Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

Radical-Mediated Hydroalkylation of Alkenes *via* Fe-Catalysed Hydrogen Atom Transfers

(Supporting Information)

Tianxiang Zhu,*^a Zihan Zhou, ^a Zitong Xu, ^a Mengtao Ma, ^a and Binlin Zhao *^a ^aDepartment of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China.

1. General Information	2
2. Preparation of Starting Materials	2
3. General Procedures for the Fe-catalysed Hydroalkylation of Alkenes	6
4. Characterization Data of the Products 3.	6
5. Synthetic Applications	17
6. References	20
7. Copies of NMR Spectra	20

1. General Information.

Unless otherwise noted, all reactions were performed under an argon atmosphere using flame-dried glassware. All new compounds were fully characterized. NMR-spectra were recorded on Bruker ARX-400 MHz or a ARX-600 Associated. ¹H NMR spectra data were reported as δ values in ppm relative to chloroform (δ 7.26) if collected in CDCl₃. ¹³C NMR spectra data were reported as δ values in ppm relative to chloroform (δ 7.26) if collected in CDCl₃. ¹⁴H NMR coupling constants were reported in Hz, and multiplicity was indicated as follows: s (singlet); d (doublet); t (triplet); q (quartet); quint (quintet); m (multiplet); dd (doublet of doublets); ddd (doublet of doublets); ddd (doublet of doublet of doublets); dt (triplet of doublets); dt (doublet of quartets); app (apparent); br (broad). Mass spectra were conducted at Micromass Q-Tof instrument (ESI) and Agilent Technologies 5973N (EI). All reactions were carried out in flame-dried 25-mL Schlenk tubes with Teflon screw caps under argon. Unless otherwise noted, materials obtained from commercial suppliers were used without further purification.

2. Preparation of Starting Materials.

2.1 Prearation of alkenes 2.

Alkenes 2 was prepared according to the reported procedure^[1]. A 10-mL round bottomed flask was charged with the carbonyl compound (2.0 mmol), active methylene compound (2.0 mmol), catalyst DABCO (22.4 mg, 10 mol %) and water (2 mL). The reaction mixture was stirred at the room temperature. The formation of the products was monitored by TLC. After completion of the reaction, the reaction mixture often solidified in the round bottomed flask. The solid mixture was filtered and washed with

cold water to remove impurities, and then dried to obtain the products. In general, no further purification method was required.

2-Benzylidenemalononitrile (2a)

CN According to the general procedure, **2a** was prepared from the corresponding aldehyde (10 mmol) as a white solid (1.43 g, 93 %). **2a** The spectral data are in accordance with previous reported

literature^[2].

2-(4-Methylbenzylidene)malononitrile (2b)

According to the general procedure, **2b** was prepared from the corresponding aldehyde (2 mmol) as a white solid (295.7 mg, 88 %). The spectral data are in accordance with previous reported

literature^[2].

2-(2-Methylbenzylidene)malononitrile (2c)

According to the general procedure, **2c** was prepared from the corresponding aldehyde (2 mmol) as a white solid (302.4 mg, 90 %). The spectral data are in accordance with previous reported literature^[3]

2-(4-Methoxybenzylidene)malononitrile (2d)

According to the general procedure, **2d** was prepared from the corresponding aldehyde (2 mmol) as a white solid (331.2 mg, 90 %). The spectral data are in accordance with previous

reported literature^{[2].}

2-(4-(Trifluoromethyl)benzylidene)malononitrile (2e)

According to the general procedure, **2e** was prepared from the corresponding aldehyde (2 mmol) as a white solid (368.5 mg, 83 %). The spectral data are in accordance with previous

85 %). The spectral data are in accordance with pre-

reported literature^{[5].}

2-(4-Fluorobenzylidene)malononitrile (2f)

CN According to the general procedure, **2f** was prepared from the S3

corresponding aldehyde (2 mmol) as a white solid (316.5 mg, 92 %). The spectral data are in accordance with previous reported literature^{[2].}

2-(4-Chlorobenzylidene)malononitrile (2g)

According to the general procedure, **2g** was prepared from the corresponding aldehyde (2 mmol) as a yellow solid (336.4 mg, 89%). The spectral data are in accordance with previous reported

literature^[2].

2-(2-Chlorobenzylidene)malononitrile (2h)

According to the general procedure, **2h** was prepared from the corresponding aldehyde (2 mmol) as a yellow solid (297.0 mg, 79 %). The spectral data are in accordance with previous reported literature^[3].

2-(4-Bromobenzylidene)malononitrile (2i)

According to the general procedure, **2i** was prepared from the corresponding aldehyde (2 mmol) as a yellow solid (419.4 mg, 90%). The spectral data are in accordance with previous reported

literature^[2].

2-(2-Bromobenzylidene)malononitrile (2j)

According to the general procedure, **2j** was prepared from the corresponding aldehyde (2 mmol) as a brown solid (382.1 mg, 82 %). The spectral data are in accordance with previous reported literature^[4].

2-(3-Hydroxybenzylidene)malononitrile (2k)

According to the general procedure, **2k** was prepared from the corresponding aldehyde (2 mmol) as a yellow solid (238.0 mg, 70 %). The spectral data are in accordance with previous

reported literature^[6].

2-(3,5-Dimethoxybenzylidene)malononitrile (21)

corresponding aldehyde (2 mmol) as a yellow solid (355.2 mg, 83 %): ¹H NMR (400 MHz, CDCl₃) δ 7.69 (s, 1H), 7.04 (d, J = 2.2 Hz, 2H), 6.70 (t, J = 2.3 Hz, 1H), 3.84 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 161.3, 160.1, 132.4, 113.6, 112.6, 108.2, 107.2, 83.2, 55.7; HRMS m/z (ESI) calcd for C₁₂H₁₁N₂O₂ (M + H)⁺ 215.0815, found 215.0818.

