Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

Deuterium Labelling to Extract Local Stereochemical Information by VCD Spectroscopy in C-D Stretching Region: A Case Study of Sugars

Mohamad Zarif Mohd Zubir,^{†a} Nurul Fajry Maulida,^{†a} Yoshihiro Abe,^a Yuta Nakamura,^a Mariam Elseman Ibrashim Adbelrasoul, a.c. Tohru Taniguchi*b and Kenji Monde*b

^a Graduate School of Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo 001-0021, Japan

^b Frontier Research Center for Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo 001-0021, Japan ^o Department of Medicinal Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt

Supporting Information

S2	Supporting Figures
S5	Experimental Details
S17	Computational Details
S18	References

S20 NMR Spectra

~ •

Fig. S1 Representative MD snapshots for (a) CD_3 - α -D-Glc and (b) CD_3 - β -D-Glc with explicit water molecules.

Fig. S2 Vibrational modes of v_s (left) and v_{as} (right) CD₃ group of (a) **CD₃-\alpha-D-Glc** and (b) **CD₃-\beta-D-Glc** calculated at DFT/B3LYP/6-31G(d)/PCM(water). Displacement vectors (arbitrary length) of each atom are shown as arrows.

CD₃-α-D-Glc

⁴C₁

CD₃-β-D-Glc

CD₃-α-D-Gal

 CD_3 - β -D-Gal

CD₃-β-D-Xyl

CD₃-α-D-Xyl

CD₃-β-∟-Glc

¹C₄

ÓCD₃

Fig. S3 Preferred pyranose conformations of the studied methyl- d_3 glycopyranosides in polar solvents.

Fig. S4 VCD and IR spectra of (a) **CD**₃- α - and β -**D**-**Bz**₄**G** and (b) **CD**₃- α - and β -**D**-6LG measured in CHCl₃ (*c* 0.5 or 1.0 M, *l* 50 μ m). Wavenumbers of VCD signal extrema for v_s CD₃ (lower frequency) and v_{as} CD₃ (higher frequency) are labelled in italic (green).

Experimental Details

General Experimental Details

¹H NMR (500 MHz) and ¹³C NMR (125 MHz) spectra were recorded on a Varian Inova instrument at 25 °C. Chemical shift values (δ) are reported in ppm relative to tetramethylsilane, CDCl₃ (¹³C, δ 77.00), CD₃OD (¹H, δ 3.31), or D₂O (¹H, δ 4.75). The following abbreviations were used for signal multiplicities: s = singlet; d = doublet; t = triplet; and m = multiplet. Electrospray ionization mass spectrometry was measured on an Exactive Plus (Thermo Scientific). For vibrational spectroscopy, each sample was dissolved in CHCl₃, DMSO-*h*₆ or H₂O and placed in a 25- μ m CaF₂ cell or a 50- μ m BaF₂ cell. VCD and IR spectra were recorded using a JASCO FVS-6000 spectrometer with 8 cm⁻¹ resolution for 1500 and 16 scans, respectively. To detect VCD signals in the 2300-1900 cm⁻¹ region with higher S/N, the spectrometer was inserted an optical filter that passes through 2400-1900 cm⁻¹ light and the signal was detected with an InSb detector.^[11] The modulation frequency of the photoelastic modulator was set to 2127 cm⁻¹. All the VCD and IR spectra except the raw spectra in Fig. 2b were corrected by solvent spectra obtained under the identical measurement conditions.

Synthesis of CD_3 - α -D-Glc, CD_3 - β -D-Glc, CD_3 - α -D- Bz_4G , and CD_3 - β -D- Bz_4G and General Procedures

(A) General procedure for Fischer glycosidation

 CD_3OD (1 mL) was added AcCl (10 μ L) and D-glucose (200 mg, 1.11 mmol) and the mixture was stirred overnight. After removal of the solvent, the crude mixture was used for the next reaction without purification unless otherwise noted.

(B) General procedure for benzoylation and the following chromatographic separation

A crude mixture obtained by the procedure (A) was added pyridine (5 mL) and benzoyl chloride (1 mL) and stirred overnight at 70 °C. The mixture was diluted with EtOAc, washed sequentially with 2M HCl aq, 2M NaOH aq, and brine, and then dried over MgSO₄. After removal of the solvent, the mixture was purified by silica-gel column chromatography (hexane-EtOAc = 3:1), which afforded **CD₃-\alpha-D**-**Bz₄G** (302 mg, 45% in 2 steps) and **CD₃-\beta-D**-**Bz₄G** (130 mg, 19% in 2 steps).

The ¹H NMR spectra of these compounds were virtually the same as those reported for methyl- h_3 2,3,4,6-tetra-O-benzoyl- α -D-glucopyranoside and methyl- h_3 2,3,4,6-tetra-O-benzoyl- β -D-glucopyranoside except for the absence of the -OCH₃ signal.^[2]

CD₃-α-**D**-**B**_{z4}**G**: ¹H NMR (CDCl₃) δ 8.05 (d, ArH, J = 7.2 Hz, 2H), 7.99 (d, ArH, J = 7.2 Hz, 2H), 7.94 (d, ArH, J = 7.2 Hz, 2H), 7.87 (d, ArH, J = 7.2 Hz, 2H), 7.58-7.47 (m, ArH, 3H), 7.45-7.32 (m, ArH, 7H), 7.32-7.25 (m, ArH, 2H), 6.19 (dd, H-3, J = 10.0, 10.0 Hz, 1H), 5.69 (dd, H-4, J = 9.8, 9.8 Hz, 1H), 5.31 (dd, H-2, J = 3.4, 10.2 Hz, 1H), 5.26 (d, H-1, J = 3.7 Hz, 1H), 4.62 (dd, H-6a, J = 2.8, 12.1 Hz, 1H), 4.49 (dd, H-6b, J = 5.3, 12.2 Hz, 1H), 4.43 (m, H-5, 1H); **CD**₃-β-D-**B**_{z4}G: ¹H NMR (CDCl₃) δ 8.02 (m, ArH, 2H), 7.97 (m, ArH, 2H), 7.90 (m, ArH, 2H), 7.82 (m, ArH, 2H), 7.57-7.47 (m, ArH, 3H), 7.44-7.32 (m, ArH, 7H), 7.30-7.26 (m, ArH, 2H), 5.91 (dd, H-3, J = 9.6, 9.6 Hz, 1H), 5.68 (dd, H-4, J = 9.8, 9.8 Hz, 1H), 5.52 (dd, H-2, J = 7.9, 9.8 Hz, 1H), 4.77 (d, H-1, J = 7.9 Hz, 1H), 4.65 (dd, H-6a, J = 3.2, 12.1 Hz, 1H), 4.51 (dd, H-6b, J = 5.4, 12.1 Hz, 1H), 4.16 (m, H-5, 1H).

(C) General procedure for deprotection of benzoyl or acetyl groups

 CD_3 - β -D- Bz_4G (125 mg, 204 μ mol) in MeOH (2 mL) and 1,4-dioxane (2 mL) was added MeONa (20 μ L) and stirred overnight at room temperature. The mixture was neutralized using Amberlite[®] 120IR (hydrogen form), then filtered and evaporated. The crude residue was added H₂O and Et₂O and the aqueous layer was collected and evaporated, which afforded CD_3 - β -D-Glc (34 mg, 85%).^[3]

 CD_3 - α -D- $Glc^{[3]}$ was prepared in a similar manner starting from CD_3 - α -D- Bz_4G .

