Supplementary Information

Cu-Catalyzed alkylation–cyanation type difunctionalization of styrenes with aliphatic aldehydes and TMSCN via decarbonylation

Yu-Ling Zhou, Jun-Jia Chen, Jin Chen and Luo Yang*

Table of Contens

I. General information
II. General experimental procedures
III. Conditions optimization
Table S1. Optimization of the solvent ^a S1
Table S2. Optimization of the catalyst ^a S2
Table S3. Optimization of the the reactants ratio ^a S2
Table S4. Optimization of the Ligand ^a S3
Table S5. Optimization of the temperature ^a S3
IV. Detection of homo-coupling by-product
V. Scale-up experiments
VI. Spectra data of products
VIII. Copies of ¹ H, ¹⁹ F and ¹³ C NMR spectra of products

I. General information

Unless otherwise noted, all commercially available compounds were used as purchased. Thin-layer chromatography (TLC) was performed using E. Merck silica gel 60 F254 precoated plates (0.25 mm). The developed chromatography was analyzed by UV lamp (254 nm). High-resolution mass spectra (HRMS) were obtained from a JEOL JMS-700 instrument (ESI). Melting points are uncorrected. Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Avance 400 spectrometer at ambient temperature. Chemical shifts for ¹H NMR spectra are reported in parts per million (ppm) from tetramethylsilane with the solvent resonance as the internal standard (CDCl₃: δ 7.26 ppm, DMSO: δ 2.50 ppm). Chemical shifts for ¹³C NMR spectra are reported in parts per million (ppm) from tetramethylsilane with the solvent as the internal standard (CDCl₃: δ 77.16 ppm, DMSO: δ 39.52 ppm). Data are reported as following: chemical shift, multiplicity (s = singlet, d = doublet, dd = doublet of doublets, t = triplet, q = quartet, m = multiplet, br = broad signal), coupling constant (Hz) and integration.

II. General experimental procedures

A general experimental procedure is described as following:

An oven-dried microwave reaction vessel was charged with Cu(CH₃CN)₄PF₆ (5 mol%, 3.7 mg), 2,2'-dipy (10 mol%, 3.1 mg), styrene (**1a**, 0.2 mmol, 20.8 mg), TMSCN (0.8 mmol, 79.4 mg), isobutyraldehyde (**2a**, 1.0 mmol, 72.0 mg), TBHP (0.3 mmol, 38.6 mg, 70% in water) and trifluoromethylbenzene (1.0 mL) under air atmosphere. The vessel was sealed and stirred at 100 °C (oil bath temperature) for 12 h. Afterwards the resulting mixture was cooled to room temperature, concentrated in vacuo and purified by column chromatography on silica gel with a mixture of ethyl dichloromethane/petroleum ether as the eluent to give the product **3a** 22.4 mg in 65% yield.

III. Conditions optimization

Table S1. Optimization of the solvent^a

entry	Solvent	Yield[%] ^b
1	MTBE	14
2	PhF	22
3	CH ₃ CN	trace
4	CH_2Cl_2	7
5	PhCH ₃	9
6	PhCl	18
7	PhCF ₃	30
8	EA	18

^aReaction conditions: styrene **1a** (1.0 equiv, 0.2 mmol), isobutyraldehyde **2a** (3.0 equiv, 0.6 mmol), TMSCN (2.0 equiv, 0.4 mmol), TBHP (1.5 equiv, 0.3 mmol, 70% in water), CuCl (5 mol%, 0.01 mmol), dipy (10 mol%, 0.02 mmol), **Solvent** (1.0 mL) were reacted at 90 °C (oil bath temperature) for 12 h under air atmosphere. ^bGC yield.

	+	TMSCN	5 mol% Catalyst 10 mol% dipy 1.5 equiv TBHP	CN
1a	2a		1 1101 3, 30 0, 2 11	3a
	entry	Catalyst	t(mol%)	Yield[%] ^b
	1	Cu	Cl	30
	2	Cu	Br	28
	3	C	uI	17
	4	Cu(a	$cac)_2$	18
	5	Cu	Br ₂	7
	6	Cu(C	\mathbf{Ac}_{2}	24
	7	Cu(CH ₃	CN) ₄ PF ₆	33

Table S2. Optimization of the catalyst^a

^aReaction conditions: styrene **1a** (1.0 equiv, 0.2 mmol), isobutyraldehyde **2a** (3.0 equiv, 0.6 mmol), TMSCN (2.0 equiv, 0.4 mmol), TBHP (1.5 equiv, 0.3 mmol, 70% in water), **Catalyst** (5 mol%, 0.01 mmol), dipy (10 mol%, 0.02 mmol), PhCF₃ (1.0 mL) were reacted at 90 °C (oil bath temperature) for 12 h under air atmosphere. ^bGC yield.

