Supporting Information

Copper-Promoted Difunctionalization of Unactivated Alkenes with

Silanes

Yingying Xue,^a Zhuangzhuang Guo,^a Xiaoyu Chen,^a Jingya Li,^b Dapeng Zou,^{*a} Yangjie Wu^{*a} and Yusheng Wu^{*a,c}

^aCollege of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China

^bTetranov Biopharm, LLC., Zhengzhou, 450052, People's Republic of China

°Tetranov International, Inc., 100 Jersey Avenue, Suite A340, New Brunswick, NJ 08901, USA

*Corresponding author. Tel.: (+86)-371-6776-6865; fax: (+86)-371-6776-3390; e-mail: zdp@zzu.edu.cn or wyj@zzu.edu.cn

*Corresponding author. Tel.: (+1)-732-253-7326; fax: (+1)-732-253-7327; e-mail: yusheng.wu@tetranovglobal.com

Table of Contents

1. General Information	2
2. General Procedure	2
3. Optimization of the reaction	4
4. Characterization data of the products	5
5. Radical trapping experiment	16
6. X-Ray crystallographic data of 3aa	19
7. References	21
8. ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR spectra of the products	

1. General Information

All manipulations were performed in 25 mL Schlenk tube equipped with a magnetic stir bar unless otherwise noted. Solvents and reagents were purchased from commercial sources and used as received. Flash column chromatography was performed using silica gel (60-Å pore size, 32-63 µm, standard grade). Analytical thin-layer chromatography was performed using glass plates pre-coated with 0.25 mm 230-400 mesh silica gel impregnated with a fluorescent indicator (254 nm). Melting points were recorded by XT4A micro melting point Measurement Instruments, thermometer was unrevised. The transformation progress and mass spectra were indicated by GC (Shimadzu GC-2010 Plus) or GC-MS (Thermo Fisher Scientific DSQ II). NMR spectra were obtained on Bruker AVANCE III systems using CDCl₃ as a solvent, CDCl₃ as an internal standard substance, at 400 MHz for ¹H NMR, 100 MHz for ¹³C NMR, and 376 MHz for ¹⁹F NMR. High-resolution mass spectrometry data obtained Agilent Technologies 1290-6540 (HRMS) were on an UHPLC/Accurate-Mass Quadrupole Time-of Flight (Q-TOF) LC/MS using ESI as ion source. X-ray analysis was performed with a single-crystal X-ray diffractometer. Preparative TLC was performed on silica gel plates and developed with ethyl acetate/petroleum ether.

2. General Procedure

2.1 Substrate Synthesis

Anilides, sulfonamides, and substrates **1** were prepared according to literature procedures.¹

A 250 mL flask, equipped with a magnetic stirring bar, was charged with aniline compound (20.0 mmol, 1.0 equiv.), CH_2Cl_2 (60.0 mL), and Et_3N (40.0 mmol, 2.0 equiv.), followed by the addition of acyl chloride (24.0 mmol, 1.2 equiv.) at 0 °C. The

reaction mixture was stirred at room temperature. After aniline compound was consumed, as indicated by TLC, the action mixture was quenched with aqueous NaHCO₃ (130 mL) and extracted with CH_2Cl_2 (130 mL) three times. The combined organic phase was washed with brine (70 mL). After removal of solvents, the solid of the crude product was further purified by washing with a petroleum ether/ethyl acetate mixture (7:1, v/v), affording *N*-acylaniline. To a stirred solution of *N*-acylaniline (15.0 mmol, 1.0 equiv.), and NaOH (22.5 mmol, 1.5 equiv.) in DMF (45.0 mL) was added 3-bromo-prop-1-ene (19.5 mmol, 1.3 equiv.), and the mixture was stirred at room temperature. After *N*-acylaniline was consumed, as indicated by TLC, the reaction mixture was quenched with brine (90 mL) and extracted with CH_2Cl_2 (90 mL) three times. The combined organic layers were dried with anhydrous Na₂SO₄, then filtered and concentrated under reduced pressure. The residue was purified by column chromatography (Petroleum/EtOAc = 8:1) on silica gel to afford **1a-1x**.

2.2 Experimental Procedure

A dried 25 mL Schlenk tube equipped with a magnetic stir bar was charged with 1 (0.50 mmol, 1.0 equiv.), 2 (4.0 mmol, 8.0 equiv.), DTBP (1.0 mmol, 2.0 equiv.), KOAc (0.25 mmol, 0.5 equiv.), Cu(OAc)₂ (0.025 mmol, 5 mol%), and *t*-BuOH (3.0 mL). Subsequently, the tube was sealed and the resulting mixture was stirred at 130 °C for 12 h under Ar atmosphere. After cooling to room temperature, the reaction mixture was washed with water and extracted with CH_2Cl_2 three times. The combined organic layers dried over anhydrous Na₂SO₄, concentrated in vacuo. The crude products were purified by flash column chromatography on silica gel (Petroleum ether/EtOAc) to afford desired products **3**.

2.3 Scale-up Reaction

A mixture of *N*-(2-methyl-allyl)-*N*-phenylacetamide **1a** (0.946 g, 5.0 mmol, 1.0 equiv.), triethylsilane **2a** (4.651 g, 40 mmol, 8.0 equiv.), DTBP (1.462 g, 10 mmol, 2.0 equiv.), KOAc (0.245 g, 2.5 mmol, 0.5 equiv.), Cu(OAc)₂ (0.091g, 0.25 mmol, 5 mol%), *t*-BuOH (30 mL), was taken in a dry round-bottomed flask. The reaction mixture was then stirred at 130 °C for 12 h under an argon atmosphere. After cooling down to room temperature, the reaction mixture was washed with water and extracted with CH_2Cl_2 three times. The combined organic layers dried over anhydrous Na₂SO₄, concentrated in vacuo. Then the crude reaction mixture was purified by flash silica gel column chromatography (Petroleum/EtOAc = 60:1-30:1) to afford the desired product **3aa** (0.987 g, 65%).