Synthesis of CD₃-α-D-Gal and CD₃-β-D-Gal

CD₃- α -**D**-**Gal** was obtained starting from D-galactose using the general procedure (A) and the following silica-gel column chromatography separation (chloroform-MeOH = 5:1). Its ¹H NMR spectrum was virtually the same as that observed for commercially available methyl- $h_3 \alpha$ -D-galactopyranoside except for the absence of the -OCH₃ signal. **CD**₃- α -**D**-**Gal**: ¹H NMR (D₂O) δ 4.81 (d, H-1, *J* = 2.4 Hz, 1H), 3.94 (dd, *J* = 1.3, 2.5 Hz, H-4, 1H), 3.87 (m, H-5, 1H), 3.83-3.76 (m, H-2, H-3, 2H), 3.74-3.69 (m, H-6a, H-6b, 2H).

CD₃-**β**-**D**-**Gal** was obtained starting from D-galactose using the general procedures (A)-(C). The ¹H NMR spectra of methyl- d_3 2,3,4,6-tetra-*O*-benzoyl-β-D-galactopyranoside and **CD**₃-**β**-**D**-**Gal** were virtually the same as those reported for methyl- h_3 2,3,4,6-tetra-*O*-benzoyl-β-Dgalactopyranoside^[2,4] and observed for commercially available methyl- h_3 β-D-galactopyranoside, respectively, except for the absence of the -OCH₃ signal. Methyl- d_3 2,3,4,6-tetra-*O*-benzoyl-β-Dgalactopyranoside: ¹H NMR (CDCl₃) δ 8.09 (m, ArH, 2H), 8.03 (m, ArH, 2H), 7.97 (m, ArH, 2H), 7.78 (m, ArH, 2H), 7.65-7.54 (m, ArH, 2H), 7.53-7.36 (m, ArH, 8H), 7.25-7.21 (m, ArH, 2H), 6.00 (dd, H-4, *J* = 1.2, 3.5 Hz, 1H), 5.79 (dd, *J* = 7.9, 10.4 Hz, H-2, 1H), 5.61 (dd, H-3, *J* = 3.4, 10.3 Hz, 1H), 4.75 (d, H-1, *J* = 7.8 Hz, 1H), 4.70 (dd, H-6a, *J* = 6.6, 11.3 Hz, 1H), 4.43 (dd, H-6b, *J* = 6.7, 11.4 Hz, 1H), 4.33 (m, H-5, 1H). **CD₃-β-D-Gal**: ¹H NMR (CD₃OD) δ 4.13 (d, H-1, *J* = 7.1 Hz, 1H), 3.83 (d, H-4, *J* = 2.1 Hz, 1H), 3.79-3.70 (m, H-6a, H-6b, 2H), 3.53-3.43 (m, H-2, H-3, H-5, 3H).

Synthesis of CD₃-α-D-Xyl and CD₃-β-D-Xyl

 $CD_3-\alpha$ -D-Xyl and $CD_3-\beta$ -D-Xyl were obtained starting from D-xylose using the general procedures (A)-(C). The ¹H NMR spectra of tribenzoyl synthetic intermediates were virtually the same as those reported for methyl- h_3 2,3,4-tri-O-benzoyl- α - and β -D-xylopyranoside except for the absence of the -OCH₃ signal,^[5] while those of CD_3 - α -D-Xyl and CD_3 - β -D-Xyl were virtually the same as those observed for commercially available methyl- $h_3 \alpha$ - and β -D-xylopyranoside except for the absence of the -OCH₃ signal. Methyl- d_3 2,3,4-tri-O-benzoyl- α -D-xylopyranoside: ¹H NMR (CDCl₃) δ 7.98 (m, ArH, 4H), 7.92 (m, ArH, 2H), 7.51 (m, ArH, 2H), 7.44 (m, ArH, 1H), 7.38 (m, ArH, 4H), 7.31 (m, ArH, 2H), 6.16 (dd, H-3, J = 9.8, 9.8 Hz, 1H), 5.42 (m, H-4, 1H), 5.26 (dd, H-2, J = 3.4, 10.1 Hz, 1H), 5.17 (d, H-1, J = 3.5 Hz, 1H), 4.10 (dd, H-5a, J = 6.0, 10.8 Hz, 1H), 3.84 (dd, H-5b, J = 10.7, 10.7 Hz, 1H). Methyl- d_3 2,3,4-tri-O-benzoyl- β -D-xylopyranoside: ¹H NMR (CDCl₃) & 8.02-7.94 (m, ArH, 6H), 7.55-7.45 (m, ArH, 3H), 7.40-7.31 (m, ArH, 6H), 5.80 (dd, H-3, J = 7.6, 7.6 Hz, 1H), 5.40 (dd, H-2, J = 5.7, 7.6 Hz, 1H), 5.33 (m, H-4, 1H), 4.74 (d, H-1, J = 5.7 Hz, 1H), 4.44 (dd, H-5a, J = 4.4, 12.0 Hz, 1H), 3.71 (dd, H-5b, J = 7.4, 12.2 Hz, 1H).CD₃- α -**D-Xyl:** ¹H NMR (CD₃OD) δ 4.61 (d, H-1, J = 3.6 Hz, 1H), 3.58-3.51 (m, H-3, H-4, 2H), 3.49-3.41 (m, H-5a, H-5b, 2H), 3.36 (dd, H-2, J = 3.6, 9.5 Hz, 1H). **CD₃-β-D-Xyl**: ¹H NMR (D₂O) δ 4.29 (d, H-1, J = 7.8 Hz, 1H, 3.93 (dd, H-5a, J = 5.2, 11.7, 1H), 3.58 (m, H-4, 1H), 3.40 (dd, H-3, J = 9.3, J =9.3 Hz, 1H), 3.29 (dd, H-5b, J = 11.0, 11.0 Hz, 1H), 3.21 (dd, H-2, J = 7.8, 9.1 Hz, 1H).