2-(2-Bromo-4-methoxybenzylidene)malononitrile (2m)

According to the general procedure, **2m** was prepared from the corresponding aldehyde (2 mmol) as a white solid (426 mg, 81 %). ¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, J = 8.9 Hz, 1H), 8.15 (s, 1H), 7.25 (s, 1H), 7.01 – 6.98 (m, 1H), 3.90 (s, 3H); ¹³C

NMR (101 MHz, CDCl₃) δ 157.4, 131.1, 123.3, 119.5, 117.1, 115.5, 114.4, 113.9, 112.6, 56.1; HRMS m/z (ESI) calcd for C₁₁H₈BrN₂O (M + H)⁺ 262.9815, found 262.9820.

2-(3,4,5-Trimethoxybenzylidene)malononitrile (2n)

According to the general procedure, **2n** was prepared from the corresponding aldehyde (2 mmol) as a yellow solid (405.0 mg, 83 %): ¹H NMR (400 MHz, CDCl₃) δ 7.65 (s, 1H), 7.19 (s, 2H), 3.98 (s, 3H), 3.91 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 159.4,

153.4, 153.0, 126.0, 114.0, 108.3, 61.3, 56.4; **HRMS m/z (ESI)** calcd for $C_{13}H_{13}N_2O_3$ (M + H)⁺ 245.0921, found 245.0922.

2-(Thiophen-3-ylmethylene)malononitrile (20)

According to the general procedure, **20** was prepared from the corresponding aldehyde (2 mmol) as a gray solid (256.0 mg, 80 %): ¹H NMR (400 MHz, CDCl₃) δ 8.18 – 8.17 (m, 1H), 7.80 – 7.78 (m, 1H), 7.76 (s, 1H), 7.52 – 7.50 (m, 1H); ¹³C NMR (101

MHz, **CDCl**₃) δ 152.2, 136.8, 134.0, 128.5, 126.9, 113.8, 77.2; **HRMS m/z (ESI)** calcd for C₈H₄N₂NaS (M + Na)⁺ 182.9987, found 182.9989.

2-((1*H*-Indol-7-yl)methylene)malononitrile (2p)

corresponding aldehyde (2 mmol) as a white solid (308.8 mg, 90 %).¹H NMR (600 MHz, DMSO) δ 11.83 (s, 1H), 8.90 (s, 1H), 8.03 (d, *J* = 7.7 Hz, 1H), 7.94 (d, *J* = 7.7 Hz, 1H), 7.57 (t, *J* = 2.8 2p Hz, 1H), 7.24 (t, J = 7.7 Hz, 1H), 6.62 (dd, J = 3.2, 1.8 Hz, 1H); ¹³C NMR (151 MHz, **DMSO**) δ 156.6, 136.1, 129.8, 128.4, 127.6, 121.4, 112.0, 115.7, 115.4, 114.4, 102.9, 79.3; **HRMS m/z (ESI)** calcd for $C_{12}H_{18}N_3$ (M + H)⁺ 194.0713, found 194.0715.

According to the general procedure, 2p was prepared from the

3. General Procedures for the Fe-catalysed Hydroalkylation of

Alkenes.

Flame-dried 10 mL Schlenk tube filled with N₂, alkenes 2 (0.2 mmol, 1.0 equiv), Fe(acac)₃ (0.01 mmol, 5 mol%) were added under N_2 , evacuated and purged with N_2 for three times, then alkenes 1 (0.3 mmol, 1.5 equiv), PhSiH₃ (0.4 mmol, 2 equiv), and EtOH (1.0 mL) were added. The formed mixture was stirred at 35 °C under N2 for 12 h as monitored by TLC. The solvent was removed under vaccum directly. The crude product was purified by flash column chromatography on silica gel (eluent: PE/EA) to afford the product **3**.

4. Characterization Data of the Products 3.

2-(3-((tert-Butyldiphenylsilyl)oxy)-2,2-dimethyl-1-phenylpropyl)malononitrile (3ba)

- 3.37 (m, 3H), 1.17 (s, 9H), 1.10 (s, 3H), 0.95 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 135.7, 135.6, 132.4, 130.2, 130.0, 129.6, 128.7, 128.6, 128.0, 127.8, 113.5, 113.2, 71.3, 52.1, 39.5, 27.0, 24.8, 24.1, 22.3, 19.2; HRMS m/z (ESI) calcd for C₃₀H₃₅N₂OSi $(M + H)^{+}$ 467.2513, found 467.2511.

2-(3-Hydroxy-2,2-dimethyl-1-phenylpropyl)malononitrile (3ca)

3ca

Eluent in chromatography: petroleum ether/ethyl acetate 5:1, 3ca was obtained as a white solid (38.7 mg, 85 %): ¹H NMR (400 MHz, **CDCl**₃) δ 7.33–7.30 (m, 2H), 7.27 – 7.24 (m, 1H), 7.19 – 7.17 (m, 2H), 4.46 (s, 2H), 3.84 (d, J = 10.7 Hz, 1H), 3.70 (d, J = 10.6 Hz, 1H), 3.31 (s, 1H), 1.05 (s, 3H), 0.61 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 163.3, 139.8, 129.4, 127.9, 127.1, 121.4, 74.7, 58.5, 48.6, 32.2, 25.1, 21.3; **HRMS m/z (ESI)** calcd for $C_{14}H_{17}N_2O (M + H)^+ 229.1335$, found 229.1336.