3. Optimization of the reaction

	N Ac	+	HSiEt ₃ <u>cataly</u> 130	st, oxidant °C, 12 h	Ac	iEt ₃
	1a		2a		3aa	
entr y	2a (equiv.)	solvent	Catalyst (mol%)	Oxidant (equiv.)	Base (equiv.)	yield (%) ^b
1	10	<i>t</i> -Butanol	-	DTBP(3)	-	32
2	10	THF	-	DTBP(3)	-	17
3	10	DMSO	-	DTBP(3)	-	18
4	10	Benzene	-	DTBP(3)	-	16
5	10	Toluene	-	DTBP(3)	-	23
6	10	CH ₃ CN	-	DTBP(3)	-	trace
7	10	t-Butanol	CuI(10)	DTBP(3)	-	46
8	10	t-Butanol	CuBr(10)	DTBP(3)	-	44
9	10	t-Butanol	$Cu(OAc)_2(10)$	DTBP(3)	-	50
10	10	<i>t</i> -Butanol	$Cu(acac)_2(10)$	DTBP(3)	-	0

Table S1. Reaction Optimization

11	10	t-Butanol	$MnCl_2 \cdot 4H_2O(10)$	DTBP(3)	_	16
11	10	<i>i</i> -Dutanoi)			10
12	10	t-Butanol	AgOAc(10)	DTBP(3)	-	trace
13	10	t-Butanol	$CoCl_2(10)$	DTBP(3)	-	trace
14	10	t-Butanol	$FeCl_2(10)$	DTBP(3)	-	trace
15	10	t-Butanol	$Ni_2O_3(10)$	DTBP(3)	-	19
16	10	t-Butanol	$Cu(OAc)_2(10)$	-	-	0
17	10	t-Butanol	$Cu(OAc)_2(10)$	TBHP(3)	-	trace
18	10	t-Butanol	$Cu(OAc)_2(10)$	TBPB(3)	-	24
19	10	t-Butanol	$Cu(OAc)_2(10)$	LPO(3)	-	27
20	10	t-Butanol	$Cu(OAc)_2(10)$	DTBP(3)	NaOAc(3)	57
21	10	t-Butanol	$Cu(OAc)_2(10)$	DTBP(3)	$NaHCO_3(3)$	19
22	10	t-Butanol	$Cu(OAc)_2(10)$	DTBP(3)	KOAc(3)	70
23	10	t-Butanol	$Cu(OAc)_2(10)$	DTBP(3)	$K_3PO_4(3)$	7
24	10	t-Butanol	$Cu(OAc)_2(10)$	DTBP(3)	$Et_3N(3)$	14
25	10	t-Butanol	$Cu(OAc)_2(10)$	DTBP(3)	DBU(3)	15
26	10	t-Butanol	$Cu(OAc)_2(10)$	DTBP(3)	Pyridine(3)	41
27	10	t Butanol	$Cu(OAc)_{c}(10)$	DTBP(2.5	KOAc(3)	74
21	10	<i>i</i> -Dutanoi	$Cu(OAC)_2(10)$)		/4
28	10	t-Butanol	$Cu(OAc)_2(10)$	DTBP(2)	KOAc(3)	88
29	10	t-Butanol	$Cu(OAc)_2(10)$	DTBP(1.5	KOAc(3)	35
2)	10	<i>i</i> -Dutanoi)		55
30	12	t-Butanol	$Cu(OAc)_2(10)$	DTBP(2)	KOAc(3)	86
31	8	t-Butanol	$Cu(OAc)_2(10)$	DTBP(2)	KOAc(3)	88
32	6	t-Butanol	$Cu(OAc)_2(10)$	DTBP(2)	KOAc(3)	65
33	8	t-Butanol	$Cu(OAc)_2(15)$	DTBP(2)	KOAc(3)	72
34	8	t-Butanol	$Cu(OAc)_2(5)$	DTBP(2)	KOAc(3)	87
35	8	t-Butanol	$Cu(OAc)_2(2)$	DTBP(2)	KOAc(3)	75
36	8	t-Butanol	$Cu(OAc)_2(5)$	DTBP(2)	KOAc(1.5)	87
37 Q	8	<i>t</i> -	$Cu(OAc)_2(5)$	DTBP(2)	KOAc(0.5)	88(80
57	U	Butanol)
38	8	t-Butanol	$Cu(OAc)_2(5)$	DTBP(2)	KOAc(0.25	63
50	0)	05

^aReaction conditions: **1a** (0.5 mmol, 1.0 equiv.), **2a**, oxidant, catalyst, base, solvent (3.0 mL), 130 °C, under Ar, 12 h (DTBP = di-*tert*-butylperoxide, TBHP = *tert*-butyl hydroperoxide, TBPB = *tert*-butyl peroxybenzoate, LPO = dilauroyl peroxide). ^bYields determined by GC analysis with naphthalene as the internal standard, isolated yield of **3aa** was shown in parentheses.

4. Characterization data of the products

1-(3-methyl-3-((triethylsilyl)methyl)indolin-1-yl)ethan-1-one (3aa). White solid, 80% yield (121.6 mg). Column chromatography on silica gel (Petroleum ether/EtOAc = 10:1). M.p. = 47-49 °C. ¹H NMR (400 MHz, CDCl₃, ppm) present in 5.0:1 ratio of rotational isomer about the amide: δ 8.17 (d, J = 8.0 Hz, 1 H), 7.20-7.16 (m, 1 H), 7.14-7.12 (m, 1 H), 7.05-7.01 (m, 1 H), 3.93-3.83 (m, 0.33 H), 3.83-3.72 (m, 1.66 H), 2.44 (s, 0.50 H), 2.21 (s, 2.49 H), 1.33 (s, 2.54 H), 1.39 (s, 0.51 H), 1.17 (d, J = 14.8Hz, 1 H), 1.07 (d, J = 14.8 Hz, 1 H), 0.88 (t, J = 8.0 Hz, 9 H), 0.51-0.36 (m, 6 H); ¹³C NMR (100 MHz, CDCl₃, ppm), major rotational isomer: δ 168.6, 141.8, 141.1, 127.6, 123.8, 122.0, 116.9, 63.4, 42.5, 30.9, 26.2, 24.2, 7.4, 4.4; minor rotational isomer: δ 168.4, 144.6, 140.0, 127.2, 123.4, 123.3, 114.0, 62.0, 40.9, 30.2, 25.3, 24.5, 7.3, 4.4; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₈H₃₀NOSi 304.2091; Found 304.2093.