Synthesis of CD₃-β-L-Ara and CD₃-α-L-Ara

CD₃-β-L-Ara and CD₃-α-L-Ara were obtained starting from L-arabinose using the general procedures (A)-(C). The ¹H NMR spectra of tribenzoyl synthetic intermediates and CD₃-β-L-Ara were virtually the same as those reported for methyl- h_3 2,3,4-tri-O-benzoyl- β - and α -Larabinopyranoside^[4] and methyl- $h_3 \beta$ -L-arabinopyranoside,^[6] respectively, except for the absence of the -OCH₃ signal. The ¹H NMR spectrum of CD_3 - α -L-Ara was virtually the same as that observed for commercially available methyl- $h_3 \alpha$ -L-arabinopyranosid except for the absence of the -OCH₃ signal. Methyl-d₃ 2,3,4-tri-O-benzoyl-β-L-arabinopyranoside: ¹H NMR (CDCl₃) δ 8.11 (d, ArH, J = 7.3 Hz, 2H), 8.00 (d, ArH, J = 7.3 Hz, 2H), 7.85 (d, ArH, J = 7.3 Hz, 2H), 7.59 (t, ArH, *J* = 7.4 Hz, 1H), 7.54-7.40 (m, ArH, 5H), 7.37 (t, ArH, *J* = 7.7 Hz, 1H), 7.26 (t, ArH, *J* = 7.9 Hz, 2H), 5.96 (dd, H-3, J = 3.5, 10.7 Hz, 1H), 5.78-5.71 (m, H-2, H-4, 2H), 5.25 (d, H-1, J = 3.5 Hz, 1H), 4.18 (m, H-5a, 1H), 4.12 (dd, H-5b, J = 1.6, 13.3 Hz, 1H). Methyl- d_3 2,3,4-tri-O-benzoyl- α -L-arabinopyranoside: ¹H NMR (CDCl₃) δ 8.09-7.99 (m, ArH, 4H), 7.94-7.88 (d, ArH, J = 7.5 Hz, 2H), 7.60-7.51 (m, ArH, 2H), 7.50-7.38 (m, ArH, 5H), 7.35-7.29 (t, ArH, J = 7.8 Hz, 2H), 5.76-5.68 (m, H-2, H-4, 2H), 5.61 (dd, H-3, J = 3.4, 8.8 Hz, 1H), 4.67 (dd, H-1, J = 6.2 Hz, 1H), 4.33 (dd, H-5a, J = 3.7, 13.1 Hz, 1H), 3.91 (dd, H-5b, J = 1.6, 12.8 Hz, 1H). **CD₃-β-L-Ara**: ¹H NMR $(D_2O) \delta 4.79 (d, H-1, J = 2.4 Hz, 1H), 3.96 (m, H-4, 1H), 3.83 (d, H-5a, J = 11.6 Hz, 1H), 3.81-$ 3.78 (m, H-2, H-3, 2H), 3.61 (dd, H-5b, J = 1.8, 12.7 Hz, 1H). **CD₃-\alpha-L-Ara**: ¹H NMR (D₂O) δ 4.23 (d, H-1, J = 7.6 Hz, 1H), 3.93-3.86 (m, H-4, H-5a, 2H), 3.66-3.61 (m, H-3, H-5b, 2H), 3.50 (m, H-2, 1H).

Synthesis of CD₃-α-D-Man

A solution of phenyl 2,3,4,6-tetra-*O*-acetyl-1-thio- α -D-mannopyranoside (570 mg, 1.30 mmol) in CH₂Cl₂ (5 mL) was added CD₃OD (160 μ L) and stirred at 0 °C. To this mixture was added a solution of *N*-iodosuccinimide (750 mg) in THF (2.5 mL) dropwise, trimethylsilyl

trifluoromethanesulfonate (25 μ L) dropwise and stirred at 0 °C for 40 mins. The mixture was added triethylamine (20 μ L), diluted with EtOAc, washed sequentially with a 1:1 mixed solution of 10% Na₂S₂O₃ aq and sat NaHCO₃ aq and then brine, and dried over MgSO₄. After removal of the solvent, the mixture was purified by silica-gel column chromatography (hexane-EtOAc = 5:2 to 1:1), which provided methyl- d_3 2,3,4,6-tetra-O-acetyl- α -D-mannopyranoside (122 mg, 26%). Its ¹H NMR spectrum was virtually the same as that observed for commercially available methyl- h_3 2,3,4,6-tetra-O-acetyl- α -D-mannopyranoside in the absence of the -OCH₃ signal. Methyl- d_3 2,3,4,6-tetra-O-acetyl- α -D-mannopyranoside: ¹H NMR (CDCl₃) δ 5.34 (dd, H-3, J = 3.6, 9.8 Hz, 1H), 5.28 (dd, H-4, J = 9.8, 9.8 Hz, 1H), 5.24 (dd, H-2, J = 1.7, 3.2 Hz, 1H), 4.72 (d, H-1, J = 1.5 Hz, 1H), 4.29 (dd, H-6a, J = 5.4, 12.2 Hz, 1H), 4.13 (dd, H-6b, J = 2.4, 12.2 Hz, 1H), 3.97 (ddd, H-5, J = 2.4, 5.4, 9.8 Hz, 1H), 2.16 (s, Ac, 3H), 2.11 (s, Ac, 3H), 2.04 (s, Ac, 3H), 1.99 (s, Ac, 3H).

In a similar manner to the general procedure (C) without the use of 1,4-dioxane, methyl- d_3 2,3,4,6-tetra-*O*-acetyl- α -D-mannopyranoside (104 mg, 285 μ mol) was converted to **CD₃-\alpha-D-Man** (31 mg, 55%). Its ¹H NMR spectrum was virtually the same as that observed for commercially available methyl- $h_3 \alpha$ -D-mannopyranoside except for the absence of the -OCH₃ signal. **CD₃-\alpha-D-Man**: ¹H NMR (D₂O) δ 4.74 (d, H-1, J = 1.5 Hz, 1H), 3.90 (dd, H-2, J = 2.0, 3.4 Hz, 1H), 3.87 (dd, H-6a, J = 2.0, 12.2 Hz, 1H), 3.75-3.71 (m, H-3, H-6b, 2H), 3.64-3.56 (m, H-4, H-5, 2H).

Synthesis of CD₃-β-D-Man

In a similar manner to the general procedure (C) without the use of 1,4-dioxane, phenyl 2,3,4,6tetra-*O*-acetyl-1-thio- α -D-mannopyranoside (2.20 g, 5.00 mmol) was deacetylated. A solution of the crude compound in DMF (25 mL) was added benzaldehyde dimethoxy acetal (1 mL) and a catalytic amount of *p*-TsOH•H₂O and stirred overnight at room temperature. The mixture was diluted with CHCl₃, washed sequentially with sat NaHCO₃ aq. and brine, and dried over MgSO₄. After removal of the solvent, the mixture was purified by recrystallization using EtOAc, which afforded phenyl 4,6-*O*-benzylidine-1-thio- α -D-mannopyranoside^[7] (1.36 g, 67%).

A solution of phenyl 4,6-*O*-benzylidene-1-thio- α -D-mannopyranoside (720 mg, 2.00 mmol) in DMF (25 mL) was added 60% NaH in mineral oil (200 mg) and stirred at room temperature. After 15 mins, benzyl bromide (0.7 mL) was added dropwise followed by the addition of a catalytic amount of tetra-*n*-butylammonium iodide and stirred overnight at room temperature. The mixture

was quenched with H_2O and was diluted with EtOAc. The organic phase was washed with brine and dried over MgSO₄. After removal of the solvent, the mixture was purified by silica-gel column chromatography (hexane-EtOAc = 25:1 to 15:1), which afforded phenyl 2,3-di-*O*-benzyl-4,6-*O*benzylidine-1-thio- α -D-mannopyranoside^[8] (293 mg, 27%).