2-(4-Hydroxy-2,2-dimethyl-1-phenylbutyl)malononitrile (3da)

2-(2,2-Diethyl-1-phenylbutyl)malononitrile (3ea)

Eluent in chromatography: petroleum ether/ethyl acetate 15:1, 3ea was obtained as a colorless oil (25.7 mg, 51 %). ¹H NMR (500 MHz, **CDCl**₃) δ 7.45 – 7.37 (m,5H), 4.21 (d, J = 5.5 Hz, 1H), 3.23 (d, J =5.5 Hz, 1H), 1.60 - 1.48 (m, 6H), 0.83 (t, J = 7.5 Hz, 9H); ¹³C NMR (**126 MHz, CDCl**₃) δ 136.0, 130.0, 128.7, 128.6, 113.4, 113.3, 53.1,

42.0, 27.7, 25.1, 8.6; **HRMS m/z (ESI)** calcd for $C_{17}H_{22}N_2Na$ (M + Na)⁺ 277.1675, S7 found 277.1677.

2-((1-methylcyclohexyl)(phenyl)methyl)malononitrile (3fa)

2-(Phenyl(1-phenylcyclohexyl)methyl)malononitrile (3ga)

Eluent in chromatography: petroleum ether/ethyl acetate 20:1, 3ga was obtained as a colorless oil (56.8 mg, 90 %): ¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.32 (m, 10H), 3.61 (d, J = 5.7 Hz, 1H), 3.12 (d, J = 5.7 Hz, 1H), 2.59 – 2.63 (m, 1H), 2.36 – 2.40(m, 1H), 1.70 – 1.59 (m, 2H), 1.51 -1.35 (m, 4H), 1.14 - 1.07(m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ

140.7, 135.0, 130.1, 129.3, 128.7, 128.5, 127.8, 127.3, 113.3, 113.0, 59.4, 46.5, 36.5, 30.6, 25.8, 25.2, 22.3, 21.9; **HRMS m/z (ESI)** calcd for $C_{22}H_{23}N_2$ (M + H)⁺315.1856, found 315.1859.

2-(Cycloheptyl(phenyl)methyl)malononitrile (3ha)

Eluent in chromatography: petroleum ether/ethyl acetate 15:1, 3ha was obtained as a colorless oil (24.4 mg, 48 %): ¹H NMR (400 MHz, **CDCl**₃) δ 7.42 – 7.31 (m, 5H), 4.19 (d, J = 5.9 Hz, 1H), 3.01 – 2.98 (m, 1H), 2.31 – 2.23 (m, 1H), 1.95 – 1.90 (m,1H), 1.74 – 1.45 (m, 7H), 1.36 - 1.10 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 136.9, 129.1, 128.7, 128.4, 112.2, 111.9, 52.1, 40.4, 32.6, 30.6, 28.6, 27.8, 27.7, 25.9, 25.8;

HRMS m/z (ESI) calcd for $C_{17}H_{20}N_2Na (M + Na)^+ 275.1519$, found 275.1525.

2-(Cyclooctyl(phenyl)methyl)malononitrile (3ia)

2-(2-Cyclohexyl-1-phenylpropyl)malononitrile (3ja)

Eluent in chromatography: petroleum ether/ethyl acetate 20:1, **3ja** was obtained as a colorless oil (46.4 mg 87 % dr = 1/1.1): Major: ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.34 (m, 5H), 4.14 – 4.12 (m, 1H), 3.11 (dd, *J* = 10.1, 5.5 Hz, 1H), 2.18 – 2.10 (m, 1H), 1.85 – 1.63 (m, 3H), 1.34 – 1.03 (m, 8H), 0.69 (d, *J* = 6.9 Hz, 3H); Minor: Le CDCL) δ 7.42 – 7.24 (m, 5H) 4.14 – 4.12 (m, 1H) 2.02 (dd, *J* =

¹**H NMR (400 MHz, CDCl₃)** δ 7.42 – 7.34 (m, 5H), 4.14 – 4.12 (m, 1H), 3.03 (dd, J = 11.5, 4.4 Hz, 1H), 2.18 – 2.10 (m, 1H), 1.85 – 1.63 (m, 3H), 1.34 – 1.03 (m, 11H); All isomers: ¹³**C NMR (101 MHz, CDCl₃)** δ 137.1, 137.0, 129.2, 129.1, 128.8, 128.7, 128.3, 128.1, 112.2, 111.9, 111.8, 50.1, 48.9, 39.7, 39.6, 39.1, 38.6, 32.1, 32.0, 28.2, 27.5, 26.7, 26.6, 26.5, 26.4, 26.3, 26.2, 26.0, 25.4, 12.8, 12.5; **HRMS m/z (ESI)** calcd for C₁₈H₂₃N₂ (M + H)⁺ 267.1856, found 267.1853.

2-(2,3,3-Trimethyl-1-phenylbutyl)malononitrile (3ka)

Eluent in chromatography: petroleum ether/ethyl acetate 20:1, **3ka** was obtained as a colorless oil (30.3 mg, 63 %, dr = 1/8): Major: ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.37 (m, 5H), 4.11 (d, J = 4.2 Hz, 1H), 3.23 (dd, J = 8.1, 4.2 Hz, 1H), 2.28 – 2.22 (m, 1H), 1.25 (d, J = 7.1 Hz, 3H), 0.82 (s, 9H); Minor: ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.37 (m, 5H), 4.05 (d, J = 10.7 Hz, 1H), 3.69 (dd, J = 10.7, 3.1 Hz, 1H), 2.05 – 2.02 (m, 1H), 1.11 (d, J = 7.2 Hz, 3H), 0.86 (s, 9H); All isomers: ¹³C NMR (101 MHz, CDCl₃) δ 140.0, 129.4, 129.03, 128.95, 128.6, 128.6, 128.5, 112.6, 112.4, 112.22, 59

112.20, 48.1, 47.7, 45.0, 44.3, 34.7, 29.5, 29.12, 28.4, 28.0, 13.7, 10.6; **HRMS m/z (ESI)** calcd for $C_{16}H_{21}N_2$ (M + H)⁺ 241.1699, found 241.1705.