1-(3,5-dimethyl-3-((triethylsilyl)methyl)indolin-1-yl)ethan-1-one (3ba). Light yellow liquid, 81% yield (128.4 mg). Column chromatography on silica gel (Petroleum ether/EtOAc = 10:1). ¹H NMR (400 MHz, CDCl₃, ppm) present in 5.0:1 ratio of rotational isomers about the amide: δ 8.03 (d, *J* = 8.4 Hz, 1 H), 6.99-6.93 (m, 2 H), 3.92-3.83 (m, 0.34 H), 3.81-3.71 (m, 1.69 H), 2.41 (s, 0.50 H), 2.31 (s, 3 H), 2.19 (s, 2.50 H), 1.38 (s, 2.52 H), 1.31 (s, 0.50 H), 1.16 (d, *J* = 15.2 Hz, 1 H), 1.05 (d, *J* = 15.2 Hz, 1 H), 0.88 (t, *J* = 8.0 Hz, 9 H), 0.52-0.39 (m, 6 H); ¹³C NMR (100 MHz, CDCl₃, ppm), major rotational isomer: δ 168.3, 141.9, 138.8, 133.4, 128.1, 122.6, 116.6, 63.5, 42.5, 30.8, 26.2, 24.1, 21.1, 7.4, 4.4; minor rotational isomer: δ 168.2, 144.8, 137.7, 133.1, 127.6, 124.0, 113.8, 62.1, 40.9, 30.1, 25.2, 24.4, 20.9, 7.3, 4.5; **HRMS (ESI-TOF)** *m/z*: [M + H]⁺ Calcd for C₁₉H₃₂NOSi 318.2248; Found 318.2248.

1-(5-ethyl-3-methyl-3-((triethylsilyl)methyl)indolin-1-yl)ethan-1-one (3ca). Light yellow liquid, 71% yield (117.4 mg). Column chromatography on silica gel (Petroleum ether/EtOAc = 10:1). ¹H NMR (400 MHz, CDCl₃, ppm) present in 4.5:1 ratio of rotational isomers about the amide: δ 8.06 (d, J = 8.0 Hz, 1 H), 7.02-6.95 (m, 2 H), 3.92-3.84 (m, 0.36 H), 3.82-3.71 (m, 1.63 H), 2.64-2.58 (m, 2 H), 2.42 (s, 0.54 H), 2.19 (s, 2.46 H), 1.39 (s, 2.50 H), 1.33 (s, 0.55 H), 1.21 (t, J = 7.6 Hz, 3 H), 1.18-1.05 (m, 2 H), 0.88 (t, J = 7.8 Hz, 9 H), 0.50-0.37 (m, 6 H); ¹³C NMR (100 MHz, CDCl₃, ppm), major rotational isomer: δ 168.3, 141.8, 139.9, 139.1, 127.0, 121.5, 116.7, 63.6, 42.5, 31.0, 28.6, 26.2, 24.1, 15.9, 7.4, 4.3; minor rotational isomer: δ 144.7, 139.6, 138.0, 126.5, 122.8, 113.9, 62.2, 40.9, 30.3, 28.4, 25.2, 24.4, 4.4. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₀H₃₄NOSi 332.2404; Found 332.2402.

1-(5-isopropyl-3-methyl-3-((triethylsilyl)methyl)indolin-1-yl)ethan-1-one (3da). Light yellow liquid, 67% yield (116.1 mg). Column chromatography on silica gel (Petroleum ether/EtOAc = 10:1). ¹H NMR (400 MHz, CDCl₃, ppm) present in 4.2:1 ratio of rotational isomers about the amide: δ 8.06 (d, J = 8.4 Hz, 1 H), 7.06-6.97 (m, 2 H), 3.92-3.84 (m, 0.38 H), 3.82-3.71 (m, 1.61 H), 2.92-2.84 (m, 1 H), 2.42 (s, 0.57 H), 2.19 (s, 2.41 H), 1.40 (s, 2.46 H), 1.33 (s, 0.59 H), 1.24-1.22 (m, 6 H), 1.16 (d, J = 14.8 Hz, 1 H), 1.07 (d, J = 15.2 Hz, 1 H), 0.87 (t, J = 7.8 Hz, 9 H), 0.49-0.34 (m, 6 H); ¹³C NMR (100 MHz, CDCl₃, ppm), major rotational isomer: δ 168.3, 144.6, 141.5, 139.2, 125.6, 120.0, 116.7, 63.7, 42.6, 34.0, 31.1, 26.3, 24.2, 24.1, 7.4, 4.3; minor rotational isomer: δ 144.5, 144.3, 138.1, 125.1, 121.3, 113.8, 62.3, 41.0, 33.8, 30.4, 25.3, 24.4, 4.4; HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ Calcd for C₂₁H₃₆NOSi 346.2561; Found 346.2560.

1-(5-(tert-butyl)-3-methyl-3-((triethylsilyl)methyl)indolin-1-yl)ethan-1-one (3ea). Light yellow liquid, 64% yield (114.3 mg). Column chromatography on silica gel (Petroleum ether/EtOAc = 15:1). ¹**H NMR** (400 MHz, CDCl₃, ppm) present in 4.0:1 ratio of rotational isomers about the amide: δ 8.07 (d, J = 8.4 Hz, 1 H), 7.23-7.12 (m, 2 H), 3.92-3.85 (m, 0.40 H), 3.82-3.72 (m, 1.60 H), 2.42 (s, 0.60 H), 2.19 (s, 2.39 H), 1.40 (s, 2.44 H), 1.34 (s, 0.61 H), 1.30 (s, 9 H), 1.15 (d, J = 14.8 Hz, 1 H), 1.08 (d, J = 15.2 Hz, 1 H), 0.86 (t, J = 7.8 Hz, 9 H), 0.49-0.32 (m, 6 H); ¹³C **NMR** (100 MHz, CDCl₃, ppm), major rotational isomer: δ 168.3, 146.9, 141.0, 138.9, 124.6, 118.8, 116.3, 63.7, 42.7, 34.6, 31.5, 31.3, 26.4, 24.1, 7.5, 4.3; minor rotational isomer: δ 146.5, 144.0, 137.8, 124.1, 120.2, 113.5, 62.3, 41.0, 34.5, 31.5, 30.6, 25.3, 24.4, 4.4; **HRMS (ESI-TOF)** m/z: [M + H]⁺ Calcd for C₂₂H₃₈NOSi 360.2717; Found 360.2717.