1	3.0:2.0:1.5	33
2	5.0:2.0:1.5	41
3	4.0:3.0:1.5	46
4	5.0:3.0:1.5	57
5	5.0:4.0:1.5	62
6	5.0:5.0:1.5	62
7	5.0:4.0:2.0	55
8	5.0:4.0:1.2	56

^aReaction conditions: styrene **1a** (1.0 equiv, 0.2 mmol), isobutyraldehyde **2a** (X equiv), TMSCN (Y equiv), TBHP (Z equiv, 70% in water), $Cu(CH_3CN)_4PF_6$ (5 mol%, 0.01 mmol), dipy (10 mol%, 0.02 mmol), PhCF₃ (1.0 mL) were reacted at 90 °C (oil bath temperature) for 12 h under air atmosphere. ^bGC yield.

^aReaction conditions: styrene **1a** (1.0 equiv, 0.2 mmol), isobutyraldehyde **2a** (5.0 equiv, 1.0 mmol), TMSCN (4.0 equiv, 0.8 mmol), TBHP (1.5 equiv, 0.3 mmol, 70% in water), $Cu(CH_3CN)_4PF_6$ (5 mol%, 0.01 mmol), **Ligand** (10 mol%, 0.02 mmol), PhCF₃ (1.0 mL) were reacted at 90 °C (oil bath temperature) for 12 h under air atmosphere. ^bGC yield.

Table S5. Optimization of the temperature^a

3	100	66
4	110	64

^aReaction conditions: styrene **1a** (1.0 equiv, 0.2 mmol), isobutyraldehyde **2a** (5.0 equiv, 1.0 mmol), TMSCN (4.0 equiv, 0.8 mmol), TBHP (1.5 equiv, 0.3 mmol, 70% in water), $Cu(CH_3CN)_4PF_6$ (5 mol%, 0.01 mmol), dipy (10 mol%, 0.02 mmol), PhCF₃ (1.0 mL) were reacted at **T** ^oC (oil bath temperature) for 12 h under air atmosphere. ^bGC yield.

IV. Detection of homo-coupling by-product

An oven-dried microwave reaction vessel was charged with Cu(CH₃CN)₄PF₆ (5 mol%, 3.7 mg), 2,2'-dipy (10 mol%, 3.1 mg), styrene (**1a**, 0.2 mmol, 20.8 mg), TMSCN (0.8 mmol, 79.4 mg), phenylacetaldehyde (**2j**, 1.0 mmol,120.0 mg), TBHP (0.3 mmol, 38.6 mg, 70% in water) and trifluoromethylbenzene (1.0 mL) under air atmosphere. The vessel was sealed and stirred at 100 $^{\circ}$ C (oil bath temperature) for 12 h. Then, the reaction mixture was cooled, adding 10 mL saturated NaCl solution and extracted with EA. Only a trace amount (<1%) of 1,2-diphenylethane was detected by GC-MS (as the following copied spectrum).

The oxidative decarbonylation of phenylacetaldehyde (2j) would produce a benzyl radical, which indeed could undergo radical-radical coupling to afford the by-product 1,2-diphenylethane 7. However, due to the "*persistent radical effect*", the benzyl radical is so reactive that it could only exist in a very low concentration, thus suppressing it's homo-coupling.

丰度

V. Scale-up experiments

^aReaction conditions: styrene **1a** (1.0 equiv), isobutyraldehyde **2a** (5.0 equiv), TMSCN (4.0 equiv), TBHP (1.5 equiv, 70% in water), Cu(CH₃CN)₄PF₆ (5 mol%), dipy (10 mol%), PhCF₃ were reacted at **100**^oC (oil bath temperature) for 12 h under air atmosphere. ^bGC yield and isolated yield in parentheses.

Experimental Procedures:

An oven-dried microwave reaction vessel was charged with $Cu(CH_3CN)_4PF_6$ (5 mol%, 186.4 mg), 2, 2'-dipy (10 mol%, 156.2 mg), styrene (1a, 10 mmol, 1.04 g), TMSCN (40 mmol, 3.97 g), 2-ethylbutanal (2d, 50 mmol, 5.0 g), TBHP (15 mmol, 1.93 g, 70% in water) and trifluoromethylbenzene (50 mL) under air atmosphere. The vessel was sealed and stirred at 100 $\,^{\circ}$ C (oil bath temperature) for 12 h. Afterwards the resulting mixture was cooled to room temperature, concentrated in vacuo and purified by column chromatography on silica gel with a mixture of ethyl dichloromethane/petroleum ether as the eluent to give the product 4d 1.07g in 53% yield.

