Supporting information

Rh(III)-catalyzed ortho C-H functionalization of aromatic amides

with bis(phenylsulfonyl)diazomethane and α -diazosulfones

Lei Chen, Xiao-can Su, Rui-jun Peng, Xue-jing Zhang, Ming Yan*

Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China

E-mail: yanming@mail.sysu.edu.cn

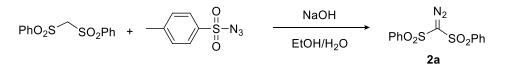
1. General information	S2
2. General procedure for the preparation of substrates	
3. General experimental procedure	
4. Transformations of products	
5. Control experiments	S10
6. Characterization data for products	
7. References	
8. NMR spectra of products	S24

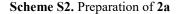
1. General Information

¹H NMR and ¹³C NMR spectra were recorded on Bruker AVANCE 400 MHz or 500 MHz spectrometer. Chemical shifts of protons are reported in parts per million downfield from tetramethylsilane. Chemical shifts of carbon are referenced to the center line of a triplet at 77.0 ppm of chloroform- d_3 , a heptet at 39.5 ppm of dimethyl sulfoxide- d_6 or a heptet at 29.8 ppm of acetone- d_6 . Peaks are labeled as single (s), broad singlet (bs), doublet (d), triplet (t), quartet (q), double doublet (dd), triple doublet (td), multiplet (m). Melting points were determined with a commercially available melting point apparatus. High-resolution mass spectra (HRMS) were acquired using an electron spray ionization time-of flight (ESI-TOF) mass spectrometer in positive mode. All reagents were used without further purification as received from commercial suppliers unless otherwise noted. All solvents were dried and distilled prior to use according to the standard protocols.

2. General procedure for the preparation of substrates

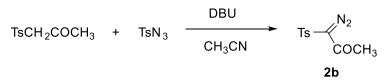
2.1 Preparation of amides 1 and 3 (taking 1a as an example)^[1]


PhCOCI +
$$t$$
-BuNH₂ $\xrightarrow{\text{Et}_3\text{N}}$ PhCONH t Bu
CH₂Cl₂ **1a**


Scheme S1. Preparation of 1a

To a stirring solution of *tert*-butylamine (1.26 mL, 12 mmol), Et₃N (1.67 mL, 12 mmol) in CH₂Cl₂ (20 mL) was added benzoyl chloride (1.16 mL, 10 mmol) at 0 °C. The reaction mixture was stirred at 0 °C for 10 minutes. Then, the reaction mixture was stirred at room temperature for 12 h. After the completion of the reaction, the reaction mixture was washed with saturated NaHCO₃ solution, saturated brine, and dried over MgSO₄. The organic layer was concentrated and recrystallized by PE/DCM, affording the expected compound **1a** (1.17 g, 66%) as a yellow solid.

Amides 1i^[2] and 1j^[3] were prepared by according to the reported procedures.


2.2 Preparation of bis(phenylsulfonyl)diazomethane 2a^[4]

To a stirring solution of 4-methylbenzenesulfonyl azide (5.3 g, 20.0 mmol, 75 % w/w in ethyl acetate,) in EtOH (30 mL) was added bis(phenylsulfonyl)methane (3.0 g, 10.0 mmol) in the mixture of EtOH (24 mL), H₂O (16 mL), and NaOH (1.0 g, 12 mmol). The reaction mixture was stirred at -5 °C for 1 h. After the completion of the reaction, the reaction mixture was quenched by water (40 mL) and then extracted with CH_2Cl_2 (3×50 mL). The combined organic phases were washed with saturated brine, dried over anhydrous Na₂SO₄ and concentrated in vacuo. The crude product was purified by flash chromatography (petroleum ether/ethyl acetate = 12/1) to give the expected compound **2** (2.12 g, 66 %) as a yellow solid.

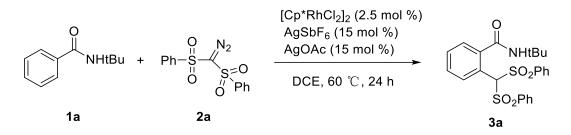
2.3 Preparation of 2b-2d (taking 2b as an example)^[5]

Scheme S3. Preparation of 2b

To a stirring solution of 1-tosylpropan-2-one (2.12 g, 10 mmol) and tosyl azide (75 % w/w in ethyl acetate, 3.16g, 12 mmol) in acetonitrile (20 mL) was added DBU (1.80 mL, 12 mmol) at 0 °C. The reaction mixture was stirred for 3h. After the completion of the reaction, the reaction mixture was quenched by water (40 mL) and then extracted with CH_2Cl_2 (3×50 mL). The combined organic phases were washed with saturated brine, dried over anhydrous Na_2SO_4 and concentrated in vacuo. The crude product was purified by flash chromatography to give the expected compound **2b** (1.52 g, 64 %) as a yellow solid.

3. General experimental procedure

3.1 Optimization of reaction conditions^a

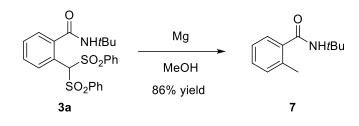

	NH <i>t</i> Bu -	+ Ph-S	, additive , T, 24 h	O So 3a	`NH <i>t</i> Bu ∠SO₂Ph D₂Ph
Entry	Catalyst (mol%)	Additive (mol%)	solvent	T (°C)	Yield ^b (%)
1	[Cp*IrCl ₂] ₂ (2)	AgNTf ₂ (8)/AgOAc (4)	DCE	90	30
2	$[Cp*RhCl_2]_2(2.5)$	$AgSbF_6(15)$	DCE	60	27
3	$[Cp*RhCl_2]_2(2.5)$	AgOAc (15)	DCE	60	0
4	$[Cp*RhCl_2]_2(2.5)$	AgNTf ₂ (15)	DCE	60	25
5	$[Cp*RhCl_2]_2(2.5)$	AgOTf (15)	DCE	60	24
6	[Cp*RhCl ₂] ₂ (2.5)	AgBF ₄ (15)	DCE	60	20
7	$[Cp*RhCl_2]_2(2.5)$	$AgSbF_6(15)/AgOAc(15)$	DCE	60	88(83 ^c)
8	$[Cp*RhCl_2]_2(2.5)$	$AgSbF_6(15)/AgOAc(15)$	DCE	90	68
9	$[Cp*RhCl_2]_2(2.5)$	$AgSbF_6(15)/AgOAc(15)$	DCE	30	85
10	$[Cp*RhCl_2]_2(2.5)$	$AgSbF_6(15)/KOAc(15)$	DCE	60	0
11	$[Cp*RhCl_2]_2(2.5)$	$AgSbF_6(15)/HOAc(15)$	DCE	60	13
12	$[Cp*RhCl_2]_2(2.5)$	$AgSbF_6(10)/AgOAc(10)$	DCE	60	86
13	$[Cp*RhCl_2]_2(2.5)$	$AgSbF_{6}(20)/AgOAc(20)$	DCE	60	85
14	[Cp*RhCl ₂] ₂ (2.5)	$AgSbF_6(15)/AgOAc(15)$	DMSO	60	0
15	$[Cp*RhCl_2]_2(2.5)$	$AgSbF_6(15)/AgOAc(15)$	CH ₃ CN	60	0
16	$[Cp*RhCl_2]_2(2.5)$	$AgSbF_6(15)/AgOAc(15)$	MeOH	60	48
17	$[Cp*RhCl_2]_2(2.5)$	$AgSbF_6(15)/AgOAc(15)$	EA	60	67
18	[Cp*RhCl ₂] ₂ (2.5)	$AgSbF_6(15)/AgOAc(15)$	dioxane	60	71
19	$[Cp*RhCl_2]_2(2.5)$	$AgSbF_6(15)/AgOAc(15)$	toluene	60	0

