Supporting Information

Cross Dehydrogenation Coupling Reaction of Purine Derivatives

with Thioethers

Xinjie Li, Peng Qi, and Hongguang Du*

Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China. E-mail: dhg@mail.buct.edu.cn.

Contents

1.	Crystal structure of compound 3a	3
2	Substrate Scope of the Azoarenes	4
3	Radical Trapping Experiment with TEMPO	5
4	References	6
5	¹ H NMR and ¹³ C NMR Spectra of the Products	7

1. Crystal structure of compound 3a

Fig. 1 Crystal structure of compound 3a.The thermal ellipsoids are drawn at the 30% probability level

3.1 Sample preparation

3a was dissolved in dichloromethane, and *n*-hexane was subsequently dripped into the system. Then the tube was sealed with parafilm and the system was placed at room temperature to afford the single crystal of 3a.

3.2 Crystal structure determination of 3a

Crystal Data. C₉H₁₁ClN₄S, M = 242.73, monoclinic, a = 5.0066(4) Å, b = 12.2115(7) Å, c = 18.0086(15) Å, $\beta = 91.708(9)^{\circ}$, U = 1100.53(14) Å³, T = 113.60(10), space group P2₁/n (no. 14), Z = 4, μ (Mo K α) = 0.508, 4424 reflections measured, 2161 unique ($R_{int} = 0.0278$) which were used in all calculations. The final wR(F2) was 0.0822 (all data).

Identification code	3a
Empirical formula	C ₉ H ₁₁ ClN ₄ S
Formula weight	242.73
Temperature / K	113.60(10)
Crystal system	monoclinic
Space group	P2 ₁ /n
a / Å, b / Å, c / Å	5.0066(4), 12.2115(7), 18.0086(15)
$\alpha/^{\circ}, \beta/^{\circ}, \gamma/^{\circ}$	90.00, 91.708(9), 90.00

Table 1: Crystal data and structure refinement for 3a

Volume / Å ³	1100.53(14)
Ζ	4
$\rho_{calc} / mg mm^{-3}$	1.465
μ / mm ⁻¹	0.508
F(000)	504
Crystal size / mm ³	$0.26 \times 0.25 \times 0.23$
20 range for data collection	6.68 to 52°
Index ranges	$-6 \le h \le 5, -14 \le k \le 15, -22 \le l \le 13$
Reflections collected	4424
Independent reflections	2161[R(int) = 0.0278 (inf-0.9Å)]
Data/restraints/parameters	2161/0/138
Goodness-of-fit on F ²	1.053
Final R indexes [I> 2σ (I) i.e. $F_o>4\sigma$ (F_o)]	$R_1 = 0.0353, wR_2 = 0.0770$
Final R indexes [all data]	$R_1 = 0.0424, wR_2 = 0.0822$
Largest diff. peak/hole / e Å ⁻³	0.246/-0.263
Flack Parameters	Ν
Completeness	0.9975

2. Substrate Scope of the Azoarenes

Reaction conditions a: To a 15 mL vial, azoarenes (0.3 mmol), $PhI(OAc)_2$ (0.6 mmol, 2.0 equiv.) were dissolved in DCM (5.0 mL), then **2a** (1.5 mmol, 5.0 equiv.) were added at room temperature. The mixture was stirred in an oil heating bath at 100 °C for 6 hours. The reaction mixture was cooled to room temperature and 10.0 mL water was added, then mixture was extracted with dichloromethane (3×15 mL), the combined organic phases were dried over anhydrous Na₂SO₄ and the solvent was evaporated under vacuum.

Reaction conditions b: To a 15 mL vial, azoarenes (0.30 mmol), PhI(OAc)₂ (0.6 mmol, 2.0 equiv.) were dissolved in DCM (5.0 mL), then sulfide **2** (1.5 mmol, 5.0 equiv.) and TFA (0.45 mmol, 1.5 equiv.) were added at room temperature. The rest of the operation is the same as reaction conditions a.

^{*a*}Reaction condition: azoarenes (0.3 mmol), **2a** (1.5 mmol), PhI(OAc)₂ (2.0 equiv.), in DCM (5.0 mL) at 100 °C for 6 h. ^{*b*}Reaction condition: azoarenes (0.3 mmol), **2a** (1.5 mmol), PhI(OAc)₂ (2.0 equiv.), TFA (1.5 equiv.) in DCM (5.0 mL) at 100 °C for 6 h. ^{*c*}The yield determined by ¹H NMR with 1,3,5-trimethoxybenzene as the internal standard.

3. Radical Trapping Experiment with TEMPO

To a 15 mL vial, **3a** (0.3 mmol), $PhI(OAc)_2$ (0.6 mmol, 2.0 equiv.) and TEMPO(1.8 mmol, 6.0 equiv.) were dissolved in DCM (5.0 mL), then **2a** (1.5 mmol, 5.0 equiv.) were added at room temperature. The mixture was stirred in an oil heating bath at 100 °C for 6 hours. The reaction mixture was cooled to room temperature and 10.0 mL water was added, then mixture was extracted with dichloromethane (3×15 mL), the combined organic phases were dried over anhydrous Na₂SO₄ and the solvent was evaporated under vacuum.