VI. Spectra data of products

(3a) 4-Methyl-2-phenylpentanenitrile¹

The title compound was prepared according to the general procedure described above by the reaction between styrene (1a) with TMSCN and isobutyraldehyde (2a), and purified by flash column chromatography as colorless oil (22.4mg, 65%).

¹H NMR (400 MHz, CDCl₃) δ 7.40 - 7.32 (m, 5H), 3.80 (dd, *J* = 6.4 Hz, 9.6 Hz, 1H), 1.90 - 1.78 (m, 2H), 1.67 - 1.60 (m, 1H), 0.99 (d, *J* = 5.2 Hz, 3H), 0.98 (d, *J* = 5.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 136.49, 129.21, 128.10, 127.33, 121.12, 45.13, 35.65, 26.18, 22.67, 21.74. IR (cm⁻¹): 2959, 2871, 2239, 1460, 699.

(3b) 4-Methyl-2-(4-methoxyphenyl)pentanenitrile¹

The title compound was prepared according to the general procedure described above by the reaction between 4-methoxystyrene (**1b**) with TMSCN and isobutyraldehyde (**2a**), and purified by flash column chromatography as colorless oil (20.3 mg, 50%). ¹H NMR (400 MHz, CDCl₃) δ 7.23 (dt, *J* = 3.2 Hz, 10.0 Hz, 2H), 6.90 (dt, *J* = 2.8 Hz, 9.6 Hz, 2H), 3.81 (s, 3H), 3.75 (dd, *J* = 6.4 Hz, 9.2 Hz, 1H), 1.91 - 1.75 (m, 2H), 1.61 (m, 1H), 0.98 (d, *J* = 3.6 Hz, 3H), 0.97 (d, *J* = 3.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.41, 128.47, 128.47, 121.43, 114.59, 55.48, 45.16, 34.82, 26.10, 22.64, 21.82. IR (cm⁻¹): 2959, 2872, 2238, 1253, 832.

(3c) 2-(4-Tert-butylphenyl)-4-methylpentanenitrile

The title compound was prepared according to the general procedure described above by the reaction between 4-tert-butylstyrene (**1c**) with TMSCN and isobutyraldehyde (**2a**), and purified by flash column chromatography as colorless oil (27.4 mg, 60%). ¹H NMR (400 MHz, CDCl₃) δ 7.40 - 7.37 (m, 2H), 7.26 - 7.24 (m, 2H), 3.78 (dd, J =6.0 Hz, 9.2 Hz, 1H), 1.93 - 1.79 (m, 2H) 1.65 - 1.58 (m, 1H), 1.31 (s, 9H), 0.99 (d, J =4.8 Hz, 3H), 0.97 (d, J = 4.8 Hz, 3H) ; ¹³C NMR (100 MHz, CDCl₃) δ 157.11, 133.38, 126.99, 126.11, 121.32, 45.08, 35.14, 34.66, 31.39, 26.15, 22.70, 21.73. IR (cm⁻¹): 2961, 2871, 2239, 1466, 835. HRMS: calcd. for C₁₆H₂₃N Na⁺ [M + Na]⁺: 252.1723; Found: 252.1728.

(3d) 4-Methyl-2-(4-methylphenyl)pentanenitrile

The title compound was prepared according to the general procedure described above by the reaction between 4-methylphenylene (**1d**) with TMSCN and isobutyraldehyde (**2a**), and purified by flash column chromatography as colorless oil (22.0 mg, 59%). ¹H NMR (400 MHz, CDCl₃) δ 7.22 - 7.16 (m, 4H), 3.77 (dd, *J* = 6.4 Hz, 9.2 Hz, 1H), 2.35 (s, 3H), 1.92 - 1.76 (m, 2H), 1.64 - 1.57 (m, 1H). 0.98 (d, *J* = 4.8 Hz, 3H), 0.97 (d, *J* = 4.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 137.91, 133.43, 129.86, 127.21, 121.35, 45.16, 35.22, 26.12, 22.66, 21.77, 21.19; IR (cm⁻¹): 2922, 2852, 2362, 1464, 809. HRMS: calcd. for C₁₃H₁₇N Na⁺ [M + Na]⁺: 210.1253; Found: 210.1255. (3e) 2-(4-(chloromethyl)phenyl)-4-methylpentanenitrile

The title compound was prepared according to the general procedure described above by the reaction between 1-(chloromethyl)-4-ethenyl-benzene (1e) with TMSCN and isobutyraldehyde (2a), and purified by flash column chromatography as colorless oil (24.3 mg, 55%).

¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, *J* = 8.0 Hz, 2H), 7.32 (d, *J* = 8.4 Hz, 2H), 4.57 (s, 2H), 3.81 (dd, *J* = 6.0 Hz, 9.2 Hz, 1H), 1.93 - 1.77 (m, 2H), 1.65 - 1.58 (m, 1H), 0.99 (d, *J* = 4.8 Hz, 3H), 0.98 (d, *J* = 4.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 137.47, 136.67, 129.39, 127.71, 120.81, 45.62, 44.98, 35.32, 26.15, 22.62, 21.68. IR (cm⁻¹): 2957, 2870, 2362, 1240, 753. HRMS: calcd. for C₁₃H₁₆ClN Na⁺ [M + Na]⁺: 244.0863; Found: 244.0876.

(3f) 4-methyl-2-(4-(trifluoromethyl)phenyl)pentanenitrile

The title compound was prepared according to the general procedure described above by the reaction between 4-vinylbenzotrifluoride (1f) with TMSCN and isobutyraldehyde (2a), and purified by flash column chromatography as colorless oil (25.8 mg, 53%).

¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, J = 8.0 Hz, 2H), 7.47 (d, J = 8.0 Hz, 2H), 3.88 (dd, J = 6.0 Hz, 9.6 Hz, 1H), 1.96 - 1.88 (m, 2H), 1.67 - 1.61 (m, 1H), 1.00 (t, J = 6.4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 140.46, 130.64 (q, J = 32.6 Hz), 127.83, 126.55 (q, J = 3.7 Hz), 123.96 (d, J = 270.5 Hz), 120.29, 45.01, 35.60, 26.28, 22.68, 21.68; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.71 (s, 1F). IR (cm⁻¹): 2962, 2874, 2243, 1127, 740.07. HRMS: calcd. for C₁₃H₁₄F₃N Na⁺ [M + Na]⁺: 264.0971; Found: 264.0982.

(3g) 2-(4-fluorophenyl)-4-methylpentanenitrile

The title compound was prepared according to the general procedure described above by the reaction between 4-fluorostyrene (1g) with TMSCN and isobutyraldehyde (2a), and purified by flash column chromatography as colorless oil (21.7 mg, 57%).

¹H NMR (400 MHz, CDCl₃) δ 7.33 - 7.28 (m, 2H), 7.10 - 7.04 (m, 2H), 3.79 (dd, J = 6.4 Hz, 9.6 Hz, 1H), 1.93 - 1.78 (m, 2H), 1.64 - 1.57 (m, 1H), 0.99 (d, J = 4.4 Hz, 3H),

0.98 (d, J = 4.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.44 (d, J = 245.6 Hz), 132.23 (d, J = 3.2 Hz), 129.03 (d, J = 8.2 Hz), 120.96, 116.20 (d, J = 21.6 Hz), 45.13, 34.94, 26.13, 22.65, 21.73; ¹⁹F NMR (376 MHz, CDCl₃) δ -113.96 (s, 1F). IR (cm⁻¹): 2925, 2240, 2853, 1231, 837. HRMS: calcd. for C₁₂H₁₄FN Na⁺ [M + Na]⁺: 214.1002; Found: 214.1002.

(3h) 2-(4-bromophenyl)-4-methylpentanenitrile

The title compound was prepared according to the general procedure described above by the reaction between 4-bromostyrene (**1h**) with TMSCN and isobutyraldehyde (**2a**), and purified by flash column chromatography as colorless oil (39.8 mg, 60%).

¹H NMR (400 MHz, CDCl₃) δ 7.32 - 2.28 (m, 2H), 7.09 - 7.05 (m, 2H), 3.79 (dd, J = 6.4 Hz, 9.6 Hz, 1H), 1.93 - 1.78 (m, 2H), 1.64 - 1.60 (m, 1H), 1.00 (d, J = 3.6 Hz, 3H), 0.98 (d, J = 3.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 135.48, 132.37, 129.03, 122.13, 120.57, 44.93, 35.16, 26.15, 22.62, 21.70. IR (cm⁻¹): 2959, 2872, 2240, 1488, 828. HRMS: calcd. for C₁₂H₁₄BrN Na⁺ [M + Na]⁺: 274.0202; Found: 274.0200.

(3i) 2-(3-bromophenyl)-4-methylpentanenitrile

The title compound was prepared according to the general procedure described above by the reaction between 3-bromostyrene (1i) with TMSCN and isobutyraldehyde (2a), and purified by flash column chromatography as colorless oil (41.8 mg, 63%)

¹H NMR (400 MHz, CDCl₃) δ 7.48 - 7.44 (m, 2H), 7.29 - 7.33 (m, 2H), 3.78 (dd, J = 6.0 Hz, 9.6 Hz, 1H), 1.93 - 1.80 (m, 2H), 1.64 - 1.57 (m, 1H), 1.00 (d, J = 4.0 Hz, 3H), 0.99 (d, J = 4.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 138.64, 131.36, 130.77, 130.45, 126.01, 123.17, 120.42, 44.96, 35.30, 26.22, 22.69, 21.65. IR (cm⁻¹): 2959, 2872, 2241, 1471, 693. HRMS: calcd. for C₁₂H₁₄BrN Na⁺ [M + Na]⁺: 274.0202; Found: 274.0204.