3ka

2-(3-Ethoxy-2-methyl-1-phenylpropyl)malononitrile (3la)

Eluent in chromatography: petroleum ether/ethyl acetate 15:1, 3la OEt CN was obtained as a colorless oil (21.2 mg, 44 %, dr = 1/1.3): Major: ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.34 (m, 5H), 4.80 (d, J = 9.5 Hz, 1H), 3.61 - 3.46 (m, 2H), 3.43 - 3.34 (m, 1H), 3.24 (dd, J = 9.5, 3la 5.4 Hz, 1H), 3.19 – 3.13 (m, 1H), 2.63 – 2.56 (m, 1H), 1.28 – 1.20 (m, 3H), 0.94 (d, J = 6.9 Hz, 3H); Minor: ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.34 (m, 5H), 4.72 (d, J = 5.4 Hz, 1H), 3.61 – 3.46 (m, 2H), 3.43 – 3.34 (m, 1H), 3.19 – 3.13 (m, 1H), 3.09 (dd, J = 9.9, 5.4 Hz, 1H, 2.54 - 2.45 (m, 1H), 1.28 - 1.20 (m, 3H), 0.77 (d, J = 6.9 Hz, 3H); All isomers: ¹³C NMR (101 MHz, CDCl₃) δ 136.6, 134.4, 129.1, 129.0, 128.8, 128.7, 128.7, 128.4, 113.0, 112.6, 112.4, 74.4, 72.3, 66.9, 66.7, 50.81, 50.5, 35.0, 34.7, 28.0, 27.7, 15.9, 15.7, 15.2, 15.1; HRMS m/z (ESI) calcd for $C_{15}H_{18}N_2NaO$ (M + Na)⁺ 265.1311, found 265.1315.

2-(1,2-Diphenylpropyl)malononitrile (3ma)^[8]

Eluent in chromatography: petroleum ether/ethyl acetate 15:1, 3ma was obtained as a white solid (26.7 mg, 51 %, dr > 20/1): ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.33 (m, 10H), 3.61 (d, J = 4.1 Hz, 1H), 3.45 – 3.34 (m, 1H), 3.21 (dd, *J* = 11.7, 4.1 Hz, 1H), 1.15 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 142.4, 135.5, 129.7, 129.3,

129.1, 128.5, 128.1, 127.1, 112.1, 111.4, 53.6, 42.0, 28.7, 20.6; HRMS m/z (ESI) calcd for $C_{18}H_{16}N_2Na (M + Na)^+ 283.1206$, found 283.1211.

2-(2-(4-Dromophenyl)-1-phenylpropyl)malononitrile (3na)

Eluent in chromatography: petroleum ether/ethyl acetate 20:1, **3na** was obtained as a white solid (27.5 mg, 40 %, dr > 20/1) S10 ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 8.4 Hz, 2H), 7.51 – 7.43 (m, 5H), 7.27 – 7.25 (m, 2H), 3.61 (d, J = 4.3 Hz, 1H), 3.42 – 3.37 (m, 1H), 3.17 (dd, J = 11.6, 4.3 Hz, 1H), 1.12 (d, J = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 141.3, 135.2, 132.8, 129.4, 129.3, 128.8, 128.4, 121.9, 111.8, 111.3, 53.3, 41.6, 28.6, 20.5; HRMS m/z (ESI) calcd for C₁₈H₁₅BrN₂Na (M + Na)⁺ 361.0311, found 361.0312.

2-(2-(4-Methoxyphenyl)-1-phenylpropyl)malononitrile (30a)

2H), 1.39 (d, J = 6.9 Hz, 3H); Minor: ¹H NMR (400 MHz, CDCl₃) δ 7.54 – 7.27 (m, 7H), 6.98 – 6.95 (m, 2H), 3.68 (s, 3H), 3.64 (d, J = 4.1 Hz, 1H), 3.29 (d, J = 6.9 Hz, 2H); 1.12 (d, J = 6.8 Hz, 3H); All isomers: ¹³C NMR (101 MHz, CDCl₃) δ 158.7, 134.8, 132.3, 129.3, 129.2, 128.9, 128.6, 128.6, 128.1, 115.0, 113.8, 112.6, 112.0, 55.4, 55.2, 53.9, 52.7, 41.3, 40.7, 28.1, 27.5, 20.7, 20.2; HRMS m/z (ESI) calcd for C₁₉H₁₈N₂NaO (M + Na)⁺ 313.1311, found 313.1313.

2-(2,2-Dimethyl-1-phenylpentyl)malononitrile (3aa)^[7]

Eluent in chromatography: petroleum ether/ethyl acetate 15:1, **3aa** was obtained as a colorless oil (39.4 mg, 82 %): ¹H NMR (400 MHz, **CDCl₃**) δ 7.40 – 7.39 (m, 5H), 4.21 (d, *J* = 5.4 Hz, 1H), 3.08 (d, *J* = 5.4 Hz, 1H), 1.35 – 1.26 (m, 4H), 1.14 (s, 3H), 1.00 (s, 3H), 0.93 – 0.87 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 136.0, 129.5, 128.7,

128.6, 113.3, 113.1, 55.3, 43.5, 37.5, 25.4, 25.0, 24.8, 17.0, 14.6; **HRMS m/z (ESI)** calcd for $C_{16}H_{21}N_2$ (M + H)⁺ 241.1699, found 241.1702.