HRMS (ESI) *m/z* Calcd for C₁₃H₂₈NOS [M+H]⁺, 246.1886; found : 246.1887.

HRMS (ESI) *m/z* Calcd for C₁₁H₂₂NO₃ [M+H]⁺, 216.1594; found : 216.1595

4. References

1. M. K. Mohammad Soleiman-Beigi , Reza Aryan b and Lotfi Shiri , *Letters in Organic Chemistry*, 2014, **11**.321-326

5. ¹H NMR and ¹³C NMR Spectra of the Products

¹H NMR Spectrum for **3a** (400 MHz, CDCl₃)

¹³C {¹H} NMR Spectrum for **3a** (100 MHz, CDCl₃)

¹H NMR Spectrum for **3b** (400 MHz, CDCl₃)

C {¹H} NMR Spectrum for **3b** (100 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹H NMR Spectrum for **3c** (400 MHz, CDCl₃)

 ^{13}C {¹H} NMR Spectrum for **3c** (100 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹H NMR Spectrum for **3d** (400 MHz, CDCl₃)

¹³C {¹H} NMR Spectrum for **3d** (100 MHz, CDCl₃)

¹H NMR Spectrum for **3e** (400 MHz, CDCl₃)

¹³C {¹H} NMR Spectrum for **3e** (100 MHz, CDCl₃)

 ^{13}C {¹H} NMR Spectrum for 3f(100 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹H NMR Spectrum for **3g** (400 MHz, CDCl₃)

 ^{13}C {¹H} NMR Spectrum for 3g (100 MHz, CDCl₃)

¹H NMR Spectrum for **3h** (400 MHz, CDCl₃)

¹³C {¹H} NMR Spectrum for **3h** (100 MHz, CDCl₃)

¹H NMR Spectrum for **3i** (400 MHz, CDCl₃)

¹³C {¹H} NMR Spectrum for **3i** (100 MHz, CDCl₃)

¹H NMR Spectrum for **3j** (400 MHz, CDCl₃)

¹³C {¹H} NMR Spectrum for **3j** (100 MHz, CDCl₃)

¹H NMR Spectrum for **3k** (400 MHz, CDCl₃)

¹³C {¹H} NMR Spectrum for **3k** (100 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹H NMR Spectrum for **3l** (400 MHz, CDCl₃)

¹³C {¹H} NMR Spectrum for **3l** (100 MHz, CDCl₃)

¹H NMR Spectrum for **3m** (400 MHz, CDCl₃)

¹³C {¹H} NMR Spectrum for **3m** (100 MHz, CDCl₃)

¹H NMR Spectrum for **3n** (400 MHz, CDCl₃)

^{13}C { $^{1}H} NMR Spectrum for <math display="inline">3n$ (100 MHz, CDCl_3)

¹H NMR Spectrum for **30** (400 MHz, CDCl₃)

¹³C {¹H} NMR Spectrum for **30** (100 MHz, CDCl₃)

¹H NMR Spectrum for **3p** (400 MHz, CDCl₃)

 ^{13}C {¹H} NMR Spectrum for **3p** (100 MHz, CDCl₃)

 ^{13}C {¹H} NMR Spectrum for **3q** (100 MHz, CDCl₃)

¹H NMR Spectrum for **3r** (400 MHz, CDCl₃)

 ^{13}C {¹H} NMR Spectrum for 3r (100 MHz, CDCl₃)

¹H NMR Spectrum for **3**w (400 MHz, CDCl₃)

¹³C {¹H} NMR Spectrum for **3w** (100 MHz, CDCl₃)

¹H NMR Spectrum for 4a (400 MHz, CDCl₃)

¹³C {¹H} NMR Spectrum for **4a** (100 MHz, CDCl₃)

¹H NMR Spectrum for **4b** (400 MHz, CDCl₃)

¹³C {¹H} NMR Spectrum for **4b** (100 MHz, CDCl₃)

110 100 f1 (ppm) 210 200 190 180 150 140

¹H NMR Spectrum for **4d** (400 MHz, CDCl₃)

¹³C {¹H} NMR Spectrum for 4d (100 MHz, CDCl₃)

110 100 f1 (ppm) 210 200 140 130

¹H NMR Spectrum for **4f** (400 MHz, CDCl₃)

¹³C {¹H} NMR Spectrum for **4f** (100 MHz, CDCl₃)

¹H NMR Spectrum for 4g (400 MHz, CDCl₃)

¹³C {¹H} NMR Spectrum for 4g (100 MHz, CDCl₃)

 ^{13}C {¹H} NMR Spectrum for **4h** (100 MHz, CDCl₃)

 ^{13}C {¹H} NMR Spectrum for **5** (100 MHz, CDCl₃)