(3j) 2-(2-bromophenyl)-4-methylpentanenitrile

The title compound was prepared according to the general procedure described above by the reaction between 2-bromostyrene (**1j**) with TMSCN and isobutyraldehyde (**2a**), and purified by flash column chromatography as colorless oil (41.8 mg, 63%). ¹H NMR (400 MHz, CDCl₃) δ 7.59 - 7.56 (m, 2H), 7.39 - 7.35 (m, 1H), 7.21 - 7.17 (m, 1H), 4.33 (dd, J = 6.8 Hz, 23.2 Hz, 1H), 2.01 - 1.91 (m, 1H), 1.82 - 1.76 (m, 1H), 1.67 - 1.60 (m, 1H), 1.07 (d, J = 6.8 Hz, 3H), 1.01 (d, J = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 136.15, 133.44, 129.73, 128.93, 128.50, 122.87, 120.57, 43.78, 35.67, 26.71, 23.18, 21.20. IR (cm⁻¹): 2959, 2872, 2241, 1469, 755. HRMS: calcd. for C₁₂H₁₄BrN Na⁺ [M + Na]⁺: 274.0202; Found: 274.0212.

(3k) 2-(2-chlorophenyl)-4-methylpentanenitrile

The title compound was prepared according to the general procedure described above by the reaction between 2-chlorostyrene (**1k**) with TMSCN and isobutyraldehyde (**2a**), and purified by flash column chromatography as colorless oil (24.1mg, 58%).

¹H NMR (400 MHz, CDCl₃) δ 7.34 - 7.29 (m, 3H), 7.24 - 7.21 (m, 1H), 3.79 (dd, J = 6.0 Hz, 9.2 Hz, 1H), 1.93 - 1.79 (m, 2H), 1.65 - 1.58 (m, 1H), 1.00 (d, J = 4.0 Hz, 3H), 0.99 (d, J = 4.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 138.37, 135.07, 130.50, 128.41, 127.55, 125.54, 120.44, 44.91, 35.33, 26.19, 22.66, 21.65. IR (cm⁻¹): 2960, 2872, 2241, 1473, 784. HRMS: calcd. for C₁₂H₁₄ClN Na⁺ [M + Na]⁺: 230.0707; Found: 230.0706.

(3l) 2-(3-chlorophenyl)-4-methylpentanenitrile

The title compound was prepared according to the general procedure described above by the reaction between 3-chlorostyrene (11) with TMSCN and isobutyraldehyde (2a), and purified by flash column chromatography as colorless oil (24.1 mg, 58%).

¹H NMR (400 MHz, CDCl₃) δ 7.32 - 7.30 (m, 3H), 7.24 - 7.21 (m, 1H), 3.79 (dd, J = 6.0 Hz, 9.2 Hz, 1H), 1.94 - 1.79 (m, 2H), 1.65 - 1.58 (m, 1H), 1.00 (d, J = 4.0 Hz, 3H), 0.99 (d, J = 4.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 138.40, 135.13, 130.53, 128.45, 127.60, 125.56, 120.46, 44.96, 35.38, 26.23, 22.70, 21.69. IR (cm⁻¹): 2959, 2931, 2241, 1473, 784. HRMS: calcd. for C₁₂H₁₄ClN Na⁺ [M + Na]⁺: 230.0707; Found: 230.0704 .

(3m) 4-methyl-2-(naphthalen-2-yl)pentanenitrile

The title compound was prepared according to the general procedure described above by the reaction between 2-vinylnaphthalene (**1m**) with TMSCN and isobutyraldehyde (**2a**), and purified by flash column chromatography as colorless oil (25.4 mg, 57%).

¹H NMR (400 MHz, CDCl₃) δ 7.87 - 7.81(m, 4H), 7.54 - 7.48 (m, 2H), 7.42 - 7.40 (m, 1H), 3.97 (dd, J = 6.0 Hz, 9.6 Hz, 1H), 2.02 - 1.95 (m, 1H), 1.90 - 1.82 (m, 1H), 1.76 - 1.69 (m, 1H), 1.01 (t, J = 6.4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 133.71, 133.42, 132.87, 129.17, 127.91, 127.82, 126.79, 126.53, 126.31, 124.90, 121.13, 44.97, 35.77, 26.22, 22.68, 21.77. IR (cm⁻¹): 2959, 2871.2, 2239, 1465, 749. HRMS: calcd. for C₁₆H₁₇N Na⁺ [M + Na]⁺: 246.1253; Found: 246.1266.