1-(5-methoxy-3-methyl-3-((triethylsilyl)methyl)indolin-1-yl)ethan-1-one (3fa). Light brown liquid, 70% yield (116.0 mg). Column chromatography on silica gel (Petroleum ether/EtOAc = 5:1). ¹H NMR (400 MHz, CDCl₃, ppm) present in 6.3:1 ratio of rotational isomers about the amide: δ 8.08 (d, J = 8.8 Hz, 1 H), 6.74-6.67 (m, 2 H), 3.93-3.83 (m, 0.29 H), 3.81-3.71 (m, 4.83 H), 2.38 (s, 0.41 H), 2.17 (s, 2.59 H), 1.37 (s, 2.60 H), 1.30 (s, 0.41 H), 1.14 (d, J = 15.2 Hz, 1 H), 1.04 (d, J = 14.8 Hz, 1 H), 0.88 (t, J = 7.8 Hz, 9 H), 0.52-0.36 (m, 6 H); ¹³C NMR (100 MHz, CDCl₃, ppm), major rotational isomer: δ 167.9, 156.5, 143.5, 134.9, 117.5, 111.9, 108.5, 63.5, 55.6, 42.6, 30.7, 26.0, 23.9, 7.4, 4.3; minor rotational isomer: δ 156.3, 146.4, 133.7, 114.7, 111.7, 109.6, 62.2, 55.5, 41.2, 30.0, 25.0, 24.1, 7.3, 4.4; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₉H₃₂NO₂Si 334.2197; Found 334.2197.

1-(3-methyl-3-((triethylsilyl)methyl)-5-(trifluoromethoxy)indolin-1-yl)ethan-1one (3ga). Yellow liquid, 79% yield (153.7 mg). Column chromatography on silica gel (Petroleum ether/EtOAc = 10:1). ¹H NMR (400 MHz, CDCl₃, ppm) present in 10.1:1 ratio of rotational isomers about the amide: δ 8.17 (d, J = 8.8 Hz, 1 H), 7.04-7.01 (m, 1 H), 6.95 (s, 1 H), 3.92-3.90 (m, 0.18 H), 3.86-3.76 (m, 1.82 H), 2.42 (s, 0.27 H), 2.20 (s, 2.72 H), 1.39 (s, 2.72 H), 1.33 (s, 0.27 H), 1.15 (d, J = 14.8 Hz, 1 H), 1.06 (d, J = 15.2 Hz, 1 H), 0.88 (t, J = 8.0 Hz, 9 H), 0.50-0.36 (m, 6 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 168.7, 145.4, 143.7, 139.9, 120.6 (q, ¹ $_{J}$ (C-F) = 254.7 Hz), 120.4, 117.6, 115.5, 63.6, 42.7, 30.9, 26.2, 24.1, 7.4, 4.4; ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ -61.58; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₉H₂₉F₃NO₂Si 388.1914; Found 388.1914.

1-(3-methyl-3-((triethylsilyl)methyl)-5-(trifluoromethyl)indolin-1-yl)ethan-1-one (**3ha**). Yellow liquid, 43% yield (80.3 mg). Column chromatography on silica gel (Petroleum ether/EtOAc = 5:1). ¹H NMR (400 MHz, CDCl₃, ppm) present in 10.5:1 ratio of rotational isomers about the amide: δ 8.25 (d, J = 8.4 Hz, 1 H), 7.47-7.44 (m, 1 H), 7.35 (s, 1 H), 3.87 (d, J = 10.0 Hz, 1 H), 3.80 (d, J = 10.0 Hz, 1 H), 2.46 (s, 0.26 H), 2.23 (s, 2.74 H), 1.42 (s, 2.74 H), 1.36 (s, 0.26 H), 1.18 (d, J = 14.8 Hz, 1 H), 1.08 (d, J = 14.8 Hz, 1 H), 0.88 (t, J = 8.0 Hz, 9 H), 0.52-0.35 (m, 6 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 169.2, 143.9, 142.4, 125.7 (q, ² $_{J}$ (C-F) = 32.0 Hz), 125.3 (d, ³ $_{J}$ (C-F) = 3.6 Hz), 124.4 (q, ¹ $_{J}$ (C-F) = 270.0 Hz), 119.2 (d, ³ $_{J}$ (C-F) = 3.4 Hz), 116.6, 63.5, 42.6, 30.9, 26.2, 24.2, 7.3, 4.3; ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ -58.12; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₉H₂₉F₃NOSi 372.1965; Found 372.1964.

1-acetyl-3-methyl-3-((triethylsilyl)methyl)indoline-5-carbonitrile (3ia). Colorless liquid, 48% yield (78.5 mg). Column chromatography on silica gel (Petroleum ether/EtOAc = 7:1). ¹**H NMR** (400 MHz, CDCl₃, ppm) δ 8.22 (d, *J* = 8.4 Hz, 1 H), 7.48-7.45 (m, 1 H), 7.37 (s, 1 H), 3.85 (d, *J* = 10.0 Hz, 1 H), 3.78 (d, *J* = 10.0 Hz, 1 H), 2.22 (s, 3 H), 1.38 (s, 3 H), 1.16 (d, *J* = 15.2 Hz, 1 H), 1.03 (d, *J* = 15.2 Hz, 1 H), 0.88 (t, *J* = 8.0 Hz, 9 H), 0.50-0.36 (m, 6 H); ¹³**C NMR** (100 MHz, CDCl₃, ppm): δ 169.4, 144.8, 143.1, 132.7, 126.0, 119.3, 117.1, 106.5, 63.3, 42.6, 30.7, 26.2, 24.3, 7.4, 4.4; **HRMS (ESI-TOF)** *m/z*: [M + H]⁺ Calcd for C₁₉H₂₉N₂OSi 329.2044; Found 329.2042.

ethyl 1-acetyl-3-methyl-3-((triethylsilyl)methyl)indoline-5-carboxylate (3ja). Yellow liquid, 41% yield (76.9 mg). Column chromatography on silica gel (Petroleum ether/EtOAc = 7:1). ¹H NMR (400 MHz, CDCl₃, ppm) present in 9.2:1 ratio of rotational isomers about the amide: δ 8.18 (d, J = 8.4 Hz, 1 H), 7.91-7.89 (m, 1 H), 7.80 (s, 1 H), 4.37-4.31 (m, 2 H), 3.87-3.77 (m, 2 H), 2.45 (s, 0.30 H), 2.22 (s, 2.75 H), 1.40-1.36 (m, 6 H), 1.20 (d, J = 14.8 Hz, 1 H), 1.07 (d, J = 15.2 Hz, 1 H), 0.87 (t, J = 7.8 Hz, 9 H), 0.50-0.37 (m, 6 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 169.2, 166.4, 145.0, 142.1, 130.1, 125.8, 123.6, 116.1, 63.7, 60.8, 42.4, 30.9, 26.2, 24.3, 14.4, 7.4, 4.4; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₂₁H₃₄NO₃Si 376.2302; Found 376.2304.