2-(2,2-Dimethyl-1-(p-tolyl)pentyl)malononitrile (3ab)

Eluent in chromatography: petroleum ether/ethyl acetate 20:1, **3ab** was obtained as a colorless oil (46.3 mg, 91%): ¹H NMR _{S11} (400 MHz, CDCl₃) δ 7.28 (d, J = 8.0 Hz, 2H), 7.19 (d, J = 7.9 Hz, 2H), 4.19 (d, J = 5.4Hz, 1H), 3.04 (d, J = 5.4 Hz, 1H), 2.37 (s, 3H), 1.31 - 1.28 (m, 4H), 1.12 (s, 3H), 0.99(s, 3H), 0.91 - 0.88 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 138.3, 132.9, 129.39, 129.35, 113.4, 113.2, 55.0, 43.5, 37.4, 25.4, 25.0, 24.9, 21.1, 17.0, 14.6; HRMS m/z (ESI) calcd for $C_{17}H_{23}N_2$ (M + H)⁺255.1856, found 255.1855.

2-(2,2-Dimethyl-1-(o-tolyl)pentyl)malononitrile (3ac)

Eluent in chromatography: petroleum ether/ethyl acetate 20:1, 3ac was obtained as a colorless oil (36.9 mg, 73%): ¹H NMR (400 MHz, CN **CDCl**₃) δ 7.58 – 7.55 (m, 1H), 7.26 – 7.24 (m, 3H), 4.18 (d, J = 6.2Hz, 1H), 3.56 (d, *J* = 6.2 Hz, 1H), 2.41 (s, 3H), 1.36 – 1.34 (m, 4H), 1.16 (s, 3H), 0.95 (s, 3H), 0.94 – 0.91 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 137.6, 135.0, 131.3, 128.2, 127.4, 126.4, 113.2, 113.1, 48.3, 43.5, 38.3, 25.2, 24.9, 24.8, 20.7, 17.1, 14.6; **HRMS m/z (ESI)** calcd for $C_{17}H_{23}N_2$ (M + H)⁺255.1856, found 255.1858.

2-(1-(4-Methoxyphenyl)-2,2-dimethylpentyl)malononitrile (3ad)

3H); ¹³C NMR (101 MHz, CDCl₃) δ 159.6, 130.6, 127.9, 114.0, 113.4, 113.2, 55.2, 54.7, 43.5, 37.5, 25.3, 25.0, 17.0, 14.6; HRMS m/z (ESI) calcd for C₁₇H₂₂N₂NaO (M + Na)⁺ 293.1624, found 293.1626.

2-(2,2-Dimethyl-1-(4-(trifluoromethyl)phenyl)pentyl)malononitrile (3ae)

Eluent in chromatography: petroleum ether/ethyl acetate 15:1, **3ae** was obtained as a colorless oil (30.2 mg, 49 %): ¹H NMR (400 MHz, CDCl₃) δ 7.69 – 7.67 (m, 2H), 7.56 (d, J = 8.1 Hz, S12

2H), 4.23 (d, J = 5.2 Hz, 1H), 3.14 (d, J = 5.2 Hz, 1H), 1.35 – 1.27 (m, 4H), 1.15 (s, 3H), 1.01 (s, 3H), 0.92 – 0.89 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 139.9, 130.9 (q, J = 32.9 Hz), 130.0, 125.7 (q, J = 3.9 Hz), 123.8 (q, J = 272.5 Hz), 112.9, 112.6,55.1, 43.4, 37.5, 25.4, 24.9, 24.5, 17.0, 14.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.8; **HRMS m/z (ESI)** calcd for $C_{17}H_{19}F_3N_2Na$ (M + Na)⁺ 331.1393, found 331.1395.

2-(1-(4-Fluorophenyl)-2,2-dimethylpentyl)malononitrile (3af)

2-(1-(4-Chlorophenyl)-2,2-dimethylpentyl)malononitrile (3ag)

Eluent in chromatography: petroleum ether/ethyl acetate 10:1, **3ag** was obtained as a colorless oil (47.6 mg, 87 %): ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.34(m, 4H), 4.19 (d, J = 5.2 Hz, 1H), 3.05 (d, J = 5.3 Hz, 1H), 1.33 - 1.25(m, 4H), 1.12 (s, 3H), 0.99 (s, 3H), 0.91 – 0.88 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 134.7, 134.4, 130.9, 129.0, 113.1, 112.8, 54.7, 43.4, 37.5, 25.23, 24.9, 24.7, 16.9, 14.6; **HRMS m/z (ESI)** calcd for $C_{16}H_{20}ClN_2$ (M + H)⁺ 275.1310, found 275.1312.

2-(1-(2-Chlorophenyl)-2,2-dimethylpentyl)malononitrile (3ah)

Eluent in chromatography: petroleum ether/ethyl acetate 15:1, 3ah was obtained as a colorless oil (31.0 mg, 56 %): ¹H NMR (400 MHz, **CDCl₃**) δ 7.73 – 7.70 (m, 1H), 7.50 – 7.48 (m, 1H), 7.36 – 7.31 (m, S13

2H), 4.19 (d, J = 5.9 Hz, 1H), 4.07 (d, J = 6.0 Hz, 1H), 1.41 – 1.35 (m, 4H), 1.16 (s, 3H), 0.98 (s, 3H), 0.94 – 0.91 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 136.0, 134.1, 130.4, 129.6, 129.0, 127.2, 113.1, 112.5, 48.1, 43.3, 38.4, 25.1, 24.6, 24.5, 17.1, 14.6; **HRMS m/z (ESI)** calcd for $C_{16}H_{20}CIN_2$ (M + H)⁺ 275.1310, found 275.1315.