(3n) 4-methyl-2-(pyridin-3-yl)pentanenitrile²

The title compound was prepared according to the general procedure described above by the reaction between 2-vinylpyridine (**1n**) with TMSCN and isobutyraldehyde (**2a**), and purified by flash column chromatography as colorless oil (15.0 mg, 43%).

¹H NMR (400 MHz, CDCl₃) δ 8.58 (dd, J = 0.8 Hz, 4.8 Hz, 1H), 7.72 (td, J = 1.6 Hz, 7.6Hz, 1H), 7.43 (d, J = 7.6 Hz, 1H), 7.24 (ddd, J = 0.8 Hz, 4.8 Hz, 7.6 Hz, 1H), 4.0 (dd, J = 6.0 Hz, 10.0 Hz, 1H), 1.98 - 1.86 (m, 2H), 1.84 - 1.75 (m, 1H), 0.99 (t, J = 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 155.87, 149.98, 137.47, 123.01, 121.74, 120.35, 43.25, 38.24, 26.33, 22.82, 21.57. IR (cm⁻¹): 2960, 2873, 2242, 1470, 770.

(4b) 4,4-dimethyl-2-phenylpentanenitrile³

The title compound was prepared according to the general procedure described above by the reaction between styrene (1a) with TMSCN and pivalaldehyde (2b), and purified by flash column chromatography as colorless oil (28.1 mg, 75%).

¹H NMR (400 MHz, CDCl₃) δ 7.39 - 7.30 (m, 5H), 3.75 (dd, J = 3.6 Hz, 10.4 Hz, 1H), 2.04 (dd, J = 10.4 Hz, 14.0 Hz, 1H), 1.66 (dd, J = 3.6 Hz, 14.0 Hz, 1H), 1.05 (s, 9H); ¹³C NMR (100 MHz, CDCl3) δ 137.94, 129.25, 127.96, 127.25, 122.24, 50.04, 33.38, 31.28, 29.48. IR (cm⁻¹): 2957, 2870, 2239, 1473, 699.

(4c) 4-methyl-2-phenylhexanenitrile⁴

The title compound was prepared according to the general procedure described above by the reaction between styrene (1a) with TMSCN and 2-methylbutanal (2c), and purified by flash column chromatography as colorless oil (19.8 mg, 53%).

¹H NMR (400 MHz, CDCl₃) δ 7.39 - 7.29 (m, 5H), 3.86 - 3.78 (m, 1H), 1.99 (ddd, J = 4.0 Hz, 10.8 Hz, 13.6 Hz, 0.52×1H), 1.84 - 1.77 (m, 0.99×1H), 1.73 - 1.64 (m,

 0.52×1 H), 1.57 - 1.34 (m, 2H), 1.29 - 1.16 (m, 1H), 1.00 - 0.86 (m, 6H); 13 C NMR δ (100 MHz, CDCl₃) 136.69, 136.42, 129.20, 128.11, 128.05, 127.39, 127.26, 121.38, 120.98, 43.32, 42.96, 35.66, 35.31, 32.63, 32.05, 29.67, 28.44, 19.00, 18.55, 11.19, 10.86. IR (cm⁻¹): 2962, 2876, 2239, 1458, 699.

(4d) 4-ethyl-2-phenylhexanenitrile⁵

The title compound was prepared according to the general procedure described above by the reaction between styrene (1a) with TMSCN and 2-ethylbutanal (2d), and purified by flash column chromatography as colorless oil (24.5 mg, 61%).

¹H NMR (400 MHz, CDCl₃) δ 7.40 - 7.32 (m, 5H), 3.81 (dd, J = 6.0 Hz, 9.6 Hz, 1H), 1.96 - 1.88 (m, 1H), 1.73 - 1.64 (m, 1H), 1.53 - 1.28 (m, 5H), 0.90 - 0.85 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 136.71, 129.23, 128.11, 127.34, 121.25, 39.98, 38.09, 35.58, 25.30, 24.52, 10.73, 10.18. IR (cm⁻¹): 2963, 2875, 2239, 1458, 699.

(4e) 4-methyl-2-phenylheptanenitrile

The title compound was prepared according to the general procedure described above by the reaction between styrene (1a) with TMSCN and 2-methylpentanal (2e) and purified by flash column chromatography as colorless oil (22.1 mg, 55%).