^{*a*}Reaction conditions: 1a (0.2 mmol), 2a (0.24 mmol), solvent (2.0 mL), 24 h, under a N_2 atmosphere.

^bYield determined by ¹H NMR using 1, 3, 5-trimethoxybenzene as the internal standard.

^{*c*}Isolated yield after column chromatography.

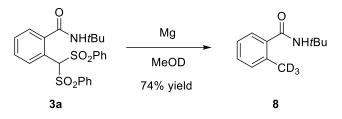
3.2 General procedure for the synthesis of 3, 5 and 6 (taking 3a as an example)


A 25 mL reaction tube equipped with a magnetic stirrer bar were charged with $[Cp*RhCl_2]_2$ (6.2 mg, 2.5 mol%), AgSbF₆ (20.6 mg, 15 mol%), AgOAc (10.0 mg, 15 mol%), **1a** (70.9 mg, 0.4 mmol), and DCE (2 mL). To the mixture was then added bis(phenylsulfonyl)diazomethane **2a** (154.7 mg, 0.48 mmol) in DCE (2 mL). The reaction mixture was stirred at 60 °C under a N₂ atmosphere for 24 h. The crude mixture was filtered through Celite and concentrated under reduced pressure. The residue was then purified by flash column chromatography (petroleum ether (PE): ethyl acetate (EA) = 4:1–2:1) to give the desired product **3a** (156.8 mg, 83%) as a white solid.

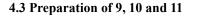
3.3 Gram Scale Experiment

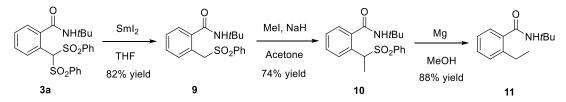
A 50 mL flask equipped with a magnetic stirrer were charged with $[Cp*RhCl_2]_2$ (77.3 mg, 2.5 mol%), AgSbF₆ (257.7 mg, 15 mol%), AgOAc (125.2 mg, 15 mol%), **1a** (886.2 mg, 5.0 mmol), and DCE (10 mL). To the mixture was then added bis(phenylsulfonyl)diazomethane **2a** (1.93 g, 6.0 mmol) in DCE (10 mL). The reaction mixture was stirred at 60 °C under a N₂ atmosphere for 24 h. The crude mixture was filtered through Celite and concentrated under reduced pressure. The residue was then purified by flash column chromatography to give the desired product **3a** (1.72 g, 73%) as a white solid.

4. Transformations of products


4.1 Preparation of 7

Scheme S5. Preparation of 7.


To a 25 mL flask equipped with a magnetic stirrer were added **3a** (94.3 mg, 0.2 mmol), freshly activated Mg turnings (580 mg, 20 mmol, 100 equiv), and anhydrous MeOH (10 mL) under a N₂ atmosphere. The reaction mixture was stirred at 50 °C for 2 h. Filtrating the reaction mixture through a short pad of silica gel and concentrating the filtrate gave the crude product, which was purified by flash chromatography to give the expected compound **7** (30.6 mg, 86%) as a white solid.


4.2 Preparation of 8

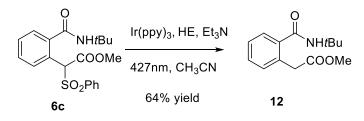
Scheme S6. Preparation of 8.

To a 25 mL flask equipped with a magnetic stirrer were added **3a** (94.3 mg, 0.2 mmol), freshly activated Mg turnings (580 mg, 20 mmol, 100 equiv.), and anhydrous MeOD (10 mL) under a N₂ atmosphere. The reaction mixture was stirred at 60 °C for 12 h. Filtrating the reaction mixture through a short pad of silica gel and concentrating the filtrate gave the crude product, which was purified by flash chromatography to give the expected compound **8** (28.9 mg, 74%) as a white solid.

Scheme S7. Preparation of 9, 10 and 11.

(1) Preparation of 9

To a 50 mL flask equipped with a magnetic stirrer were added HMPA (1mL) and SmI₂ (0.1 mol/L in THF, 20 mL, 20 equiv) under a N₂ atmosphere. After stirring for 10 minutes, **3a** (94.3 mg, 0.2 mmol) in THF (5 mL) was added dropwise. After stirring for 2 h at room temperature, the reaction was quenched with saturated NaHCO₃ solution (30 mL) and extracted with CH₂Cl₂ (2 × 30 mL). The combined organic phase was concentrated in vacuo. The crude product was purified by flash chromatography to give the expected compound **9** (54.4 mg, 82%) as a white solid.

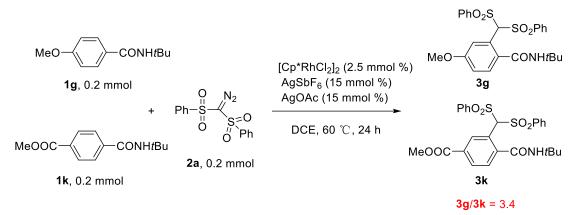

(2) Preparation of 10

To a 25 mL reaction tube equipped with a magnetic stirrer were added **8** (66.3 mg, 0.2 mmol), NaH (60% dispersion in mineral oil, 8 mg, 0.2 mmol), and CH₃COCH₃ (1 mL) under an air atmosphere. After stirring for 10 minutes, CH₃I (12.5 μ L, 0.2 mmol) in CH₃COCH₃ (1 mL) was added to the mixture. The reaction mixture was stirred at room temperature for 12 h, then quenched with water (20 mL) and extracted with CH₂Cl₂ (3×20 mL). The combined organic phase was concentrated in vacuo. The crude product was purified by flash chromatography to give the expected compound **10** (51.2 mg, 74%) as a white solid.