1-(3-methyl-5-phenyl-3-((triethylsilyl)methyl)indolin-1-yl)ethan-1-one(3la).Yellow liquid, 67% yield (127.4 mg). Column chromatography on silica gel

(Petroleum ether/EtOAc = 10:1). ¹H NMR (400 MHz, CDCl₃, ppm) present in 5.4:1 ratio of rotational isomers about the amide: δ 8.26 (d, J = 8.4 Hz, 1 H), 7.60-7.58 (m, 2 H), 7.46-7.30 (m, 5 H), 4.00-3.92 (m, 0.31 H), 3.89-3.79 (m, 1.68 H), 2.48 (s, 0.47 H), 2.24 (s, 2.55 H), 1.46 (s, 2.54 H), 1.40 (s, 0.47 H), 1.24 (d, J = 14.8 Hz, 1 H), 1.15 (d, J = 15.2 Hz, 1 H), 0.92 (t, J = 8.0 Hz, 9 H), 0.58-0.40 (m, 6 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 168.6, 142.5, 141.2, 140.7, 137.0, 128.8, 126.9 (2 C), 126.7, 120.8, 117.1, 63.7, 42.7, 31.0, 26.4, 24.2, 7.5, 4.4; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₂₄H₃₄NOSi 380.2404; Found 380.2402.

1-(5-fluoro-3-methyl-3-((triethylsilyl)methyl)indolin-1-yl)ethan-1-one (3ma). White solid, 83% yield (132.7 mg). Column chromatography on silica gel (Petroleum ether/EtOAc = 10:1). M.p. = 32-34 °C. ¹H NMR (400 MHz, CDCl₃, ppm) present in 9.0:1 ratio of rotational isomers about the amide: δ 8.14-8.11 (m, 1 H), 6.88-6.80 (m, 2 H), 3.96-3.85 (m, 0.20 H), 3.85-3.74 (m, 1.80 H), 2.40 (s, 0.30 H), 2.19 (s, 2.70 H), 1.38 (s, 2.69 H), 1.31 (s, 0.30 H), 1.14 (d, *J* = 14.8 Hz, 1 H), 1.04 (d, *J* = 15.2 Hz, 1 H), 0.89 (t, *J* = 7.8 Hz, 9 H), 0.52-0.42 (m, 6 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 168.3, 159.6 (d, ¹*J* (C-F) = 240.6 Hz), 144.0 (d, ³*J* (C-F) = 7.1 Hz), 137.2 (d, ⁴*J* (C-F) = 1.8 Hz), 117.8 (d, ³*J* (C-F) = 7.8 Hz), 113.7 (d, ²*J* (C-F) = 22.5 Hz), 109.3 (d, ²*J* (C-F) = 27.3 Hz), 63.4, 42.6, 30.6, 26.0, 23.9, 7.4, 4.3; ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ - 118.83; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₈H₂₉FNOSi 322.1997; Found 322.1995.

1-(5-chloro-3-methyl-3-((triethylsilyl)methyl)indolin-1-yl)ethan-1-one (3na). Yellow liquid, 90% yield (151.5 mg). Column chromatography on silica gel (Petroleum ether/EtOAc = 7:1). ¹H NMR (400 MHz, CDCl₃, ppm) present in 8.7:1 ratio of rotational isomers about the amide: δ 8.10 (d, J = 8.4 Hz, 1 H), 7.15-7.07 (m,

2 H), 3.94-3.84 (m, 0.21 H), 3.84-3.74 (m, 1.81 H), 2.41 (s, 0.31 H), 2.20 (s, 2.70 H), 1.38 (s, 2.70 H), 1.32 (s, 0.31 H), 1.15 (d, J = 15.2 Hz, 1 H), 1.04 (d, J = 15.2 Hz, 1 H), 0.90 (t, J = 8.0 Hz, 9 H), 0.53-0.38 (m, 6 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 168.6, 143.9, 139.7, 128.6, 127.4, 122.4, 117.8, 63.4, 42.6, 30.6, 26.1, 24.0, 7.4, 4.3; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₈H₂₉ClNOSi 338.1701; Found 338.1700.

1-(4,6-dichloro-3-methyl-3-((triethylsilyl)methyl)indolin-1-yl)ethan-1-one (**3pa).** Colorless liquid, 47% yield (88.4 mg). Column chromatography on silica gel (Petroleum ether/EtOAc = 7:1). ¹**H NMR** (400 MHz, CDCl₃, ppm): δ 8.21 (d, *J* = 1.2 Hz, 1 H), 6.95 (d, *J* = 2.0 Hz, 1 H), 3.84 (d, *J* = 10.4 Hz, 1 H), 3.74 (d, *J* = 10.4 Hz, 1 H), 2.18 (s, 3 H), 1.54 (s, 3 H), 1.38-1.29 (m, 2 H), 0.88 (t, *J* = 7.8 Hz, 9 H), 0.45-0.40 (m, 6 H); ¹³**C NMR** (100 MHz, CDCl₃, ppm): δ 168.9, 143.8, 135.4, 133.9, 130.3, 124.9, 115.9, 64.1, 43.9, 28.8, 24.3, 23.7, 7.4, 4.3; **HRMS (ESI-TOF)** *m/z*: [M + H]⁺ Calcd for C₁₈H₂₈Cl₂NOSi 372.1312; Found 372.1307.

1-(3-((triethylsilyl)methyl)indolin-1-yl)ethan-1-one (3qa). White solid, 67% yield (97.0 mg). Column chromatography on silica gel (Petroleum ether/EtOAc = 7:1). M.p. = 51-53 °C. ¹H NMR (400 MHz, CDCl₃, ppm) present in 4.6:1 ratio of rotational isomers about the amide: δ 8.17 (d, *J* = 8.0 Hz, 1 H), 7.23-7.01 (m, 3 H), 4.39 (t, *J* = 10.6 Hz, 0.18 H), 4.16 (t, *J* = 9.2 Hz, 0.82 H), 3.57-3.31 (m, 2 H), 2.42 (s, 0.53 H), 2.21 (s, 2.46 H), 1.23-1.18 (m, 1 H), 0.98 (t, *J* = 7.8 Hz, 9 H), 0.88-0.82 (m, 1 H), 0.63-0.56 (m, 6 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 168.5, 141.9, 137.9, 127.6, 123.7, 123.3, 116.8, 57.2, 36.4, 24.2, 18.3, 7.4, 3.9; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₇H₂₈NOSi 290.1935; Found 290.1932.