A solution of phenyl 2,3-di-*O*-benzyl-4,6-*O*-benzylidine-1-thio- α -D-mannopyranoside (270 mg, 500 μ mol) in CH₂Cl₂ (5 mL) was added SiO₂ (100 mg), acetic anhydride (50 μ L), and 30% H₂O₂ aq (110 μ L) and stirred overnight at room temperature. The mixture was filtered through cotton, diluted with EtOAc, washed sequentially with 10% Na₂S₂O₃ aq, sat NaHCO₃ aq and brine, and dried over MgSO₄. After removal of the solvent, the residue was washed with methanol and hexane to yield phenyl 2,3-di-*O*-benzyl-4,6-*O*-benzylidine-1-thio- α -D-mannopyranoside *S*-oxide^[9] (128 mg, 46%).

A solution of phenyl 2,3-di-*O*-benzyl-4,6-*O*-benzylidine-1-thio- α -D-mannopyranoside *S*-oxide (116 mg, 209 μ mol) in CH₂Cl₂ (5 mL) was added 2,6-di-*tert*-butyl-4-methylpyridine (86 mg), trifluoromethanesulfonic anhydride (34 μ L), CD₃OD (68 μ L) and stirred at -78 °C. After 30 mins the reaction was quenched with the addition of Et₃N, diluted with EtOAc, washed sequentially with sat NH₄Cl aq, sat NaHCO₃ aq, and brine and dried over MgSO₄. After removal of the solvent, the mixture was purified by silica-gel column chromatography (hexane-EtOAc = 10:1 to 5:2), which provided methyl-*d*₃ 2,3-di-*O*-benzyl-4,6-*O*-benzylidine- β -D-mannopyranoside (51 mg, 52%). Its ¹H NMR spectrum was virtually the same as that reported for methyl-*h*₃ 2,3-di-*O*-benzyl-4,6-*O*-benzylidine- β -D-mannopyranoside except for the absence of the -OCH₃ signal.^[10] ¹H NMR (CDCl₃) δ 7.53-7.44 (m, ArH, 4H), 7.40-7.23 (m, ArH, 11H), 5.62 (s, CH, 1H), 4.96 (d, CH₂, *J* = 12.2 Hz, 1H), 4.68 (d, CH₂, *J* = 12.7, 1H), 4.58 (d, CH₂, *J* = 12.7, 1H), 4.47 (s, H-1, 1H), 4.32 (dd, H-6a, *J* = 4.9, 10.7 Hz, 1H), 4.20 (dd, H-4, *J* = 9.3, 9.8 Hz, 1H), 3.97-3.90 (m, H-2, H-6b, 2H), 3.58 (dd, H-3, *J* = 3.2, 10.0 Hz, 1H), 3.33 (ddd, H-5, *J* = 4.6, 9.6, 9.6 Hz, 1H).

A solution of methyl 2,3-di-*O*-benzyl-4,6-*O*-benzylidine- β -D-mannopyranoside (49 mg, 105 μ mol) in EtOH (20 mL) was added a catalytic amount of 10% Pd/C and stirred at room temperature for 24 hours under hydrogen atmosphere. The suspension was filtered through Celite and the filtrate was dried in vacuo to yield **CD**₃- β -D-Man (17 mg, 82%). Its ¹H NMR spectrum was virtually the same as that observed for commercially available methyl- $h_3 \beta$ -D-mannopyranoside except for the absence of the -OCH₃ signal. ¹H NMR (D₂O) δ 4.55 (d, H-1, *J* = 1.0 Hz, 1H), 3.96 (dd, H-2, *J* = 1.0, 3.4 Hz, 1H), 3.91 (dd, H-6a, *J* = 2.4, 12.2 Hz, 1H), 3.71 (dd, H-6b, *J* = 6.8, 12.2 Hz, 1H), 3.61 (dd, H-3, *J* = 3.5, 9.6 Hz, 1H), 3.54 (dd, H-4, *J* = 9.7, 9.7 Hz, 1H), 3.34 (m, H-5, 1H).

Synthesis of CD₃-α-L-Glc and CD₃-β-L-Glc

 $CD_3-\alpha$ -L-Glc and $CD_3-\beta$ -L-Glc were obtained starting from L-glucose in a similar manner to the synthesis of $CD_3-\alpha$ -D-Glc and $CD_3-\beta$ -D-Glc.

Synthesis of CD₃-α-L-Fuc and CD₃-β-L-Fuc

 $CD_3-\alpha$ -L-Fuc and $CD_3-\beta$ -L-Fuc were obtained starting from L-fucose using the general procedures (A)-(C). The ¹H NMR spectra of methyl- d_3 2,3,4-tri-O-benzoyl- α -D-fucopyranoside, CD₃- α -L-Ara, and CD₃- β -L-Fuc were virtually the same as those reported for methyl- h_3 2,3,4-tri-*O*-benzoyl- α -D-fucopyranoside^[11], methyl- h_3 α -L-fucopyranoside,^[12] and methyl- h_3 β -Lfucopyranoside, ^[13] respectively, except for the absence of the -OCH₃ signal. Methyl- d_3 2,3,4-tri-Obenzoyl-α-L-fucopyranoside: ¹H NMR (CDCl₃) δ 8.13-8.08 (m, ArH, 2H), 8.00-7.95 (m, ArH, 2H), 7.82-7.76 (m, ArH, 2H), 7.61 (m, ArH, 1H), 7.53-7.34 (m, ArH, 6H), 7.28-7.20 (m, ArH, 2H), 5.96 (dd, H-3, J = 3.5, 10.7 Hz, 1H), 5.76 (d, H-4, J = 2.2 Hz, 1H), 5.64 (dd, H-2, J = 3.5, 10.7 Hz, 1H),5.24 (d, H-1, J = 3.5 Hz, 1H), 4.40 (m, H-5, 1H), 1.29 (d, H₃-6, J = 6.5 Hz, 3H). Methyl- d_3 2,3,4tri-O-benzoyl-β-L-fucopyranoside: ¹H NMR (CDCl₃) δ 8.13-8.08 (m, ArH, 2H), 7.99-7.94 (m, ArH, 2H), 7.81-7.75 (m, ArH, 2H), 7.61 (m, ArH, 1H), 7.53-7.35 (m, ArH, 6H), 7.25-7.20 (m, ArH, 2H), 5.78-5.68 (m, H-2, H-4, 2H), 5.56 (dd, H-3, J = 3.4, 10.3 Hz, 1H), 4.68 (d, H-1, J = 7.9 Hz, 1H), 4.09 (m, H-5, 1H), 1.37 (d, H₃-6, J = 6.4 Hz, 3H); ¹³C NMR (CDCl₃) δ 166.2 (C=O), 165.9 (C=O), 165.6 (C=O), 133.6 (Ar), 133.3 (Ar), 133.3 (Ar), 130.1 (Ar), 130.0 (Ar), 129.9 (Ar), 129.4 (Ar), 129.0 (Ar), 129.0 (Ar), 128.7 (Ar), 128.5 (Ar), 128.4 (Ar), 110.9 (C-1), 109.2 (OCD₃), 102.4 (C-2), 72.3 (C-4), 71.2 (C-3), 69.9 (C-5), 16.3 (C-6); $[\alpha]_D$ -206.3 $(c \ 1.0, CHCl_3)$; HRMS (ESI) m/zcalcd for C₂₈H₂₃D₃O₈Na [M+Na]⁺ 516.1708, found 516.1693. CD₃-α-L-Fuc: ¹H NMR (CD₃OD) δ 4.63 (d, H-1, J = 2.7 Hz, 1H), 3.91 (m, H-5, 1H), 3.75-3.68 (m, H-2, H-3, 2H), 3.65 (s, H-4, 1H), 1.22 (d, H₃-6, J = 6.6 Hz, 3H). **CD**₃-**β**-L-Fuc: ¹H NMR (D₂O) δ 4.27 (d, H-1, J = 7.8 Hz, 1H), 3.77 (m, H-5, 1H), 3.71 (d, H-4, J = 2.7 Hz, 1H), 3.61 (dd, H-3, J = 3.5, 10.1 Hz, 1H), 3.53-3.41 (m, H-1), 3.53-3.51 (m, H-1), 32, 1H), 1.23 (d, H_3 -6, J = 6.6 Hz, 3H).