(3) Preparation of 11

To a 25 mL flask equipped with a magnetic stirrer were added **10** (34.5 mg, 0.1 mmol), freshly activated Mg turnings (120 mg, 5 mmol, 50 equiv), and anhydrous MeOH (5 mL) under a N₂ atmosphere. The reaction mixture was stirred at 50 °C for 2 h. Filtrating the reaction mixture through a short pad of silica gel and concentrating the filtrate gave the crude product, which was purified by flash chromatography to give the expected compound **11** (18.0 mg, 88%) as a white solid.

4.4 Preparation of 12



To a 20 mL quartz tube equipped with a magnetic stirrer were added **6c** (38.9 mg, 0.1 mmol), $Ir(ppy)_3$ (1.6 mg, 0.0025 mmol, 0.025 equiv), Et_3N (139.0 μ L, 1.0 mmol, 10 equiv), Hantzsch ester (50.7 mg, 0.2

mmol) and anhydrous MeCN (2 mL) under a N₂ atmosphere. The reaction mixture was stirred at room temperature under irradiation with Blue LED (427 nm, 40W) for 24 h. The reaction mixture then quenched with water (10 mL) and extracted with CH_2Cl_2 (3×10 mL). The combined organic phase was concentrated in vacuo. The crude product was purified by flash chromatography to give the expected compound **12** (16.0 mg, 64%) as a colorless oil.

5. Control experiments

5.1 Electronic effect

Scheme S9 Competition experiment of 1g, 1k with 2a.

A 25 mL reaction tube equipped with a magnetic stirrer bar were charged with $[Cp*RhCl_2]_2$ (3.1 mg, 2.5 mol %), AgSbF₆ (10.3 mg, 15 mol %), AgOAc (5.0 mg, 15 mol%), **1g** (41.5 mg, 0.2 mmol), **1k** (47.1 mg, 0.2 mmol), and DCE (1 mL). To the mixture was added bis(phenylsulfonyl)diazomethane **2a** (64.5 mg, 0.2 mmol) in DCE (1mL). The reaction mixture was stirred at 60 °C under a N₂ atmosphere for 24 h. The crude mixture was filtered through Celite and concentrated in vacuo. The residue was then purified by flash column chromatography. The mixture of **3g** and **3k** were combinedly isolated. The ratio of **3g** and **3k** was determined to be 3.4: 1 by ¹H NMR analysis.

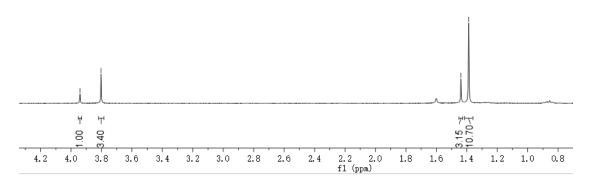
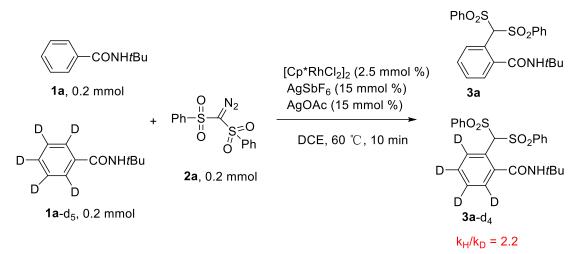



Figure S1¹H NMR spectra of the mixture of 3g and 3k.

5.2 Determination of KIE from Intermolecular Competition Experiment

Scheme S10 Intermolecular competition experiment of 1a, 1a-d₅ with 2a.

A 25 mL reaction tube equipped with a magnetic stirrer bar were charged with $[Cp*RhCl_2]_2$ (3.1mg, 2.5 mol %), AgSbF₆ (10.3 mg, 15 mol %), AgOAc (5.0 mg, 15 mol%), **1a** (35.4 mg, 0.2 mmol), **1a**-d₅ (36.4 mg, 0.2 mmol), and DCE (1 mL). To the mixture was added bis(phenylsulfonyl)diazomethane **2a** (64.5 mg, 0.2 mmol) in DCE (1 mL). The reaction mixture was stirred at 60 °C under a N₂ atmosphere for 10 min. The crude mixture was filtered through Celite and concentrated under reduced pressure. The residue was then purified by flash column chromatography to afford the mixture of **3a and 3a**-d₄. The ratio of **3a** and **3a**-d₄ was determined to be 0.69: 0.31 by ¹H NMR analysis. The KIE value is equal to 2.2.

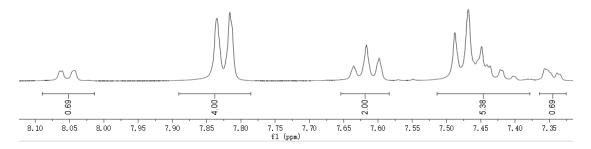
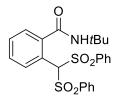
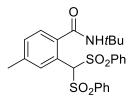



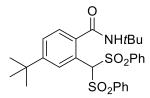
Figure S2 ¹H NMR spectra of the mixture of 3a and 3a-d₄.

6. Characterization data for products

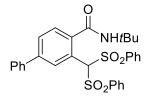
2-(Bis(phenylsulfonyl)methyl)-N-(tert-butyl)benzamide (3a)


White solid (156.8 mg, 83% yield); **Mp:** 172–174 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 8.03 (d, J = 7.4 Hz, 1H), 7.81 (d, J = 7.7 Hz, 4H), 7.60 (t, J = 7.4 Hz, 2H), 7.43 (m, 6H), 7.33 (d, J = 7.1 Hz, 1H), 7.09 (s, 1H), 5.75 (s, 1H), 1.41 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 167.5, 139.3, 138.4, 134.3, 131.5, 130.4, 129.9, 129.4, 128.8, 127.3, 123.4, 81.3, 52.1, 28.5; **HRMS** (ESI): calculated for C₂₄H₂₆NO₅S₂ [M+H]⁺: 472.1247, found: 472.1247.