1-(3-methyl-3-((triethylsilyl)methyl)indolin-1-yl)propan-1-one (3ra). Yellow liquid, 79% yield (124.9 mg). Column chromatography on silica gel (Petroleum ether/EtOAc = 10:1). ¹H NMR (400 MHz, CDCl₃, ppm) present in 7.1:1 ratio of rotational isomers about the amide: δ 8.20 (d, *J* = 8.0 Hz, 1 H), 7.20-7.12 (m, 2 H), 7.04-7.00 (m, 1 H), δ 3.93-3.86 (m, 0.24 H), 3.82-3.71 (m, 1.71 H), 2.69 (s, 0.24 H), 2.45-2.39 (m, 1.71 H), 1.38 (s, 2.64 H), 1.33 (s, 0.37 H), 1.23 (t, *J* = 7.4 Hz, 3 H), 1.17 (d, *J* = 15.2 Hz, 1 H), 1.06 (d, *J* = 15.2 Hz, 1 H), 0.88 (t, *J* = 7.8 Hz, 9 H), 0.49-0.39 (m, 6 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 171.9, 141.7, 141.4, 127.6, 123.6, 122.0, 116.8, 62.4, 42.6, 30.9, 29.2, 26.1, 8.7, 7.4, 4.4; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₉H₃₂NOSi 318.2248; Found 318.2245.

(3-methyl-3-((triethylsilyl)methyl)indolin-1-yl)(phenyl)methanone (3sa). Colorless liquid, 45% yield (81.7 mg). Column chromatography on silica gel (Petroleum ether/EtOAc = 10:1). ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.08 (s, 1 H), 7.63-7.61 (m, 2 H), 7.55-7.52 (m, 3 H), 7.32-7.30 (m, 1 H), 7.21-7.15 (m, 1 H), 7.10-7.06 (m, 1 H), 3.91-3.85 (m, 2 H), 1.41 (s, 3 H), 1.23(d, *J* = 14.9 Hz, 1 H), 1.11 (d, *J* = 14.9 Hz, 1 H), 0.86 (t, *J* = 7.9 Hz, 9 H), 0.49-0.38 (m, 6 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 168.0, 143.0, 141.5, 137.6, 130.1, 128.4, 127.1, 127.0, 123.9, 122.5, 116.7, 64.6, 42.4, 29.5, 25.2, 6.8, 4.0; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₂₃H₃₂NOSi 366.2248; Found 366.2244.

tert-butyl 3-methyl-3-((triethylsilyl)methyl)indoline-1-carboxylate (3ta). Colorless liquid, 54% yield (97.6 mg). Column chromatography on silica gel (Petroleum

ether/EtOAc = 100:1). ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.62 (s, 1 H), 7.17-7.10 (m, 2 H), 6.97-6.93 (m, 1 H), 3.78-3.65 (m, 2 H), 1.56 (s, 9 H), 1.36 (s, 3 H), 1.11-1.00 (m, 2 H), 0.87 (t, *J* = 8.0 Hz, 9 H), 0.43 (s, 6 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 152.5, 142.6, 141.4, 127.4, 122.3, 114.6, 80.4, 61.9, 41.7, 30.8 (2 C), 28.5, 26.7, 7.4, 4.3; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₂₁H₃₆NO₂SiNa 384.2329; Found 384.2325.

tert-butyl 5-chloro-3-methyl-3-((triethylsilyl)methyl)indoline-1-carboxylate (3ua). Yellow liquid, 90% yield (178.6 mg). Column chromatography on silica gel (Petroleum ether/EtOAc = 100:1). ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.53 (s, 1 H), 7.11-7.04 (m, 2 H), 3.78-3.65 (m, 2 H), 1.55 (s, 9 H), 1.35 (s, 3 H), 1.10 (d, *J* = 14.4 Hz, 1 H), 1.00 (d, *J* = 14.8 Hz, 1 H), 0.88 (t, *J* = 8.0 Hz, 9 H), 0.46-0.44 (m, 6 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 152.3, 143.5, 140.0, 127.3, 122.6, 115.6, 80.7, 62.1, 41.8, 30.5 (2 C), 28.4, 26.5, 7.4, 4.3; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₂₁H₃₅ClNO₂SiNa 418.1940; Found 418.1939.

1-(3-methyl-3-((trihexylsilyl)methyl)indolin-1-yl)ethan-1-one (3ab). Light yellow liquid, 58% yield (136.5 mg). Column chromatography on silica gel (Petroleum ether/EtOAc = 7:1). ¹H NMR (400 MHz, CDCl₃, ppm) present in 5.3:1 ratio of rotational isomers about the amide: δ 8.17 (d, *J* = 8.0 Hz, 1 H), 7.20-7.12 (m, 2 H), 7.05-7.01 (m, 1 H), 3.92-3.85 (m, 0.31 H), 3.83-3.72 (m, 1.66 H), 2.44 (s, 0.48 H), 2.21 (s, 2.55 H), 1.39-1.14 (m, 28 H), 1.05 (d, *J* = 14.8 Hz, 1 H), 0.88 (t, *J* = 6.8 Hz, 9 H), 0.48-0.34 (m, 6 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 168.5, 141.8, 141.2, 127.6, 123.8, 122.0, 116.9, 63.4, 42.6, 33.6, 31.5, 31.0, 27.2, 24.2, 23.8, 22.6, 14.1, 13.6; HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ Calcd for C₃₀H₅₄NOSi 472.3969; Found 472.3970.

1-(3-methyl-3-((triisopropylsilyl)methyl)indolin-1-yl)ethan-1-one (3ac). Colorless liquid, 31% yield (54.3 mg). Column chromatography on silica gel (Petroleum ether/EtOAc = 10:1). ¹H NMR (400 MHz, CDCl₃, ppm) present in 5.1:1 ratio of rotational isomers about the amide: δ 8.17 (d, *J* = 8.0 Hz, 1 H), 7.24-7.16 (m, 2 H), 7.10-7.03 (m, 1 H), 4.01-3.92 (m, 0.33 H), 3.92-3.76 (m, 1.67 H), 2.44 (s, 0.49 H), 2.21 (s, 2.51 H), 1.41 (s, 2.51 H), 1.36 (s, 0.49 H), 1.28 (d, *J* = 15.2 Hz, 1 H), 1.15 (d, *J* = 15.2 Hz, 1 H), 1.06-1.03 (m, 21 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 168.6, 142.8, 140.9, 127.6, 123.9, 121.9, 116.9, 63.6, 42.5, 31.0, 24.3, 23.4, 19.1, 19.0, 11.9; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₂₁H₃₆NOSiNa 368.2380; Found 368.2378.