2-(1-(4-Bromophenyl)-2,2-dimethylpentyl)malononitrile (3ai)

Eluent in chromatography: petroleum ether/ethyl acetate 15:1, **3ai** was obtained as a colorless oil (47.5 mg, 74 %): ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.52 (m, 2H), 7.31 – 7.28 (m, 2H), 4.19 (d, J = 5.2 Hz, 1H), 3.04 (d, J = 5.2 Hz, 1H), 1.33 - 1.26 (m, J = 5.2 Hz, 1H), 1.34 - 1.26 (m, J = 5.2 Hz, 1H), 1.34 + 1.26 (m, J = 5.2 Hz, 1H), 1.34 + 1.26 (m, J = 5.2 Hz, 1H), 1.34 + 1.264H), 1.12 (s, 3H), 0.99 (s, 3H), 0.91 – 0.88 (m, 3H); ¹³C NMR

(**101 MHz, CDCl₃**) δ 134.9, 131.9, 131.1, 122.9, 113.0, 112.8, 54.8, 43.4, 37.4, 25.3, 24.9, 24.6, 16.9, 14.6; **HRMS m/z (ESI)** calcd for $C_{16}H_{20}BrN_2$ (M + H)⁺ 319.0804, found 319.0810; HRMS m/z (ESI) calcd for $C_{16}H_{20}BrN_2$ (M + H)⁺ 319.0804, found 319.0810.

2-(1-(2-Bromophenyl)-2,2-dimethylpentyl)malononitrile (3aj)

3aj

Eluent in chromatography: petroleum ether/ethyl acetate 15:1, 3aj was obtained as a colorless oil (31.7 mg, 50%): ¹H NMR (400 MHz, **CDCl**₃) δ 7.72 – 7.67 (m, 2H), 7.42 – 7.38 (m, 1H), 7.21 – 7.25 (m, 1H), 4.18 (d, *J* = 5.9 Hz, 1H), 4.08 (d, *J* = 5.9 Hz, 1H), 1.46 - 1.34 (m, 4H), 1.17 (s, 3H), 0.98 (s, 3H), 0.95 - 0.92 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) & 135.8, 133.9, 129.9, 129.0, 127.8, 127.4, 113.0, 112.4, 50.9, 43.4,

38.5, 25.1, 24.6, 24.5, 17.1, 14.6; **HRMS m/z (ESI)** calcd for $C_{16}H_{20}BrN_2$ (M + H)⁺ 319.0804, found 319.0805.

2-(1-(3-Hydroxyphenyl)-2,2-dimethylpentyl)malononitrile (3ak)

Eluent in chromatography: petroleum ether/ethyl acetate 4:1, **3ak** was obtained as a colorless oil (42.1 mg, 80 %): ¹H NMR (400 MHz, CDCl₃) δ 7.27 – 7.23 (m, 1H), 6.95 – 6.83 (m, 3H), S14

4.64 (br s, 1H), 4.20 (d, J = 5.5 Hz, 1H), 3.01 (d, J = 5.5 Hz, 1H), 1.37 – 1.28 (m, 4H), 1.13 (s, 3H), 1.00 (s, 3H), 0.88 – 0.91 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 155.8, 137.6, 129.9, 122.0, 116.4, 115.7, 113.4, 113.1, 55.0, 43.5, 37.4, 25.4, 25.0, 24.8, 17.0, 14.6; **HRMS m/z (ESI)** calcd for $C_{16}H_{21}N_2O (M + H)^+ 257.1648$, found 257.1652.

2-(1-(3,5-Dimethoxyphenyl)-2,2-dimethylpentyl)malononitrile (3al)

Eluent in chromatography: petroleum ether/ethyl acetate 10:1, **3al** was obtained as a colorless oil (31.2 mg, 52 %): ¹H NMR (400 MHz, CDCl₃) δ 6.54 (d, J = 2.2 Hz, 2H), 6.46 (d, J = 2.2Hz, 1H), 4.17 (d, J = 5.5 Hz, 1H), 3.80 (s, 6H), 2.98 (d, J = 5.5Hz, 1H), 1.34 – 1.31 (m, 4H), 1.14 (s, 3H), 1.01 (s, 3H), 0.92 –

0.87 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 160.7, 138.1, 113.4, 113.1, 108.0, 100.0, 55.3, 55.3, 43.5, 37.4, 25.5, 25.0, 24.7, 17.0, 14.6; HRMS m/z (ESI) calcd for $C_{18}H_{25}N_2O_2 (M + H)^+ 301.1911$, found 301.1915.

2-(1-(2-Bromo-4-methoxyphenyl)-2,2-dimethylpentyl)malononitrile (3am)

Eluent in chromatography: petroleum ether/ethyl acetate 15:1, **3an** was obtained as a colorless oil (58.7 mg, 85 %): ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, J = 8.8 Hz, 1H), 7.21 (d, J = 2.7Hz, 1H), 6.96 - 6.93 (m, 1H), 4.16 (d, J = 5.8 Hz, 1H), 3.98 (d, J = 5.7 Hz, 1H), 3.82 (s, 3H), 1.40 – 1.34 (m, 4H), 1.14 (s, 3H), $0.97 (s, 3H), 0.97 - 0.91 (m, 3H); {}^{13}C NMR (101 MHz, CDCl_3) \delta 159.6, 129.3, 127.8,$

127.5, 118.8, 114.0, 113.1, 112.6, 55.5, 50.3, 43.4, 38.5, 25.1, 24.7, 17.1, 14.6; HRMS m/z (ESI) calcd for C₁₉H₂₁BrN₂NaO (M + Na)⁺ 371.0729, found 371.0733.

2-(2,2-Dimethyl-1-(3,4,5-trimethoxyphenyl)pentyl)malononitrile (3an)

(m, 4H), 1.14 (s, 3H), 1.01 (s, 3H), 0.93 – 0.87 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 153.0, 138.1, 131.3, 113.5, 113.0, 106.9, 60.9, 56.2, 55.4, 43.6, 37.6, 25.4, 25.0, 24.8, 17.0, 14.6; **HRMS m/z (ESI)** calcd for C₁₉H₂₇N₂O₃ (M + H)⁺ 331.2016, found 331.2020.