¹H NMR (400 MHz, CDCl₃) δ 7.39 - 7.30 (m, 5H), 3.86 - 3.79 (m, 1H), 1.97 (m, 0.45×1H), 1.88 - 1.82 (m, 0.56×1H), 1.80-1.75 (m, 1H), 1.65 - 1.62 (m, 0.49×1H), 1.57 - 1.50 (m, 0.51×1H), 1.42 - 1.11 (m, 4H), 1.00 - 0.86 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 136.68, 136.40, 129.22, 128.13, 128.07, 127.41, 127.28, 121.43, 121.01, 43.70, 43.42, 39.34, 38.26, 35.64, 35.30, 30.81, 30.42, 19.94, 19.78, 19.57, 19.02, 14.35. IR (cm⁻¹): 2959, 2871, 2239, 1458, 699. HRMS: calcd. for C₁₄H₁₉N Na⁺ [M + Na]⁺: 224.1410; Found: 224.1422.

(4f) 3-(cyclohex-3-en-1-yl)-2-phenylpropanenitrile

The title compound was prepared according to the general procedure described above by the reaction between styrene (1a) with TMSCN and 1-cyclohexene-3-carboxaldehyde (2f), and purified by flash column chromatography

as colorless oil (20.3 mg, 48%).

¹H NMR (400 MHz, CDCl₃) δ 7.40 - 7.32 (m, 5H), 5.66 - 5.64 (m, 2H), 3.89 - 3.83 (m, 1H), 2.20 (t, *J* = 18.4 Hz, 1H), 2.07 (s, 2H), 2.01 - 1.93 (m, 1H), 1.84 - 1.71 (m, 4H), 1.36 - 1.27 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 136.46, 136.37, 129.27, 128.18, 128.17, 127.39, 127.33, 127.13, 125.74, 125.48, 121.19, 121.08, 43.02, 42.59, 35.14, 35.06, 31.67, 31.44, 31.33, 31.10, 28.85, 27.92, 24.87, 24.70. IR (cm⁻¹): 2918, 2844, 2239, 1451, 698. HRMS: calcd. for C₁₅H₁₇N Na⁺ [M + Na]⁺: 234.1253; Found: 234.1260.

(4g) 3-cyclohexyl-2-phenylpropanenitrile⁶

The title compound was prepared according to the general procedure described above by the reaction between styrene (1a) with TMSCN and cyclohexanecarbaldehyde (4g), and purified by flash column chromatography as colorless oil (16.2 mg, 38%).

¹H NMR (400 MHz, CDCl₃) δ 7.39 - 7.29 (m, 5H), 3.84 (dd, *J* = 6.4 Hz, 10.0 Hz, 1H), 1.90 - 1.80 (m, 2H), 1.75 - 1.60 (m, 6H), 1.57 - 1.47 (m, 1H), 1.32 - 1.09 (m, 2H), 1.01 - 0.88 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 136.61, 129.21, 128.07, 127.33, 121.27, 45.83, 35.41, 34.92, 33.39, 32.46, 26.45, 26.07, 25.98. IR (cm⁻¹): 2925, 2862, 2239, 2449, 699.

(4h) 5-(4-isopropylphenyl)-4-methyl-2-phenylpentanenitrile

The title compound was prepared according to the general procedure described above by the reaction between styrene (**1a**) with TMSCN and 3-(4-isopropylphenyl)-2-methylpropanal (**2h**), and purified by flash column chromatography as colorless oil (36.1 mg, 62%).

¹H NMR (400 MHz, CDCl₃) δ 7.39 - 7.33 (m, 4H), 7.24 - 7.22 (m, 1H), 7.15 - 7.13 (m, 2H), 7.06 - 7.02 (m, 2H), 3.86 (dd, J = 6.0 Hz, 10.4 Hz, 0.50×1H), 3.71 (t, J = 8.0 Hz, 0.48×1H), 2.92 - 2.85 (m, 1H), 2.66 - 2.59 (m, 1H), 2.50 - 2.41 (m, 1H), 2.09 - 1.99 (m, 1H), 1.87 - 1.86 (m, 1H), 1.63-1.62 (m, 0.60×1H), 1.58 - 1.56 (m, 0.41×1H), 1.24 (d, J = 6.8 Hz, 6H), 0.97 (dd, J = 6.4 Hz, 17.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 146.88, 146.79, 137.29, 137.21, 136.40, 136.10, 129.24, 129.22, 129.17, 128.19, 128.14, 127.44, 127.35, 126.51, 121.40, 120.83, 43.20, 43.01, 42.70, 42.51, 35.58, 35.45, 33.82, 32.90, 32.74, 24.18, 19.89, 19.02. IR (cm⁻¹): 2969, 2871, 2239, 1457, 698. HRMS: calcd. for C₂₁H₂₅N Na⁺ [M + Na]⁺: 314.1879; Found: 314.1895.