Synthesis of CD₃-α-D-Gen

 $CD_3-\alpha$ -D-Glc was added pyridine (5 mL) and TBSCl (224 mg) and stirred overnight at room temperature. To this mixture additional TBSCl (180 mg) was added and stirred at room temperature for 3 hours, which led to the complete consumption of the CD_3 - α -D-Glc on TLC. To this solution BzCl (1.2 mL) was then added and the mixture was stirred at room temperature for 1.5 hours. The mixture was diluted with Et₂O, washed sequentially with 2 M HCl aq, 2 M NaOH aq, and brine, and then dried over MgSO₄. After removal of the solvent, the mixture was added ca. 1 M THF solution of TBAF (3 mL) and AcOH (200 μ L) and stirred overnight at room temperature. The mixture was diluted with Et₂O, washed with brine, and dried over MgSO₄. After removal of the solvent, the mixture was purified by silica-gel column chromatography (hexane-EtOAc = 2:3 to 1:5), which afforded methyl- d_3 2,3,4-tri-O-benzoyl- α -D-glucopyranoside (303 mg, 45% in 3 steps). Its ¹H NMR spectrum was virtually the same as that reported for methyl- h_3 2,3,4-tri-O-benzoyl- α -D-glucopyranoside except for the absence of the -OCH₃ signal.^[14] Methyl- d_3 2,3,4-tri-O-benzoylα-D-glucopyranoside: ¹H NMR (CDCl₃) δ 8.00-7.96 (m, ArH, 4H), 7.88 (m, ArH, 2H), 7.53 (m, ArH, 1H), 7.50 (m, ArH, 1H), 7.43-7.35 (m, ArH, 5H), 7.28 (m, ArH, 2H), 6.24 (dd, H-3, *J* = 9.8, 9.8 Hz, 1H), 5.51 (dd, H-4, J = 9.9, 9.9 Hz, 1H), 5.30 (dd, H-2, J = 3.7, 10.0 Hz, 1H), 5.27 (d, H-1, J = 3.7 Hz, 1H, 4.05 (ddd, H-5, J = 2.3, 3.9, 10.2 Hz, 1H), 3.84 (dd, H-6a, J = 2.3, 13.0 Hz, 1H),3.75 (dd, H-6b, J = 3.8, 12.9 Hz, 1H), 2.78 (br s, OH-6, 1H).

To a 2-neck flask was added methyl- d_3 2,3,4-tri-O-benzoyl- α -D-glucopyranoside (48 mg, 94 μ mol), phenyl 2,3,4,6-tetra-O-benzoyl-1-sulfinyl- β -D-glucopyranoside^[15] (65 mg, 92 μ mol), and 4-allyl-1,2-dimethoxybenzene (21 μ L). This mixture was dried under vacuum for 1 hour and then added 4 Å molecular sieves (0.3 g). This flask was further dried under vacuum and then purged with N₂. To this flask was added CH₂Cl₂ (2 mL), stirred for 15 mins at room temperature and then cooled to -78 °C. The mixture was then added Tf₂O (16.9 μ L) and stirred for 15 mins at this temperature, and then the temperature was slowly raised to -40 °C over 30 mins. The reaction was then quenched with triethylamine (50 μ L), diluted with EtOAc, and filtered through cotton. The

filtrate was washed sequentially with sat NH₄Cl aq, sat NaHCO₃ aq, and brine, and then dried over MgSO₄. After removal of the solvent, the mixture was purified by silica-gel column chromatography (hexane-EtOAc = 2:1 to 4:5), which afforded methyl- d_3 2',3',4',6'-tetra-*O*-benzoyl- β -D-glucopyranosyl-(1' \rightarrow 6)-2,3,4-tri-*O*-benzoyl- α -D-glucopyranoside (71 mg, 71%). Its ¹H NMR spectrum was virtually the same as that reported for methyl- h_3 2',3',4',6'-tetra-*O*-benzoyl- β -D-glucopyranosyl-(1' \rightarrow 6)-2,3,4-tri-*O*-benzoyl- α -D-glucopyranoside except for the absence of the -OCH₃ signal.¹¹⁶ Methyl- d_3 2',3',4',6'-tetra-*O*-benzoyl- β -D-glucopyranosyl-(1' \rightarrow 6)-2,3,4-tri-*O*-benzoyl- α -D-glucopyranosyl-(1' \rightarrow 6)-2,3,4-tri-*O*-benzoyl- β -D-glucopyranosyl-(1' \rightarrow 6)-2,3,4-tri-*O*-benzoyl- α -D-glucopyranosyl-(1' \rightarrow 6)-2,3,4-tri-*O*-benzoyl- β -D-glucopyranosyl-(1' \rightarrow 6)-2,3,4-tri-*O*-benzoyl- α -D-glucopyranoside: ¹H NMR (CDCl₃) δ 8.01-7.77 (m, ArH, 14H), 7.56-7.24 (m, ArH, 21H), 6.06 (dd, H-3, J = 9.7, 10.0 Hz, 1H), 5.91 (dd, H-3', J = 9.7, 9.7 Hz, 1H), 5.65 (dd, H-4', J = 9.7, 9.7 Hz, 1H), 5.56 (dd, H-2', J = 7.8, 9.8 Hz, 1H), 5.31 (dd, H-4, J = 9.5, 10.3 Hz, 1H), 5.08 (dd, H-2, J = 3.6, 10.2 Hz, 1H), 4.97 (d, H-1', J = 7.9 Hz, 1H), 4.93 (d, H-1, J = 3.6 Hz, 1H), 4.60 (dd, H-6'a, J = 3.2, 12.2 Hz, 1H), 4.44 (dd, H-6'b, J = 5.1, 12.1 Hz, 1H), 4.22 (ddd, H-5, J = 1.9, 7.6, 10.0 Hz, 1H), 4.14 (ddd, H-5', J = 3.3, 5.1, 9.8 Hz, 1H), 4.10 (dd, H-6a, J = 2.0, 11.5 Hz, 1H), 3.78 (dd, H-6b, J = 7.8, 11.4 Hz, 1H).

