	-1 52/077	-2.187546
6	0	2 668260	2 477622	1 744202
6	0	4 595512	4 741002	0.602711
6	0	4.363313	4.741992	2 587222
6	0	-0.662157	0.521112	-3.36/322
0	0	-4.858440	-0.551115	-0.003450
6	0	-4.342332	0.860008	1.268428
0	0	-2.624539	-3.313233	-0.0103//
6	0	-1.54/934	3.666674	0.396446
6	0	-2.668061	-1.948658	-3.096478
6	0	-4.125425	0.482309	-2.802915
6	0	-3.749228	-1.545499	1.366119
6	0	5.566463	-2.252350	-2.976430
6	0	-1.509410	3.095918	1.662765
6	0	-3.800888	-0.214694	2.001864
6	0	-4.494802	-0.649859	-2.072239
6	0	-3.775600	-1.890915	-2.238554
6	0	-2.635983	2.339410	2.148324
6	0	-2.277765	1.699924	-3.588260
6	0	-3.008254	2.549742	-2.665452
6	0	-0.859046	3.412185	-1.803374
6	0	-4.530329	1.908359	-0.834941
6	0	-2.312180	3.399786	-1.796814
6	0	-2.739488	3.546607	-0.422075
6	0	-3.762874	2.176782	1.358289
6	0	-4.857053	0.715869	-0.069363
6	0	-3.828111	2.807359	0.052838
6	0	-4.145538	1.792155	-2.173121
1	0	4.441082	0.381406	2.335073
1	0	4.382439	-1.839209	1.388195
1	0	5.550316	1.186644	-0.375392
1	0	7.095422	3.077786	-0.950254
1	0	6.353948	-4.234740	-3.365572
1	0	6.433189	5.411477	-0.285254
1	0	4.560757	-0.454644	-2.317957
1	0	6.158693	-1.754443	-3.738577
1	0	4.954058	-5.278547	-1.580461
1	0	4.263343	5.734958	0.908619
1	0	-0.671152	2.235641	4.356202
1	0	0.901523	0.704017	3.884005

Table S5. Optimized structure of 8' (B3LYP-D3/6-31G(d))

The total electronic energy was calculated to be - 3635.6712615 Hartree.

7. References

(1) K. Kurotobi, Y. Murata, Science, 2011, 33, 613–616.

(2) (a) Y. Hashikawa, K. Kizaki, T. Hirose, Y. Murata, *RSC Adv.*, 2020, 10, 40406–40410; (b) Y. Hashikawa,; Y. Hasegawa, Y. Murata, *Org. Lett.*, 2021, 23, 3854–3858; (c) Y. Hashikawa, K. Kizaki, Y. Murata, *Chem. Commun.*, 2021, 57, 5322–5325.

(3) T. Futagoishi, M. Murata, A. Wakamiya, T. Sasamori, Y. Murata, *Org. Lett.*, 2013, **15**, 2750–2753.

(4) Y. Hashikawa, Y. Murata, *Chem. Sci.*, 2020, **11**, 12428–12435.

(5) T. Futagoishi, M. Murata, A. Wakamiya, Y. Murata, *Angew. Chem.*, *Int. Ed.*, 2015, **54**, 14791–14794.

(6) G. M. Sheldrick, Acta Crystallogr. A, 2015, 71, 3-8.

(7) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, *Gaussian 09, Revision E.01*, Gaussian, Inc., Wallingford CT, 2016.