(4i) 2-phenylpentanenitrile⁷

An oven-dried microwave reaction vessel was charged with Cu(CH₃CN)₄PF₆ (0.01 mmol, 5 mol %), dipy (0.02 mmol,10 mol%), styrene (**1a**, 0.2 mmol, 1.0 equiv), TMSCN (0.8 mmol, 4.0 equiv), propionaldehyde (**4i**, 1.0 mmol, 5.0 equiv), TBHP (0.24 mmol 1.5 equiv, 70% in water) and trifluorotoluene (1.0 mL) under air atmosphere. The vessel was sealed and heated was stirred at 150 °C (oil bath temperature) for 12 h. Afterwards the resulting mixture was cooled to room temperature, and purified by flash column chromatography as colorless oil (9.5 mg, 30%).

¹H NMR (400 MHz, CDCl₃) δ 7.4 - 7.37 (m, 2H), 7.34 - 7.30 (m, 3H), 3.79 (dd, J = 6.4 Hz, 8.8 Hz, 1H), 1.97 -1.79 (m, 2H), 1.59 - 1.43 (m, 2H), 0.96 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 136.14, 129.17, 128.11, 127.37, 121.07, 38.02, 37.30, 20.44, 13.56. IR (cm⁻¹): 2961, 2874, 2239, 1455, 699.

(5) 4-oxo-2-phenylhexanenitrile⁸

The title compound was prepared according to the general procedure described above by the reaction between styrene (1a) with TMSCN and propionaldehyde (4i), and purified by flash column chromatography as colorless oil (10.8 mg, 29%).

¹H NMR (400 MHz, CDCl₃) δ 7.40 - 7.31 (m, 5H), 4.37 (dd, J = 6.4 Hz, 7.6 Hz, 1H), 3.15 (dd, J = 8.0 Hz, 18.0 Hz, 1H), 2.93 (dd, J = 6.4 Hz, 18.0 Hz, 1H), 2.53 -2.33 (m, 2H), 1.06 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 206.12, 135.19, 129.36, 128.47, 127.48, 120.61, 47.65, 36.27, 31.76, 7.57. IR (cm⁻¹): 2979, 2243, 1717, 1114, 700.

(6) 4-isobutyl-2,6-di-tert-butyl-4-methylphenol⁹

¹H NMR (400 MHz, CDCl₃) δ 6.92 (s, 2H), 5.01 (s, 1H), 2.38 (d, *J* = 7.2 Hz, 2H), 1.79 (m, *J* = 6.8 Hz, 1H), 1.44 (s, 18H), 0.91 (d, *J* = 6.4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 151.80, 135.50, 132.38, 125.68, 45.57, 34.37, 30.54, 30.54, 22.63. IR (cm⁻¹): 3647, 2924, 2360, 1435, 1159.

VII. References

(1) C. Lofberg, R. Grigg, M. A. Whittaker, A. Keep and A. Derrick, *J. Org. Chem.*, 2006, 71, 8023-8027.

(2) C. A. Bernhart, C. Condamine, H. Demarne, R. Roncucci, J. P. Gagnol, P. J. Gautier and M. A. Serre, *J. Med. Chem.*, 1983, **26**, 451-455.

(3) W. X. Sha, L. L. Deng, S. Y. Ni, H. B. Mei, J. L. Han and Y. Pan, ACS. Catal., 2018, 8, 7489-7494.

(4) R. W. Hartmann and C. Batzl, J. Med. Chem., 1986, 29, 1362-1369.

(5) O. Gbadebo, D. Smith, G. Harnett, G. Donegan and P. O'Leary, *Eur. J. Org. Chem.* 2018, **48**, 7037-7045.

(6) W. Ma, S. Y. Cui, H. M. Sun, W. J. Tang, D. Xue, C. Q. Li, J. Fan, J. L. Xiao and C. Wang, *Chem. Eur. J.*, 2018, **24**, 13118-13123.

(7) X. Shu, Y. Y. Jiang, L. Kang and L. Yang, Green. Chem., 2020, 22, 2734-2738.

(8) Z. F. Li, Q. Li, L. Q. Ren, Q. H. Li, Y. G. Peng and T. L. Liu, *Chem. Sci.*, 2019, **10**, 5787-5792.

(9)J. P. Phillips, J. G. Gillmore, P. Schwartz, L. E. Brammer, D. J. Berger and J. M. Tanko, *J. Am. Chem. Soc.* 1998, **120**, 195-202.

VIII. Copies of ¹H, ¹⁹F and ¹³C NMR spectra of products

70

70

70

70

70