Using the general procedure (C), methyl- d_3 2',3',4',6'-tetra-*O*-benzoyl- β -D-glucopyranosyl-(1' \rightarrow 6)-2,3,4-tri-*O*-benzoyl- α -D-glucopyranoside (51 mg, 47 μ mol) was converted to **CD**₃- α -**D**-**Gen** (17 mg, quant). Its ¹H NMR spectrum was virtually the same as that reported for methyl- $h_3 \beta$ -D-glucopyranosyl-(1' \rightarrow 6)- α -D-glucopyranoside except for the absence of the -OCH₃ signal.^[17] **CD**₃- α -**D**-**Gen**: ¹H NMR (D₂O) δ 4.78 (d, H-1, J = 3.8 Hz, 1H), 4.47 (d, H-1', J = 7.9 Hz, 1H), 4.14 (dd, H-6a, J = 2.1, 11.5 Hz, 1H), 3.91-3.85 (m, H-6b, H-6'a, 2H), 3.77 (ddd, H-5, J = 2.1, 5.0, 10.1 Hz, 1H), 3.70 (dd, H-6'b, J = 5.9, 12.3 Hz, 1H), 3.64 (dd, H-3, J = 9.5, 9.5 Hz, 1H), 3.54 (dd, H-2, J = 3.8, 9.8 Hz, 1H), 3.49 (dd, H-3', J = 9.1, 10.1 Hz, 1H), 3.46 (dd, H-4, J = 9.1, 9.1 Hz, 1H), 3.43 (ddd, H-5', J = 2.3, 5.9, 9.9 Hz, 1H), 3.36 (dd, H-4', J = 9.0, 9.8 Hz, 1H), 3.28 (dd, H-2', J = 7.9, 9.4 Hz, 1H).

Synthesis of CD₃-β-D-Gen

D-gentiobiose (118 mg, 345 μ mol) was added pyridine (4 mL) and acetic anhydride (2 mL) at 80 °C, and stirred overnight at 50 °C. The mixture was then dried in vacuo, which provided pure D-gentiobiose octaacetate (234 mg, quant). Part of this product (224 mg, 330 μ mol) was dissolved in CH₂Cl₂ (3 mL), added CD₃OD (54 μ L) and BF₃-OEt₂ (103 μ L) at 0 °C, and stirred overnight at room temperature. The mixture was diluted with EtOAc, washed sequentially with sat NaHCO₃ aq and brine, and then dried over MgSO₄. After removal of the solvent, the mixture was purified by silica-gel column chromatography (hexane-EtOAc = 1:1 to 1:4), which provided methyl-d₃

In a similar manner to the general procedure (C) without the use of 1,4-dioxane, methyl- d_3 2',3',4',6'-tetra-*O*-acetyl- β -D-glucopyranosyl-(1' \rightarrow 6)-2,3,4-tri-*O*-acetyl- β -D-glucopyranoside (87 mg, 133 μ mol) was converted to **CD**₃- β -D-Gen (25 mg, 52%). Its ¹H NMR spectrum was virtually the same as that reported for methyl- h_3 β -D-glucopyranosyl-(1' \rightarrow 6)- β -D-glucopyranoside except for the absence of the -OCH₃ signal.^[17] **CD**₃- β -D-Gen: ¹H NMR (D₂O) δ 4.49 (d, H-1', J = 7.9 Hz, 1H), 4.36 (d, H-1, J = 8.0 Hz, 1H), 4.19 (dd, H-6a, J = 2.1, 11.7 Hz, 1H), 3.90 (dd, H-6'a, J = 2.3, 12.3 Hz, 1H), 3.84 (dd, H-6b, J = 5.8, 11.7 Hz, 1H), 3.70 (dd, H-6'b, J = 5.8, 12.3 Hz, 1H), 3.59 (dd, H-5, J = 2.0, 5.8, 9.7 Hz, 1H), 3.50-3.40 (m, H-3, H-4, H-3', H-5', 4H), 3.37 (dd, H-4', J = 8.9, 9.8 Hz, 1H), 3.29 (dd, H-2', J = 8.0, 9.4 Hz, 1H), 3.24 (dd, H-2, J = 8.0, 9.2 Hz, 1H).

 CD_3 - α -D-*f*Glc and CD_3 - β -D-*f*Glc were synthesized in a similar manner to a reported procedure.^[19] A solution of FeCl₃ (389 mg, 2.40 mmol) in CD₃OD (10 mL) was added D-glucose (324 mg, 1.80 mmol) and stirred at 40 °C for 2 days. This mixture was added Celite and then sat NaHCO₃ aq (10 mL) and then filtered through a pad of Celite, which was washed with MeOH. After removal of the solvent, the residue was dissolved in THF, and the solution was filtered and evaporated. The crude mixture was purified by silica-gel column chromatography (CHCl₃-MeOH

= 7:1 to 3:1), which provided a mixture of methyl- $d_3 \alpha$ - and β -D-glucofuranosides (225 mg, 63%, α/β = 3:2). The mixture (200 mg, 1.01 mmol) was used for the next reaction using the general procedures (B) to produce the tetrabenzoyl synthetic intermediates (375 mg, 62%, α/β = 2:3).

The enantioseperation of tetrabenzoyl synthetic intermediates was carried out on a Daicel CHIRALPAK[®] IB column (10 mm $\phi \times 250$ mm) using hexane-EtOAc = 88:12, which led to the first-eluted methyl- $d_3 2, 3, 4, 6$ -tetra-O-benzoyl- α -D-glucofuranoside and the second-eluted methyl d_3 2,3,4,6-tetra-*O*-benzoyl-β-D-glucofuranoside. Methyl- d_3 2,3,4,6-tetra-O-benzoyl- α -Dglucofuranoside: ¹H NMR (CDCl₃) δ 8.08 (d, ArH, J = 7.3 Hz, 2H), 8.01 (d, ArH, J = 7.3 Hz, 2H), 7.84 (d, ArH, J = 7.3 Hz, 2H), 7.77 (d, ArH, J = 7.3 Hz, 2H), 7.59-7.52 (m, ArH, 2H), 7.50-7.39 (m, ArH, 6H), 7.33-7.27 (m, ArH, 4H), 6.16 (dd, H-3, J = 4.9, 5.7 Hz, 1H), 5.79 (m, H-5, 1H), 5.41 (d, H-1, J = 4.6 Hz, 1H), 5.37 (dd, H-2, J = 4.5, 4.5 Hz, 1H), 4.93-4.86 (m, H-4, H-6a, 2H), 4.71 $(dd, H-6b, J = 5.1, 12.5 Hz, 1H); {}^{13}C NMR (CDCl_3) \delta 166.1 (C=O), 165.8 (C=O), 165.3 (C=O),$ 165.1 (C=O), 133.4 (Ar), 133.3 (Ar), 133.1 (Ar), 133.0 (Ar), 130.0 (Ar), 129.8 (Ar), 129.7 (Ar), 129.5 (Ar), 129.3 (Ar), 129.1 (Ar), 128.6 (Ar), 128.4 (Ar), 128.4 (Ar), 128.2 (Ar), 128.2 (Ar), 102.1 $(OCD_3), 100.7 (C-1), 78.7 (C-2), 75.0 (C-3), 73.4 (C-4), 69.6 (C-5), 63.7 (C-6); [\alpha]_{D} + 45.9 (c 1.0, -10.2)$ CHCl₃); HRMS (ESI) m/z calcd for C₃₅H₂₇D₃O₁₀Na [M+Na]⁺ 636.1920, found 636.1907. Methyl $d_3 2, 3, 4, 6$ -tetra-O-benzoyl- β -D-glucofuranoside: ¹H NMR (CDCl₃) δ 8.07 (d, ArH, J = 7.3 Hz, 2H), 8.02 (d, ArH, J = 6.8 Hz, 2H), 7.86 (d, ArH, J = 7.3 Hz, 2H), 7.75 (d, ArH, J = 7.3 Hz, 2H), 7.63-7.58 (m, ArH, 1H), 7.57-7.52 (m, ArH, 1H), 7.51-7.39 (m, ArH, 6H), 7.34-7.26 (m, ArH, 4H), 5.93 (d, H-3, J = 5.4 Hz, 1H), 5.81 (m, H-5, 1H), 5.48 (s, H-2, 1H), 5.16 (s, H-1, 1H), 5.04 (dd, H-4, J)= 5.6, 9.0 Hz, 1H), 4.98 (dd, H-6a, J = 2.0, 12.2 Hz, 1H), 4.73 (dd, H-6b, J = 4.6, 12.5 Hz, 1H); ¹³C NMR (CDCl₃) δ 166.1 (C=O), 165.1 (C=O), 165.0 (C=O), 165.0 (C=O), 133.6 (Ar), 133.3 (Ar), 133.0 (Ar), 133.0 (Ar), 129.9 (Ar), 129.9 (Ar), 129.8 (Ar), 129.7 (Ar), 129.5 (Ar), 129.3 (Ar), 129.0 (Ar), 128.7 (Ar), 128.5 (Ar), 128.4 (Ar), 128.2 (Ar), 128.1 (Ar), 107.5 (C-1), 100.3 (OCD₃), 81.0 (C-2), 78.4 (C-4), 74.6 (C-3), 70.2 (C-5), 64.0 (C-6); $[\alpha]_D$ -39.5 (c 1.0, CHCl₃); HRMS (ESI) m/zcalcd for C₃₅H₂₇D₃O₁₀Na [M+Na]⁺ 636.1920, found 636.1902.