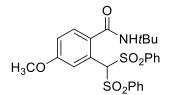
2-(Bis(phenylsulfonyl)methyl)-*N*-(*tert*-butyl)-4-methylbenzamide (3c)


White solid (97.0 mg, 50% yield); **Mp:** 176–178 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.89 (d, *J* = 8.0 Hz, 1H), 7.80 (d, *J* = 7.7 Hz, 4H), 7.59 (t, *J* = 7.3 Hz, 2H), 7.44 (t, *J* = 7.6 Hz, 4H), 7.24 (d, *J* = 8.0 Hz, 1H), 7.12 (s, 1H), 7.02 (s, 1H), 5.75 (s, 1H), 2.34 (s, 3H), 1.40 (s, 9H); ¹³**C NMR** (101 MHz, CDCl₃) δ 167.6, 140.9, 139.3, 138. 5, 134.2, 131.3, 130.6, 129.4, 128.8, 128.0, 120.1, 81.4, 52.0, 28.5, 21.2; **HRMS** (ESI): calculated for C₂₅H₂₈NO₅S₂ [M+H]⁺: 486.1403, found: 486.1403.

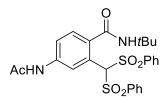
2-(Bis(phenylsulfonyl)methyl)-N-(tert-butyl)-4-methylbenzamide (3d)


White solid (187.0 mg, 96% yield); **Mp:** 166–168 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.80 (d, *J* = 7.8 Hz, 4H), 7.74 (s, 1H), 7.59 (t, *J* = 7.3 Hz, 2H), 7.45 (t, *J* = 7.7 Hz, 4H), 7.27–7.15 (m, 3H), 5.71 (s, 1H), 2.34 (s, 3H), 1.39 (s, 9H); ¹³**C NMR** (101 MHz, CDCl₃) δ 167.7, 140.3, 138.5, 136.4, 134.2, 132.1, 130.9, 129.4, 128.7, 127.3, 123.4, 81.2, 51.9, 28.6, 21.4; **HRMS** (ESI): calculated for C₂₅H₂₈NO₅S₂ [M+H]⁺: 486.1403, found: 486.1406.

2-(Bis(phenylsulfonyl)methyl)-N-(tert-butyl)-4-tert-butyl benzamide (3e)


White solid (209.1 mg, 99% yield); **Mp:** 180–182 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.88 (d, J = 1.7 Hz, 1H), 7.82 (d, J = 7.5 Hz, 4H), 7.59 (t, J = 7.4 Hz, 2H), 7.45 (t, J = 7.8 Hz, 4H), 7.35 (dd, J = 8.1, 1.8 Hz, 1H), 7.27–7.23 (m, 1H), 7.17 (s, 1H), 5.81 (s, 1H), 1.43 (s, 9H), 1.25 (s, 9H); ¹³C **NMR** (101 MHz, CDCl₃) δ 167.6, 153.0, 138.3, 136.4, 134.2, 129.6, 128.8, 128.7, 127.2, 127.1, 123.1, 81.6, 52.0, 34.8, 30.8, 28.6; **HRMS** (ESI): calculated for C₂₈H₃₃NO₅S₂Na [M+Na]⁺: 550.1692, found: 550.1697.

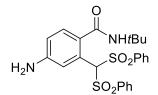
2-(Bis(phenylsulfonyl)methyl)-N-(tert-butyl)-4-phenylbenzamide (3f)


White solid (210.0 mg, 96% yield); **Mp:** 230–232 °C; ¹**H NMR** (400 MHz, Acetone-*d*₆) δ 8.27 (d, *J* = 1.8 Hz, 1H), 7.87–7.78 (m, 5H), 7.76–7.69 (m, 3H), 7.64–7.51 (m, 9H), 7.45 (t, *J* = 7.3 Hz, 1H), 7.12 (s, 1H), 1.41 (s, 9H); ¹³**C NMR** (101 MHz, Acetone-*d*₆) δ 168.4, 142.8, 140.2, 139.9, 137.7, 135.2, 130.7, 130.0, 130.0, 129.9, 129.8, 129.2, 128.8, 127.7, 126.2, 81.4, 52.5, 28.8; **HRMS** (ESI): calculated for C₃₀H₃₀NO₅S₂ [M+H]⁺: 548.1560, found: 548.1557.

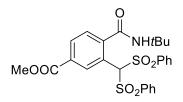
2-(Bis(phenylsulfonyl)methyl)-N-(tert-butyl)-4-methoxybenzamide (3g)

White solid (198.0 mg, 99% yield); **Mp:** 197–199°C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.83 (d, J = 7.8 Hz, 4H), 7.60 (t, J = 7.4 Hz, 2H), 7.53 (d, J = 2.3 Hz, 1H), 7.46 (t, J = 7.7 Hz, 4H), 7.37 (s, 1H), 7.29–7.24 (m, 1H), 6.89 (dd, J = 8.6, 2.4 Hz, 1H), 5.64 (s, 1H), 3.80 (s, 3H), 1.39 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 167.4, 160.2, 138.5, 134.2, 131.4, 129.4, 128.8, 128.8, 125.5, 116.6, 116.1, 80.7, 55.5, 51.9, 28.6; **HRMS** (ESI): calculated for C₂₅H₂₈NO₆S₂ [M+H]⁺: 502.1353, found:502.1352.

2-(Bis(phenylsulfonyl)methyl)-N-(tert-butyl)-4-acetamidobenzamide (3h)

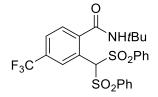

White solid (166.0 mg, 78% yield); **Mp:** 238–240 °C; ¹**H NMR** (400 MHz, Acetone- d_6) δ 9.66 (s, 1H), 8.14 (dd, J = 8.6, 2.1 Hz, 1H), 7.88–7.82 (m, 2H), 7.76 (dd, J = 8.4, 1.1 Hz, 4H), 7.72–7.66 (m, 2H), 7.54 (t, J = 7.9 Hz, 4H), 7.44 (d, J = 8.6 Hz, 1H), 6.87 (s, 1H), 2.17 (s, 3H), 1.35 (s, 9H); ¹³**C NMR** (101 MHz, Acetone- d_6) δ 169.5, 168.2, 141.6, 140.4, 135.0, 133.1, 129.9, 129.8, 129.8, 126.3, 122.3, 120.6, 80.8, 52.2, 28.7, 24.3; **HRMS** (ESI): calculated for C₂₆H₂₈N₂O₆S₂Na [M+Na]⁺: 551.1281, found: 551.1285.

2-(Bis(phenylsulfonyl)methyl)-N-(tert-butyl)-4-hydroxybenzamide (3i)

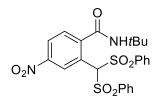


White solid (63.0 mg, 32% yield); **Mp:** 210–212 °C; ¹**H NMR** (400 MHz, Acetone- d_6) δ 9.08 (s, 1H), 7.93 (s, 1H), 7.77 (d, J = 7.5 Hz, 4H), 7.70 (t, J = 7.1 Hz, 2H), 7.61–7.47 (m, 5H), 7.39 (d, J = 8.5 Hz, 1H), 6.86 (d, J = 8.2 Hz, 1H), 6.76 (s, 1H), 1.34 (s, 9H); ¹³**C NMR** (101 MHz, Acetone- d_6) δ 168.5, 159.2, 140.5, 135.0, 130.8, 130.2, 129.8, 127.4, 119.3, 117.2, 80.8, 52.1, 28.8; **HRMS** (ESI): calculated for C₂₄H₂₆NO₆S₂ [M+H]⁺: 488.1196, found: 486.1202.