2-(2,2-Dimethyl-1-(thiophen-3-yl)pentyl)malononitrile (3ao)

Eluent in chromatography: petroleum ether/ethyl acetate 15:1, **3ao** was obtained as a white solid (41.6 mg, 84%): ¹H NMR (500 MHz, CDCl₃) δ 7.40 – 7.36 (m, 2H), 7.21 (dd, J = 4.9, 1.5 Hz, 1H), 4.15 (d, J = 4.4 Hz, 1H), 3.27 (d, J = 4.4 Hz, 1H), 1.33 – 1.24 (m,4H), 1.12 (s, 3H), 1.01 (s, 3H), 0.92 – 0.87 (m, 3H); ¹³C NMR (126 MHz,

CDCl₃) δ 135.8, 128.1, 126.1, 124.8, 113.3, 113.0, 51.1, 43.4, 37.4, 25.3, 25.0, 24.9, 16.9, 14.6; **HRMS m/z (ESI)** calcd for C₁₄H₁₉N₂S (M + H)⁺247.1263, found 247.1266.

2-(1-(1*H*-Indol-7-yl)-2,2-dimethylpentyl)malononitrile (3ap)

Eluent in chromatography: petroleum ether/ethyl acetate 5:1, **3ap** was obtained as a yellow solid (35.2 mg, 63 %): ¹H NMR (500 MHz, CDCl₃) δ 8.18 (s, 1H), 7.65 (d, *J* = 7.9 Hz, 1H), 7.41 (d, *J* = 7.5 Hz, 2H), 7.21 – 7.17 (m, 1H), 6.60 (dd, *J* = 3.3, 1.9 Hz, 1H), 4.29 (d, *J* =

 $\begin{array}{l} \textbf{3ap} & 6.0 \text{ Hz}, 1\text{H}), \ 3.48 \ (\text{d}, J = 6.0 \text{ Hz}, 1\text{H}), \ 1.47 - 1.32 \ (\text{m}, 4\text{H}), \ 1.18 \ (\text{s}, 3\text{H}), \ 1.01 \ (\text{s}, 3\text{H}), \ 0.88 \ (\text{t}, J = 6.9 \text{ Hz}, 1\text{H}); \ ^{13}\text{C} \text{ NMR} \ (\textbf{126} \text{ MHz}, \textbf{CDCl}_3) \ \delta \ 135.7, \ 128.6, \ 124.7, \ 121.0, \ 120.1, \ 112.0, \ 119.4, \ 113.5, \ 113.2, \ 103.6, \ 49.3, \ 43.2, \ 38.6, \ 25.4, \ 25.0, \ 24.9, \ 17.3, \ 14.6; \ \textbf{HRMS} \ \textbf{m/z} \ (\textbf{ESI}) \ \textbf{calcd} \ \textbf{for} \ C_{18}\text{H}_{21}\text{N}_3\text{Na} \ (\text{M} + \text{Na})^+ \ 302.1628, \ \textbf{found} \ 302.1632. \end{array}$

Ethyl 2-cyano-4,4-dimethyl-3-phenylheptanoate (3aq)

1.24 (m, 4H), 1.13 (s, 3H), 1.01 – 0.94 (m, 6H), 0.89 (t, J = 6.7 Hz, 3H); Minor: ¹H s16

NMR (600 MHz, Chloroform-*d*) δ 7.33 – 7.24 (m, 3H), 7.18 – 7.16 (m, 2H), 3.91 (q, *J* = 7.1 Hz, 2H), 3.88 – 3.86 (m, 1H), 3.38 (d, *J* = 9.3 Hz, 1H), 1.40 – 1.24 (m, 4H), 1.08 (s, 3H), 1.01 – 0.94 (m, 6H), 0.89 (t, *J* = 6.7 Hz, 3H); All isomers: ¹³C NMR (151 MHz, CDCl₃) δ 166.2, 165.8, 138.4, 137.0, 133.3, 130.2, 128.0, 127.9, 127.6, 127.4, 117.7, 117.5, 62.6, 54.3, 43.6, 43.3, 39.5, 39.1, 37.3, 37.0, 25.7, 25.5, 25.4, 24.8, 17.03, 16.96, 14.8, 14.6, 13.6, 13.5; HRMS m/z (ESI) calcd for C₁₈H₂₆NO₂ (M + H)⁺ 288.1958, found 288.1961.

5. Synthetic Applications.

Flame-dried 50 mL Schlenk tube filled with N_2 , alkenes **2a** (4 mmol, 1.0 equiv), Fe(acac)₃ (0.2 mmol, 5 mol%) were added under N_2 , evacuated and purged with N_2 for three times, then 2-methyl-1-pentene (6 mmol, 1.5 equiv), PhSiH₃ (8 mmol, 2 equiv), and EtOH (20.0 mL) were added. The formed mixture was stirred at 35 °C under N_2 for 12 h as monitored by TLC. The solution was filtered, then concentrated and purified using column chromatography isolation on silica gel by gradient elution with petroleum ether/ethyl acetate (20:1) to give the ester **3aa** as a colorless oil (710.6 mg, 74 %).