In a similar manner to the general procedure (C) without the use of 1,4-dioxane, methyl- d_3 2,3,4,6-tetra-*O*-benzoyl- α -D-glucofuranoside (52 mg, 87 μ mol) and methyl- d_3 2,3,4,6-tetra-*O*-benzoyl- β -D-glucofuranoside (57 mg, 95 μ mol) were converted to **CD**₃- α -**D**-*f***Glc** (10 mg, 58%) and **CD**₃- β -**D**-*f***Glc** (12 mg, 63%), respectively. Their ¹H NMR spectra were virtually the same as those reported for methyl- $h_3 \alpha$ - and β -D-glucofuranoside except for the absence of the -OCH₃ signal.^[20] **CD**₃- α -**D**-*f***Glc** ¹H NMR (D₂O) δ 5.06 (d, H-1, J = 4.4 Hz, 1H), 4.27 (dd, H-3, J = 3.4, 4.7 Hz, 1H), 4.14 (dd, H-2, J = 3.7, 3.7 Hz, 1H), 4.08 (dd, H-4, J = 4.6, 8.1 Hz, 1H), 3.86 (m, H-5, 1H), 3.78 (dd, H-6a, J= 2.7, 12.0 Hz, 1H), 3.64 (dd, H-6b, J = 6.4, 12.2 Hz, 1H). **CD**₃- β -**D**-*f***Glc**: ¹H NMR (D₂O) δ 4.86 (s, H-1, 1H), 4.22 (d, H-3, J = 4.4 Hz, 1H), 4.16 (dd, H-4, J = 4.6, 9.0 Hz, 1H), 4.12 (s, H-2, 1H), 3.94 (m, H-5, 1H), 3.85 (dd, H-6a, J = 2.8, 12.0 Hz, 1H), 3.69 (dd, J = 6.1, 12.0 Hz, 1H).

Enzymatic preparation of CD₃-α-D-fGlc and CD₃-β-D-fGlc

CD₃-α-**D**-**GLG** was synthesized in a similar manner to a reported procedure.^[21] A solution of **CD**₃-α-**D**-**Glc** (97 mg, 0.50 mmol) in MeCN (1.5 mL), was added lauric acid (100 mg), thermally activated pulverized 4 Å molecular sieves (80 mg) and lipase acrylic resin (≥5,000 U/g, recombinant, expressed in *Aspergillus niger*) purchased from Sigma-Aldrich (0.49g, 50% w/w of sugar). The reaction mixture was incubated in a shaking incubator S1-300C (from AS ONE) at 60 °C with rotational speed of 300 rpm for 3 days. The reaction mixture was diluted with EtOAc and then filtered, and the filtrate was evaporated. The residue was purified by silica-gel column chromatography (CHCl₃-MeOH = 15:1 to 9:1), which provided **CD**₃-α-**D**-**6LG**, (53 mg, 28%). Its ¹H NMR spectrum was virtually the same as that reported for methyl-*h*₃ 6-lauroyl-α-D-glucopyranoside except for the absence of the -OCH₃ signal. ^[22]**CD**₃-α-**D**-**6LG**: ¹H NMR (CDCl₃) δ 4.79 (d, H-1, *J* = 3.9 Hz, 1H), 4.57 (dd, H-6a, *J* = 4.2, 12.5, Hz, 1H), 4.22 (dd, H-6b, *J* = 2.0, 12.2 Hz, 1H), 3.76-3.69 (m, H-3, H-5, 2H), 3.53 (dd, H-2, *J* = 3.9, 9.3 Hz, 1H), 3.34 (dd, H-4, *J* = 9.3, 9.3, Hz, 1H), 2.38 (t, CH₂, *J* = 7.6 Hz, 2H), 1.64 (m, CH₂, 2H), 1.22-1.35 (m, CH₂ × 8, 16H), 0.88 (t, CH₃, *J* = 6.8 Hz, 3H).

CD₃-β-D-Glc (89 mg, 0.45 mmol) was converted to **CD**₃-β-D-6LG (60 mg, 32%) in a similar manner. Its ¹H NMR spectrum was similar to that reported for methyl- h_3 6-lauroyl-β-D-glucopyranoside, but the signal assignment and some of chemical shifts were slightly different from ours.^[22] **CD**₃-β-D-6LG: ¹H NMR (CDCl₃) δ 4.59 (dd, H-6a, J = 3.9, 12.2 Hz, 1H), 4.26 (dd, H-6b, J = 2.0, 12.2 Hz, 1H), 4.21 (d, H-1, J = 7.8 Hz, 1H), 3.59 (dd, H-3, J = 9.1, 9.1, 1H), 3.45 (m, H-5, 1H), 3.41-3.34 (m, H-2, H-4, 2H), 2.38 (t, CH₂, J = 7.6 Hz, 2H), 1.63 (m, CH₂, 2H), 1.22-1.34 (m, CH₂ × 8, 16H), 0.88 (t, CH₃, J = 6.8 Hz, 3H).