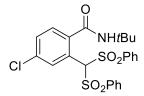
2-(Bis(phenylsulfonyl)methyl)-N-(tert-butyl)-4-aminobenzamide (3j)



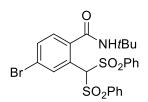
White solid (62.0 mg, 32% yield); **Mp:** 270–272 °C; ¹**H NMR** (500 MHz, Acetone- d_6) δ 8.11 (s, 1H), 7.77 (d, J = 7.3 Hz, 4H), 7.67 (t, J = 7.5 Hz, 2H), 7.52 (t, J = 7.9 Hz, 4H), 7.31 (d, J = 2.4 Hz, 1H), 7.21 (d, J = 8.4 Hz, 1H), 6.63 (dd, J = 8.5, 2.4 Hz, 1H), 6.50 (s, 1H), 5.35 (s, 2H), 1.32 (s, 9H); ¹³C **NMR** (126 MHz, Acetone- d_6) δ 168.9, 150.8, 140.9, 134.8, 130.4, 129.7, 129.6, 127.1, 126.1, 117.6, 115.0, 80.6, 51.8, 28.9; **HRMS** (ESI): calculated for C₂₄H₂₇N₂O₅S₂ [M+H]⁺: 487.1356, found: 487.1359. Methyl 3-(bis(phenylsulfonyl)methyl)-4-(tert-butylcarbamoyl)benzoate (3k)


White solid (152.0 mg, 72% yield); **Mp:** 190–192 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 8.52 (s, 1H), 8.07 (d, J = 8.0 Hz, 1H), 7.81 (d, J = 7.9 Hz, 4H), 7.62 (t, J = 7.4 Hz, 2H), 7.47 (t, J = 7.8 Hz, 4H), 7.42 (d, J = 8.0 Hz, 1H), 6.96 (s, 1H), 5.88 (s, 1H), 3.94 (s, 3H), 1.44 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 166.7, 165.4, 143.1, 137.9, 134.5, 132.2, 131.5, 131.3, 129.5, 128.9, 127.5, 123.9, 81.3, 52.6, 52.4, 28.5; **HRMS** (ESI): calculated for C₂₆H₂₈NO₇S₂ [M+H]⁺: 530.1302, found: 530.1302.

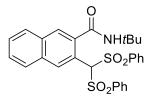
2-(Bis(phenylsulfonyl)methyl)-N-(tert-butyl)-4-(trifluoromethyl)benzamide (31)


White solid (140.2 mg, 65% yield); **Mp:** 206–208 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 8.01 (s, 1H), 7.81 (d, J = 7.7 Hz, 4H), 7.64 (t, J = 7.4 Hz, 3H), 7.54–7.43 (m, 5H), 6.92 (s, 1H), 5.96 (s, 1H), 1.46 (s, 9H); ¹³**C NMR** (101 MHz, CDCl₃) δ 166.4, 142.7, 137.4, 134.7, 131.6 (q, $J_{C-C-F} = 33.7$ Hz), 129.6, 129.0, 128.2 (q, $J_{C-C-F} = 4.0$ Hz), 128.0, 127.1 (q, $J_{C-C-C-F} = 3.0$ Hz), 124.6, 123.0(q, $J_{C-F} = 273.7$ Hz), 81.5, 52.6, 28.5; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.12; **HRMS** (ESI): calculated for C₂₅H₂₅F₃NO₅S₂ [M+H]⁺: 540.1121, found: 540.1121.

2-(Bis(phenylsulfonyl)methyl)-N-(tert-butyl)-4-nitrobenzamide (3m)

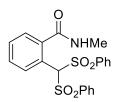

White solid (148.6 mg, 72% yield); **Mp:** 230–232 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 8.65 (d, *J* = 2.1 Hz, 1H), 8.22 (dd, *J* = 8.4, 2.1 Hz, 1H), 7.82 (d, *J* = 7.6 Hz, 4H), 7.66 (t, *J* = 7.5 Hz, 2H), 7.56–7.46 (m, 5H), 6.87 (s, 1H), 6.02 (s, 1H), 1.47 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 165.8, 147.8, 144.8, 137.3, 134.9, 129.5, 129.2, 128.5, 126.2, 125.5, 125.1, 81.2, 52.8, 28.5; **HRMS** (ESI): calculated for C₂₄H₂₅N₂O₇S₂ [M+H]⁺: 517.1098, found: 517.1098.

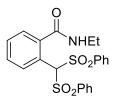
2-(Bis(phenylsulfonyl)methyl)-*N*-(*tert*-butyl)-4-chlorobenzamide (3n)


White solid (198.4 mg, 98% yield); **Mp:** 206–208 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.91 (d, *J* = 1.8 Hz, 1H), 7.81 (d, *J* = 7.6 Hz, 4H), 7.62 (t, *J* = 7.4 Hz, 2H), 7.48 (t, *J* = 7.8 Hz, 4H), 7.39–7.32 (m, 1H), 7.27 (d, *J* = 8.1 Hz, 1H), 7.08 (s, 1H), 5.79 (s, 1H), 1.40 (s, 9H); ¹³C **NMR** (101 MHz, CDCl₃) δ 166.7, 137.9, 137.6, 136.0, 134.5, 131.4, 130.4, 129.5, 128.9, 128.6, 125.4, 80.9, 52.3, 28.5; **HRMS** (ESI): calculated for C₂₄H₂₅ClNO₅S₂ [M+H]⁺: 506.0857, found: 506.0856.

2-(Bis(phenylsulfonyl)methyl)-4-bromo-*N*-(*tert*-butyl)benzamide (30)

White solid (209.2 mg, 98% yield); **Mp:** 190–192 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 8.00 (d, J = 1.8 Hz, 1H), 7.82 (d, J = 7.4 Hz, 4H), 7.63 (t, J = 7.5 Hz, 2H), 7.55–7.46 (m, 5H), 7.20 (d, J = 8.2 Hz, 1H), 7.00 (s, 1H), 5.81 (s, 1H), 1.42 (s, 9H); ¹³**C NMR** (101 MHz, CDCl₃) δ 166.7, 138.0, 137.8, 134.6, 134.2, 133.4, 129.5, 128.9, 128.7, 125.5, 124.0, 80.3, 52.3, 28.5; **HRMS** (ESI): calculated for C₂₄H₂₅BrNO₅S₂ [M+H]⁺: 550.0352, found: 550.0352.