1-(3-((*tert***-butyldimethylsilyl)methyl)-3-methylindolin-1-yl)ethan-1-one (3ad).** Colorless liquid, 25% yield (37.8 mg). Column chromatography on silica gel (Petroleum ether/EtOAc = 10:1). ¹H NMR (400 MHz, CDCl₃, ppm) present in 5.1:1 ratio of rotational isomers about the amide: δ 8.18 (d, *J* = 8.0 Hz, 1 H), 7.21-7.17 (m, 1 H), 7.13-7.09 (m, 1 H), 7.06-7.02 (m, 1 H), 3.97-3.83 (m, 0.33 H), 3.83-3.74 (m, 1.67 H), 2.44 (s, 0.49 H), 2.21 (s, 2.49 H), 1.40 (s, 2.49 H), 1.34 (s, 0.49 H), 1.18-1.08 (m, 2 H), 0.83 (s, 9 H), 0.00 (s, 3 H), -0.18 (s, 0.50 H), -0.25 (s, 2.50 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 168.6, 141.7, 141.2, 127.7, 123.8, 122.2, 116.9, 63.2, 42.5, 31.4, 26.4, 26.2, 24.3, 16.5, -4.1, -4.9; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₈H₃₀NOSi 304.2091; Found 304.2092.

1-(3-((dimethyl(phenyl)silyl)methyl)-3-methylindolin-1-yl)ethan-1-one(3ae).Colorless liquid, 77% yield (125.0 mg). Column chromatography on silica gel

(Petroleum ether/EtOAc = 7:1). ¹H NMR (400 MHz, CDCl₃, ppm) present in 9.2:1 ratio of rotational isomers about the amide: δ 8.18 (d, J = 8.0 Hz, 1 H), 7.46-7.35 (m, 5 H), 7.22-7.18 (m, 1 H), 7.12-7.10 (m, 1 H), 7.04-7.00 (m, 1 H), 3.90-3.80 (m, 0.19 H), 3.54-3.42 (m, 1.75 H), 2.39 (s, 0.29 H), 1.72 (s, 2.67 H), 1.42-1.27 (m, 5 H), 0.25 (s, 0.29 H), 0.19 (s, 3 H), -0.02 (s, 2.67 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 169.9, 142.7, 142.0, 140.2, 134.7, 130.3, 129.1, 128.9, 124.9, 123.4, 118.0, 63.5, 43.7, 33.1, 32.7, 24.9, -0.0, -1.7; HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ Calcd for C₂₀H₂₆NOSi 324.1778; Found 324.1774.

1-(3-methyl-3-((methyldiphenylsilyl)methyl)indolin-1-yl)ethan-1-one (3af). Colorless liquid, 66% yield (128.0 mg). Column chromatography on silica gel (Petroleum ether/EtOAc = 7:1). ¹H NMR (400 MHz, CDCl₃, ppm) present in 12.6:1 ratio of rotational isomers about the amide: δ 8.17 (d, *J* = 8.0 Hz, 1 H), 7.50-7.30 (m, 10 H), 7.24-7.14 (m, 2 H), 7.05-7.02 (m, 1 H), 3.90-3.75 (m, 0.15 H), 3.57-3.38 (m, 1.85 H), 2.33 (s, 0.22 H), 1.77 (d, *J* = 15.2 Hz, 1 H), 1.63 (d, *J* = 14.8 Hz, 1 H), 1.58 (s, 2.78 H), 1.45 (s, 2.78 H), 1.31 (s, 0.22 H), 0.47 (s, 0.22 H), 0.19 (s, 2.78 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 168.8, 141.6, 140.7, 137.7, 136.8, 134.6, 134.3, 129.5, 129.3, 128.0, 127.9 (2 C), 123.8, 122.3, 116.9, 62.2, 42.5, 31.7, 29.8, 23.6, -3.9; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₂₅H₂₈NOSi 386.1935; Found 386.1933.

1-(3-methyl-3-((triphenylsilyl)methyl)indolin-1-yl)ethan-1-one (3ag). White solid, 78% yield (175.4 mg). Column chromatography on silica gel (Petroleum ether/EtOAc = 15:1). M.p. = 156-158 °C. ¹H NMR (400 MHz, CDCl₃, ppm) present in 14.0:1 ratio of rotational isomers about the amide: δ 8.11-8.09 (m, 1 H), 7.58-7.56 (m, 6 H), 7.44-7.35 (m, 9 H), 7.17-7.14 (m, 2 H), 6.99-6.95 (m, 1 H), 3.76-3.65 (m, 0.13 H), 3.51-3.18 (m, 1.90 H), 2.29 (s, 0.20 H), 2.16 (d, *J* = 15.2 Hz, 1 H), 1.95 (d, *J* = 15.2 Hz, 1

H), 1.71 (s, 2.80 H), 1.32 (s, 2.80 H), 1.28 (s, 0.20 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 168.6, 142.0, 141.0, 135.8, 134.8, 129.7, 128.1, 127.7, 123.8, 122.1, 116.8, 62.5, 42.7, 30.9, 27.0, 23.8; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₃₀H₃₀NOSi 448.2091; Found 448.2093.

5. Radical trapping experiment

To study the reaction mechanism, several control experiments were carried out under the optimized reaction conditions (Scheme S2). When 2.0 equiv. of TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxyl) was added to the system, the reaction was completely inhibited. By adding 2.0 equiv. of radical scavenger 1,1-diphenylethylene to the reaction mixture, the reaction was totally suppressed and corresponding adducts **4** and **5** could be detected by GC-MS. When 2.0 equiv. of BHT (2,6-di-tert-butyl-4-methylphenol) was added to the reaction, no target product was obtained and GC-MS analysis indicated that compounds **6** and **7** were formed. These results showed that the reaction system proceeded in a free radical way.

Scheme S2. Radical trapping experiment

Figure S2. GC-MS (EI, m/z) of compound 5

6. X-Ray crystallographic data of 3aa

The product **3aa** was recrystallized from petroleum ether. Further information can be found in the CIF file. This crystal was deposited in the Cambridge Crystallographic Data Centre and assigned as CCDC**2120950**.