Computational Details

DFT calculations were carried out on Gaussian 16 software.^[23]

Gas phase and PCM Solvent effects

Molecular mechanics conformational search was performed for each molecule on Spartan'18 software.^[24] Obtained geometries within 20 kJ/mol from the most stable for each molecule were submitted to DFT optimization. Geometry optimization and IR and VCD calculations on the isolated conformers were computed at the level of B3LYP/6-31G(d). The effects of water and DMSO were included using a polarizable continuum model (PCM). The calculated frequencies were converted to IR and VCD spectra on GaussView6 software using a peak half-width a half height of 10 cm⁻¹. When applicable, the VCD spectra of each conformer were averaged according to the Boltzmann populations simulated at 298 K.

<u>**CD**</u>₃- α - and β -**D**-**Glc** with Explicit Water Molecules

Geometry optimization of initial structures of each epimer was performed at the level of B3LYP/6-31G(d). Obtained structures were submitted to MD simulation on AMBER18 program^[25] using periodic boundary conditions and an octahedron cell. ff14SB^[26] was chosen as the force field, whereas water molecules were included by the TIP3P potential.^[27] Before performing the MD simulation, the energy minimization of an octahedron model was carried out with steepest descent and conjugate gradient method. Then, *NVT* and *NPT* equilibration and MD simulation were successively performed. Electrostatic interactions were calculated with the particle-mesh Ewald method.^[28] The cutoff distance of the van der Waals and electrostatic interactions was 8 Å. The Langevin method for temperature (300 K) was applied to the simulation system. The time step for the integration was set to 0.5 ps. During *NVT* and *NPT* equilibration, the system was relaxed for 20 ps. After equilibration, the system was simulated for 1.8 ns, and 12 snapshots were taken every 25 ps (from 500-775 ps).

Next, geometry optimizations of the 12 snapshots were performed. A two-layer ONIOM method was used for the QM/MM calculations. The high layer consisting of solute was treated at the B3LYP/6-31G(d) level, and the low layer consisting of water molecules was described by AMBER force field including TIP3P parameters. After optimizations, IR and VCD calculations were performed at the same level of theory used for optimizations. As with the gas phase and PCM hydration, the calculated frequencies were converted to IR and VCD spectra on the GaussView6 software with the peak half width and half height at 10 cm⁻¹.

References

- [1] Taniguchi, T.; Zubir, M. Z. M.; Harada, N.; Monde, M. *Phys. Chem. Chem. Phys.* **2021**, DOI: 10.1039/D1CP04074J.
- [2] Esmurziev, A.; Simić, N.; Sundby, E.; Hoff, B. H. Magn. Reson. Chem. 2009, 47, 449.
- [3] Taniguchi, T.; Monde, K.; Miura, N.; Nishimura, S.-I. Tetrahedron Lett. 2004, 45, 8451.
- [4] Gutiérrez, M.; Capson, T. L.; Guzmán, H. M.; González, J.; Ortega-Barría, E.; Quiñoá, E.;
- Riguera, R. J. Nat. Prod. 2006, 69, 1380.
- [5] Kondo, Y. Carbohydr. Res. 1982, 107, 303.
- [6] Prabhakar, S.; Lemiegre, L.; Benvegnu, T.; Hotha, S.; Ferrieres, V.; Legentil, L. *Carbohydr*. *Res.* **2016**, *433*, 63.
- [7] Sanapala, S. R.; Kulkarni, S. S. Chem. Eur. J. 2014, 20, 3578.
- [8] Gannedi, V.; Ali, A.; Singh, P. P.; Vishwakarma, R. A. J. Org. Chem. 2020, 85, 7757.
- [9] Crich, D.; Sun, S. J. Org. Chem. 1997, 62, 1198
- [10] Crich, D.; Banerjee, A.; Yao, Q. J. Am. Chem. Soc. 2004, 126, 14930.
- [11] Shimada, N.; Nakamura, Y.; Ochiai, T.; Makino, K. Org. Lett. 2019, 21, 3789.
- [12] Nishi, Y.; Tanimoto, T. Biosci. Biotechnol. Biochem. 2009, 73, 562.
- [13] Khaled, A.; Piotrowska, O.; Dominiak, K.; Augé, C. Carbohydr. Res. 2008, 343, 167.
- [14] Zhang, F.; Zhang, W.; Zhang, Y.; Curran, D. P.; Liu, G. J. Org. Chem. 2009, 74, 2594.
- [15] Skelton, B. W; Stick, R. V.; Tilbrook, D. M. G.; White, A. H.; Williams, S. J. *Aust. J. Chem.* **2000**, 53, 389.
- [16] He, H.; Zhu, X. Org. Lett. 2014, 16, 3102.
- [17] Jansson, P.-E.; Kenne, L.; Kolare, I. Carbohydr. Res. 1994, 257, 163.
- [18] Ortner, J.; Albert, M.; Terler, K.; Steiner, W.; Dax, K. Carbohydr. Res. 2000, 327, 483.
- [19] Lubineau, A.; Fischer, J. C. Synth. Commun. 1991, 21, 815.
- [20] Shi, Z.; Sun, L.; Li, C. J. Agric. Food Chem. 2014, 62, 3287.
- [21] Mutschler, J.; Rausis, T.; Bourgeois, J. M.; Bastian, S.; Zufferey, D.; Mohrenz, I. V.; Fischer, F. *Green Chem.* 2009, 11, 1793.
- [22] Smith, A.; Nobmann, P.; Henehan, G.; Bourke, P.; Dunne, J. Carbohydr. Res. 2008, 343, 2557.
- [23] Gaussian 16, Revision A.03, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
- Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.;
- Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian,
- H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini,
- F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa,
- J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.;

Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016.

[24] SPARTAN'18, Wavefunction, Inc., Irvine, CA.

[25] D.A. Case, I.Y. Ben-Shalom, S.R. Brozell, D.S. Cerutti, T.E. Cheatham, III, V.W.D. Cruzeiro, T.A. Darden, R.E. Duke, D. Ghoreishi, M.K. Gilson, H. Gohlke, A.W. Goetz, D. Greene, R Harris, N. Homeyer, Y. Huang, S. Izadi, A. Kovalenko, T. Kurtzman, T.S. Lee, S. LeGrand, P. Li, C. Lin, J. Liu, T. Luchko, R. Luo, D.J. Mermelstein, K.M. Merz, Y. Miao, G. Monard, C. Nguyen, H. Nguyen, I. Omelyan, A. Onufriev, F. Pan, R. Qi, D.R. Roe, A. Roitberg, C. Sagui, S. Schott-Verdugo, J. Shen, C.L. Simmerling, J. Smith, R. Salomon-Ferrer, J. Swails, R.C. Walker, J. Wang, H. Wei, R.M. Wolf, X. Wu, L. Xiao, D.M. York and P.A. Kollman, AMBER 2018, University of California, San Francisco.

[26] James A. M.; Carmenza M.; Koushik K.; Lauren W.; Kevin E. H.; Carlos S. J. Chem. Theory Comput. 2015, 11, 3696.

[27] Jorgensen, W. L.; Jenson, C. J. Comput. Chem. 1998, 19, 1179.

[28] Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1993, 98, 10089.