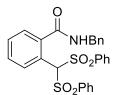

3-(Bis(phenylsulfonyl)methyl)-N-(tert-butyl)-2-naphthamide (3p)


White solid (106.0 mg, 51% yield); **Mp:** 197–199 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 8.46 (s, 1H), 7.90– 7.86 (m, 1H), 7.86–7.79 (m, 6H), 7.64–7.54 (m, 4H), 7.42 (t, *J* = 7.8 Hz, 4H), 7.33 (s, 1H), 5.87 (s, 1H), 1.47 (s, 9H); ¹³**C NMR** (101 MHz, CDCl₃) δ 168.0, 138.4, 135.4, 134.2, 132.8, 132.7, 132.5, 129.5, 128.8, 128.4, 128.0, 127.8, 127.3, 120.1, 81.0, 52.1, 28.6; **HRMS** (ESI): calculated for C₂₈H₂₈NO₅S₂ [M+H]⁺: 522.1403, found: 522.1405. 3-(Bis(phenylsulfonyl)methyl)-*N*-(*tert*-butyl)thiophene-2-carboxamide (3q)

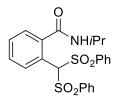
White solid (145.0 mg, 76% yield); **Mp:** 177–179 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.78 (d, *J* = 7.5 Hz, 4H), 7.71 (d, *J* = 5.2 Hz, 1H), 7.60 (t, *J* = 7.4 Hz, 3H), 7.45 (t, *J* = 7.8 Hz, 4H), 7.32 (d, *J* = 5.2 Hz, 1H), 5.51 (s, 1H), 1.29 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 160.1, 138.5, 138.2, 134.2, 130.6, 129.1, 128.8, 128.1, 125.7, 79.1, 52.2, 28.6; **HRMS** (ESI): calculated for C₂₂H₂₃NO₅S₃Na [M+Na]⁺: 500.0631, found: 500.0632.

2-(Bis(phenylsulfonyl)methyl)-N-methylbenzamide (5a)

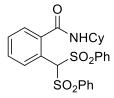
White solid (140.8 mg, 82% yield); **Mp:** 235–237 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 8.19 (d, *J* = 7.7 Hz, 1H), 7.78 (d, *J* = 7.5 Hz, 4H), 7.59 (t, *J* = 7.0 Hz, 2H), 7.55–7.39 (m, 6H), 7.36–7.28 (m, 2H), 5.70 (s, 1H), 2.80 (s, 3H); ¹³C **NMR** (101 MHz, CDCl₃) δ 168.5, 138.7, 137.1, 134.2, 131.9, 130.5, 129.3, 128.8, 127.2, 124.3, 80.6, 26.9; **HRMS** (ESI): calculated for C₂₁H₂₀NO₅S₂ [M+H]⁺: 430.0777, found: 430.0781. **2-(Bis(phenylsulfonyl)methyl)-***N***-ethylbenzamide (5b)**


White solid (129.6 mg, 73% yield); **Mp:** 220–222 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 8.16 (d, J = 7.8 Hz, 1H), 7.79 (d, J = 7.4 Hz, 4H), 7.59 (t, J = 7.5 Hz, 2H), 7.51 (t, J = 7.6 Hz, 1H), 7.48–7.40 (m, 5H), 7.33 (d, J = 7.6 Hz, 1H), 7.30 (s, 1H), 5.75 (s, 1H), 3.37–3.23 (m, 2H), 1.17 (t, J = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.8, 138.6, 137.4, 134.2, 131.9, 130.4, 130.4, 129.3, 128.8, 127.2, 124.2, 80.7, 35.0, 14.5; **HRMS** (ESI): calculated for C₂₂H₂₂NO₅S₂ [M+H]⁺: 444.0934, found: 444.0930.

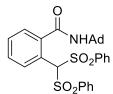
2-(Bis(phenylsulfonyl)methyl)-N-butylbenzamide (5c)


White solid (128.1 mg, 68% yield); **Mp:** 176–178 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 8.15 (d, J = 7.7 Hz, 1H), 7.79 (d, J = 7.6 Hz, 4H), 7.59 (t, J = 7.4 Hz, 2H), 7.54–7.40 (m, 6H), 7.33 (d, J = 7.4 Hz, 1H), 7.29 (s, 1H), 5.77 (s, 1H), 3.34–3.20 (m, 2H), 1.57–1.47 (m, 2H), 1.44–1.32 (m, 2H), 0.95 (t, J = 7.3 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 167.9, 138.6, 137.7, 134.2, 131.8, 130.4, 130.3, 129.4, 128.8, 127.2, 124.1, 80.8, 39.9, 31.4, 20.1, 13.7; **HRMS** (ESI): calculated for C₂₄H₂₅NO₅S₂Na [M+Na]⁺: 494.1066, found: 494.1065.

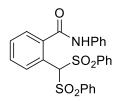
N-Benzyl-2-(bis(phenylsulfonyl)methyl)benzamide (5d)


White solid (153.6 mg, 76% yield); **Mp:** 185–187 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 8.17 (d, J = 7.8 Hz, 1H), 7.73 (d, J = 7.7 Hz, 4H), 7.58 (t, J = 7.4 Hz, 2H), 7.51 (t, J = 7.4 Hz, 1H), 7.46–7.29 (m, 11H), 7.22 (s, 1H), 6.18 (s, 1H), 4.47 (d, J = 5.6 Hz, 2H); ¹³**C NMR** (101 MHz, CDCl₃) δ 167.7, 138.4, 137.5, 137.3, 134.2, 131.9, 130.5, 130.5, 129.3, 128.9, 128.8, 127.9, 127.8, 127.4, 124.1, 80.8, 44.1; **HRMS** (ESI): calculated for C₂₇H₂₄NO₅S₂ [M+H]⁺: 506.1090, found: 506.1094.

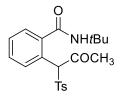
2-(Bis(phenylsulfonyl)methyl)-N-isopropylbenzamide (5e)


White solid (145.0 mg, 90% yield); **Mp:** 187–189 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 8.12 (d, *J* = 7.6 Hz, 1H), 7.79 (d, *J* = 7.6 Hz, 4H), 7.59 (t, *J* = 7.4 Hz, 2H), 7.51–7.38 (m, 6H), 7.34 (d, *J* = 9.7 Hz, 2H), 5.76 (d, *J* = 7.2 Hz, 1H), 4.15–4.01 (m, 1H), 1.19 (d, *J* = 6.6 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 167.2, 138.5, 137.8, 134.2, 131.8, 130.4, 130.3, 129.4, 128.8, 127.3, 124.0, 80.9, 42.1, 22.5; **HRMS** (ESI): calculated for C₂₃H₂₄NO₅S₂ [M+H]⁺: 458.1090, found: 458.1090.