Methyl 3,3-dimethyl-2-phenylhexanoate (4)

Under O_2 atmosphere, Methanol (32 mg, 1 mmol, 10.0 equiv) was added to a solution of alkylation product **3aa** (24 mg, 0.1 mmol, 1.0 equiv) and Cs_2CO_3 (65.2 mg, 0.2 mmol, 2.0 equiv) in CH₃CN (1.0 mL). The resulting mixture was stirred at 50 °C for s17

16 h. The solution was filtered, then concentrated and purified using column chromatography isolation on silica gel by gradient elution with petroleum ether/ethyl acetate (100:1) to give the ester **4** as a colorless oil (21.5 mg, 92 %).¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.39 (m, 2H), 7.31 – 7.25 (m, 3H), 3.63 (s, 3H), 3.52 (s, 1H), 1.34 – 1.30 (m, 3H), 1.19 – 1.16 (m, 1H), 1.01 (s, 3H), 0.90 (s, 3H), 0.88 – 0.86 (m, 3H);¹³C NMR (101 MHz, CDCl₃) δ 173.6, 136.0, 130.1, 127.8, 127.0, 60.2, 51.3, 43.1, 37.1, 24.6, 24.2, 17.0, 14.8; HRMS m/z (ESI) calcd for C₁₅H₂₃O₂ (M + H)⁺235.1693, found 235.1696.

N-Allyl-3,3-dimethyl-2-phenylhexanamide (5)

Under O₂ atmosphere, allylamine (34.2 mg, 0.6 mmol, 2.0 equiv) was added to a solution of alkylation product **3aa** (72 mg, 0.3 mmol, 1.0 equiv) and K₂CO₃ (82.8 mg, 1.0 mmol, 2.0 equiv) in CH₃CN (3.0 mL). The resulting mixture was stirred at RT until the compound **3aa** was completely consumed as monitored by TLC. The solution was filtered, then concentrated and purified using column chromatography isolation on silica gel by gradient elution with petroleum ether/ethyl acetate (20:1) to give the amide **5** as a colorless oil (71.6 mg, 92 %). ¹**H NMR (400 MHz, CDCl₃)** δ 7.46 – 7.44 (m, 2H), 7.29 – 7.24 (m, 3H), 5.84 (t, *J* = 5.9 Hz, 1H), 5.79 – 5.72 (m, 1H), 5.07 – 5.02 (m, 2H), 3.92– 3.87 (m, 1H), 3.72 – 3.67 (m, 1H) 3.15 (s, 1H), 1.43 – 1.20 (m, 4H), 1.06 (s, 3H), 0.95 (s, 3H), 0.87 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.6, 137.2, 134.3, 130.0, 127.6, 126.8, 115.9, 62.0, 43.1, 41.6, 37.1, 24.8, 24.3, 17.1, 14.8; **HRMS m/z (ESI)** calcd for C₁₇H₂₆NO (M + H)⁺260.2009, found 260.2007.

4-(2,2-Dimethyl-1-phenylpentyl)-1H-pyrazole-3,5-diamine (6)

The alkylation product **3aa** (120 mg, 0.5 mmol, 1.0 equiv) was dissolved in hydrazine hydrate (150 mg, 3.0 mmol, 6.0 equiv). The mixture was heated under reflux for 4 h, and then cooled to room temperature. Ethanol was added and the precipitated was collected. Recrystallization from ethyl acetate and hexane gave the pyrazole-3,5-diamine **6** as a yellow solid (112.9 mg, 83 %). ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.35 (m, 2H), 7.22 (t, *J* = 7.7 Hz, 2H), 7.16 – 7.12 (m, 1H), 5.56 (br s, 4H), 3.48 (s, 1H), 1.49 – 1.42 (m, 1H), 1.37 – 1.19 (m, 3H), 1.10 (s, 3H), 1.02 (s, 3H), 0.81 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 149.2, 142.2, 129.5, 128.1, 125.8, 92.7, 50.8, 43.6, 39.1, 27.0, 25.8, 17.3, 15.0; HRMS m/z (ESI) calcd for C₁₆H₂₅N₄ (M + H)⁺ 273.2074, found 273.2076.

6. References

- [1] Y. Yu, Z. Wang, J. Chin. Chem. Soc. 2013, 60, 288.
- [2] H. Xu, L. Pan, X. Fang, B. Liu, W. Zhang, M. Lu, Y. Xu, H. Chang, *Tetrahedron Lett.* 2017, 58, 2360.
- [3] P. Burate, B. Javle, P. Desale, A, Kinage, Catal. Lett. 2019, 149, 2368.
- [4] Z. Jia, K. Wang, B. Tan, Y. Gu, ACS Catal. 2017, 7, 3693.
- [5] Y. Wei, S. Zhang, S. Yin, C. Zhao, S. Luo, C. Au, *Catal. Commun.* 2011, 12, 1333.
- [6] G. Li, J. Xiao, W. Zhang, Green Chem. 2011, 13, 1828.
- [7] P. Jia, Q. Li, H. Jiang, J. Wu, Chem 2020, 6, 1766.
- [8] R. Zhou, H. Liu, H. Tao, X. Yu, J. Wu, Chem. Sci. 2017, 8, 4654.

7. Copies of NMR Spectra

140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 f1 (ppm)

140 135 150 125 120 115 110 105 100 45 40 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 f1 (ppm)

140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 f1 (ppm)

75 70 65 f1 (ppm) 30 25 40 35

A 161 A 172 A

3ga ¹H NMR (400 MHz, CDCI₃, 25 °C)

s s s s / /

140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 F1 (ppm)

140 135 130 125 120 115 110 105 100 95 90 85 75 70 65 f1 (ppm)

51	8	33	39 44	14
137.	35.	131.	28.	113.
Ĩ.	1	- T	SIZ	Ŷ

-48.26 -38.30 -38.30 -38.49 -38.30 -38.30 -38.30 -17.12 -14.64

3ac ¹³C NMR (100 MHz, CDCI₃, 25 °C)

3ah ¹³C NMR (100 MHz, CDCI₃, 25 °C)

3aj ¹³C NMR (100 MHz, CDCI₃, 25 °C)

3ak ¹³C NMR (100 MHz, CDCl₃, 25 °C)