Figure S5. Single-crystal X-ray Molecular Structure of 3aa

l'able	S2.	Crystal	data and	l struct	ure re	finement	for 3	3aa
--------	------------	---------	----------	----------	--------	----------	-------	-----

Identification code	3 aa
Empirical formula	C ₁₈ H ₂₉ NOSi
Formula weight	303.51
Temperature/K	293(2)
Crystal system	monoclinic
Space group	C2/c
a/Å	22.3463(8)
b/Å	7.5222(3)
c/Å	22.4194(11)
α/°	90
β/°	102.133(4)
$\gamma/^{\circ}$	90
Volume/Å ³	3684.4(3)
Ζ	8
$\rho_{calc}g/cm^3$	1.094
μ/mm^{-1}	1.104
F(000)	1328.0
Crystal size/mm ³	$0.18 \times 0.08 \times 0.06$
Radiation	CuKa ($\lambda = 1.54184$)

2Θ range for data collection/°	8.068 to 134.14
Index ranges	$-26 \le h \le 26, -5 \le k \le 8, -26 \le l \le 26$
Reflections collected	12393
Independent reflections	$3274 [R_{int} = 0.0402, R_{sigma} = 0.0365]$
Data/restraints/parameters	3274/0/195
Goodness-of-fit on F ²	1.037
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0470, wR_2 = 0.1276$
Final R indexes [all data]	$R_1 = 0.0606, wR_2 = 0.1415$
Largest diff. peak/hole / e Å ⁻³	0.32/-0.17

7. References

a) D. Q. Liang, D. D. Ge, Y. P. Lv, W. Z. Huang, B. L. Wang and W. L. Li, *J Org Chem.*, 2018, 83, 4681-4691; b) D. Q. Liang, Q. S. Dong, P. H. Xu, Y. Dong, W. L. Li and Y. Ma, *J Org Chem.*, 2018, 83, 11978-11986; c) Y. N. Li, Y. Chang, Y. F. Li, C. Cao, J. S. Yang, B. L. Wang and D. Q. Liang, *Adv. Synth. Catal.*, 2018, 360, 2488-2492.

8. ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra of the products

Figure S6. ¹H NMR (400 MHz, CDCl₃) of compound 3aa

Figure S7. ¹³C NMR (100 MHz, CDCl₃) of compound 3aa

Figure S8.¹H NMR (400 MHz, CDCl₃) of compound 3ba

Figure S9. ¹³C NMR (100 MHz, CDCl₃) of compound 3ba

Figure S10. ¹H NMR (400 MHz, CDCl₃) of compound 3ca

Figure S11. ¹³C NMR (100 MHz, CDCl₃) of compound 3ca

Figure S12. ¹H NMR (400 MHz, CDCl₃) of compound 3da

Figure S13. ¹³C NMR (100 MHz, CDCl₃) of compound 3da

Figure S14. ¹H NMR (400 MHz, CDCl₃) of compound 3ea

Figure S15. ¹³C NMR (100 MHz, CDCl₃) of compound 3ea

Figure S16. ¹H NMR (400 MHz, CDCl₃) of compound 3fa

Figure S17. ¹³C NMR (100 MHz, CDCl₃) of compound 3fa

Figure S18. ¹H NMR (400 MHz, CDCl₃) of compound 3ga

Figure S19. ¹³C NMR (100 MHz, CDCl₃) of compound 3ga

Figure S20. ¹⁹F NMR (376 MHz, CDCl₃) of compound 3ga

Figure S21. ¹H NMR (400 MHz, CDCl₃) of compound 3ha

Figure S22. ¹³C NMR (100 MHz, CDCl₃) of compound 3ha

Figure S23. ¹⁹F NMR (376 MHz, CDCl₃) of compound 3ha

Figure S24. ¹H NMR (400 MHz, CDCl₃) of compound 3ia

Figure S25. ¹³C NMR (100 MHz, CDCl₃) of compound 3ia

Figure S26. ¹H NMR (400 MHz, CDCl₃) of compound 3ja

Figure S27. ¹³C NMR (100 MHz, CDCl₃) of compound 3ja

Figure S28. ¹H NMR (400 MHz, CDCl₃) of compound 3la

Figure S29. ¹³C NMR (100 MHz, CDCl₃) of compound 3la

Figure S30. ¹H NMR (400 MHz, CDCl₃) of compound 3ma

Figure S31. ¹³C NMR (100 MHz, CDCl₃) of compound 3ma

Figure S32. ¹⁹F NMR (376 MHz, CDCl 3) of compound 3ma

Figure S33. ¹H NMR (400 MHz, CDCl₃) of compound 3na

Figure S34. ¹³C NMR (100 MHz, CDCl₃) of compound 3na

Figure S35. ¹H NMR (400 MHz, CDCl₃) of compound 3pa

Figure S36. ¹³C NMR (100 MHz, CDCl₃) of compound 3ba

Figure S37. ¹H NMR (400 MHz, CDCl₃) of compound 3qa

Figure S38. ¹³C NMR (100 MHz, CDCl₃) of compound 3qa

Figure S39. ¹H NMR (400 MHz, CDCl₃) of compound 3ra

Figure S40. ¹³C NMR (100 MHz, CDCl₃) of compound 3ra

Figure S41. ¹H NMR (400 MHz, CDCl₃) of compound 3sa

Figure S42. ¹³C NMR (100 MHz, CDCl₃) of compound 3sa

Figure S43. ¹H NMR (400 MHz, CDCl₃) of compound 3ta

Figure S44. ¹³C NMR (100 MHz, CDCl₃) of compound 3ta

Figure S45. ¹H NMR (400 MHz, CDCl₃) of compound 3ua

Figure S46. ¹³C NMR (100 MHz, CDCl₃) of compound 3ua

Figure S47. ¹H NMR (400 MHz, CDCl₃) of compound 3ab

Figure S48. ¹³C NMR (100 MHz, CDCl₃) of compound 3ab

Figure S49. ¹H NMR (400 MHz, CDCl₃) of compound 3ac

Figure S50. ¹³C NMR (100 MHz, CDCl₃) of compound 3ac

Figure S51. ¹H NMR (400 MHz, CDCl₃) of compound 3ad

Figure S52. ¹³C NMR (100 MHz, CDCl₃) of compound 3ad

Figure S53. ¹H NMR (400 MHz, CDCl₃) of compound 3ae

Figure S54. ¹³C NMR (100 MHz, CDCl₃) of compound 3ae

Figure S55. ¹H NMR (400 MHz, CDCl₃) of compound 3af

Figure S56. ¹³C NMR (100 MHz, CDCl₃) of compound 3af

Figure S57. ¹H NMR (400 MHz, CDCl₃) of compound 3ag

Figure S58. ¹³C NMR (100 MHz, CDCl₃) of compound 3ag