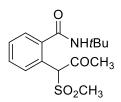
2-(Bis(phenylsulfonyl)methyl)-N-cyclohexylbenzamide (5f)


White solid (161.0 mg, 81% yield); **Mp:** 148–150 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 8.09 (d, J = 7.6 Hz, 1H), 7.79 (d, J = 7.7 Hz, 4H), 7.59 (t, J = 7.3 Hz, 2H), 7.50–7.38 (m, 6H), 7.34 (d, J = 7.4 Hz, 1H), 7.30 (s, 1H), 5.80 (d, J = 7.5 Hz, 1H), 3.79 (d, J = 7.9 Hz, 1H), 2.05–1.85 (m, 2H), 1.81–1.58 (m, 3H), 1.48–1.30 (m, 2H), 1.26–1.09 (m, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 167.1, 138.4, 137.9, 134.3, 131.7, 130.4, 130.2, 129.4, 128.8, 127.4, 124.0, 81.0, 77.3, 77.0, 76.7, 48.9, 32.8, 25.4, 24.7; **HRMS** (ESI): calculated for C₂₆H₂₈NO₅S₂ [M+H]⁺: 498.1403, found: 498.1405.

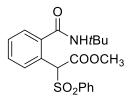
N-Adamantanyl-2-(bis(phenylsulfonyl)methyl)benzamide (5g)


White solid (214.7 mg, 98% yield); **Mp:** 195–197 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.98 (d, *J* = 6.7 Hz, 1H), 7.82 (d, *J* = 7.7 Hz, 4H), 7.61 (t, *J* = 7.3 Hz, 2H), 7.52–7.37 (m, 6H), 7.36–7.30 (m, 1H), 7.08 (s, 1H), 5.61 (s, 1H), 2.13 (s, 3H), 2.06 (s, 6H), 1.72 (s, 6H); ¹³**C NMR** (101 MHz, CDCl₃) δ 167.2, 139.5, 138.3, 134.3, 131.4, 130.4, 129.8, 129.5, 128.8, 127.4, 123.3, 81.4, 52.8, 41.3, 36.2, 29.4; **HRMS** (ESI): calculated for C₃₀H₃₁NO₅S₂Na [M+Na]⁺: 572.1536, found: 572.1536.

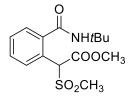
2-(Bis(phenylsulfonyl)methyl)-N-phenylbenzamide (5h)


White solid (40.0 mg, 20% yield); **Mp:** 228–230 °C; ¹**H NMR** (500 MHz, Acetone-*d*₆) δ 9.21 (s, 1H), 8.16 (d, *J* = 7.1 Hz, 1H), 7.75 (d, *J* = 6.9 Hz, 4H), 7.71–7.54 (m, 8H), 7.53–7.45 (m, 4H), 7.42–7.32 (m, 2H), 7.22–7.12 (m, 1H); ¹³**C NMR** (126 MHz, Acetone-*d*₆) δ167.1, 140.2, 139.6, 137.9, 135.2, 132.6, 131.3, 131.0, 129.9, 129.8, 129.4, 129.0, 126.1, 125.1, 121.3, 81.3; **HRMS** (ESI): calculated for C₂₆H₂₁NO₅S₂Na [M+ Na]⁺: 514.0753, found: 514.0751.

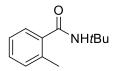
*N-(tert-*Butyl)-2-(2-oxo-1-tosylpropyl)benzamide (6a)


Colorless oil (120.0 mg, 77% yield); ¹**H NMR** (400 MHz, CDCl₃) δ 7.60 (d, J = 8.2 Hz, 2H), 7.56–7.50 (m, 1H), 7.46–7.38 (m, 3H), 7.31–7.24 (m, 2H), 6.36 (s, 1H), 5.94 (s, 1H), 2.43 (s, 3H), 2.22 (s, 3H), 1.47 (s, 9H); ¹³**C NMR** (101 MHz, CDCl₃) δ 198.3, 168.6, 145.0, 139.9, 134.9, 130.7, 129.9, 129.7, 129.5, 129.4, 127.4, 125.3, 74.0, 52.1, 31.0, 28.6, 21.6; **HRMS** (ESI): calculated for C₂₁H₂₆NO₄S [M+H]⁺: 388.1577, found: 388.1579.

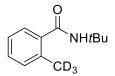
*N-(tert-*Butyl)-2-(1-(methylsulfonyl)-2-oxopropyl)benzamide (6b)


Colorless oil (119.6 mg, 96% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.60–7.56 (m, 1H), 7.55–7.51 (m, 1H), 7.50–7.45 (m, 2H), 6.24 (s, 1H), 6.16 (s, 1H), 3.01 (s, 3H), 2.32 (s, 3H), 1.49 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 199.3, 168.6, 139.9, 130.2, 129.8, 129.6, 128.0, 125.3, 73.5, 52.3, 39.8, 30.9, 28.6; HRMS (ESI): calculated for C₁₅H₂₂NO₄S [M+H]⁺: 312.1264, found: 312.1265.

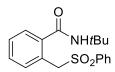
Methyl 2-(2-(tert-butylcarbamoyl)phenyl)-2-(phenylsulfonyl)acetate (6c)


White solid (74.0 mg, 47% yield); **Mp**: 122–124 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.84–7.72 (m, 3H), 7.66 (t, *J* = 7.3 Hz, 1H), 7.52 (t, *J* = 7.6 Hz, 2H), 7.48–7.37 (m, 3H), 6.32 (s, 1H), 6.07 (s, 1H), 3.63 (s, 3H), 1.50 (s, 9H); ¹³**C NMR** (101 MHz, CDCl₃) δ 168.3, 165.5, 139.6, 137.2, 134.2, 130.9, 129.7, 129.7, 129.6, 128.8, 127.5, 124.9, 68.8, 53.1, 52.2, 28.6; **HRMS** (ESI): calculated for C₂₀H₂₄NO₅S [M+H]⁺: 390.1370, found: 390.1372.

Methyl 2-(2-(tert-butylcarbamoyl)phenyl)-2-(methylsulfonyl)acetate (6d)

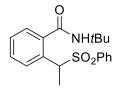

White solid (64.5 mg, 49% yield); **Mp**: 138–140 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.85 (d, *J* = 7.2 Hz, 1H), 7.60–7.40 (m, 3H), 6.23–6.05 (m, 2H), 3.82 (s, 3H), 3.07 (s, 3H), 1.47 (s, 9H); ¹³C **NMR** (101 MHz, CDCl₃) δ 168.3, 165.9, 139.4, 130.1, 129.9, 129.8, 127.8, 125.5, 68.0, 53.5, 52.3, 39.5, 28.6; **HRMS** (ESI): calculated for C₁₅H₂₂NO₅S [M+H]⁺: 328.1213, found: 328.1215.

N-(tert-Butyl)-2-methylbenzamide (7)

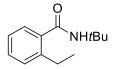

White solid (20.6 mg, 86% yield); **Mp:** 80–82 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.35–7.24 (m, 2H), 7.22–7.13 (m, 2H), 5.57 (s, 1H), 2.43 (s, 3H), 1.46 (s, 9H); ¹³C **NMR** (101 MHz, CDCl₃) δ 169.7, 137.9, 135.4, 130.8, 129.4, 126.4, 125.6, 51.7, 28.8, 19.5; **HRMS** (ESI): calculated for C₂₄H₂₀NO₅S₂Na [M+Na]⁺: 214.1202, found: 214.1205.

N-(tert-Butyl)-2-(methyl-d₃)benzamide (8)

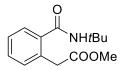
White solid (28.9 mg, 74% yield); **Mp:** 78–80 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.36–7.24 (m, 2H), 7.23–7.13 (m, 2H), 5.58 (s, 1H), 1.46 (s, 9H); ¹³**C NMR** (101 MHz, CDCl₃) δ 169.7, 137.9, 135.3, 130.8, 129.4, 126.4, 125.6, 51.7, 28.8, 18.7 (septet, *J* = 19.2 Hz); **HRMS** (ESI): calculated for C₂₄H₂₁N₂O₄S₂ Na [M+Na]⁺: 217.1391, found: 217.1394.


N-(tert-Butyl)-2-((phenylsulfonyl)methyl)benzamide (9)

White solid (54.4 mg, 82% yield); **Mp:** 146–148 °C; ¹**H NMR** (500 MHz, CDCl₃) δ 7.82 (d, J = 7.8 Hz,


2H), 7.67 (t, J = 7.4 Hz, 1H), 7.55 (t, J = 7.7 Hz, 2H), 7.48 (d, J = 7.5 Hz, 1H), 7.37 (t, J = 7.4 Hz, 1H), 7.32 (t, J = 7.5 Hz, 1H), 7.11 (d, J = 7.6 Hz, 1H), 6.35 (s, 1H), 4.68 (s, 2H), 1.50 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 168.6, 139.9, 138.8, 133.9, 132.5, 129.5, 129.2, 129.0, 128.3, 128.0, 124.6, 59.0, 52.0, 28.7; **HRMS** (ESI): calculated for C₁₈H₂₂NO₃S [M+H]⁺: 332.1315, found: 332.1316.

N-(tert-Butyl)-2-(1-(phenylsulfonyl)ethyl)benzamide (10)


White solid (51.2 mg, 74% yield); **Mp:** 178–180 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.75 (d, *J* = 7.2 Hz, 2H), 7.64 (t, *J* = 7.4 Hz, 1H), 7.56–7.47 (m, 3H), 7.44–7.33 (m, 3H), 6.05 (s, 1H), 5.15 (q, *J* = 7.0 Hz, 1H), 1.63 (d, *J* = 7.0 Hz, 3H), 1.48 (s, 9H); ¹³**C NMR** (101 MHz, CDCl₃) δ 169.0, 139.9, 137.4, 133.6, 130.7, 129.7, 129.1, 129.0, 129.0, 128.7, 127.4, 60.4, 52.0, 28.7, 15.6; **HRMS** (ESI): calculated for C₁₉H₂₄NO₃S [M+H]⁺: 346.1471, found: 346.1472.

N-(tert-Butyl)-2-ethylbenzamide (11)

White solid (18.0 mg, 88% yield); **Mp:** 78–80 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.34–7.27 (m, 2H), 7.23 (d, *J* = 7.1 Hz, 1H), 7.20–7.14 (m, 1H), 5.57 (s, 1H), 2.79 (q, *J* = 7.6 Hz, 2H), 1.46 (s, 9H), 1.24 (t, *J* = 7.6 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 169.8, 141.8, 137.6, 129.5, 129.3, 126.5, 125.6, 51.7, 28.8, 26.2, 15.8; **HRMS** (ESI): calculated for C₁₃H₂₀NO [M+H]⁺: 206.1539, found: 206.1541.

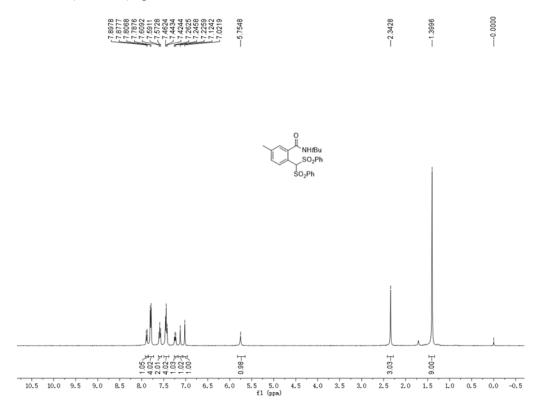
Methyl 2-(2-(*tert*-butylcarbamoyl)phenyl)acetate (12)

Colorless oil (16.0 mg, 64% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.46 (dd, J = 7.4, 1.1 Hz, 1H), 7.38– 7.28 (m, 2H), 7.22 (d, J = 7.5 Hz, 1H), 6.22 (s, 1H), 3.87 (s, 2H), 3.71 (s, 3H), 1.44 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 172.6, 167.0, 138.3, 131.4, 130.9, 129.8, 127.6, 127.5, 52.1, 51.8, 38.7, 28.7; HRMS (ESI): calculated for C₁₄H₂₀NO₃ [M+H]⁺:250.1438, found: 250.1439.

7. References

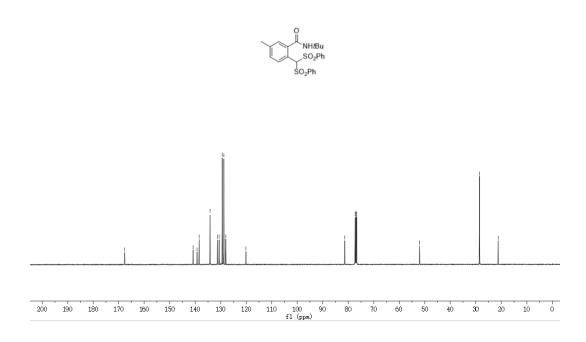
- [1] M. Chong, Y. X. Hu, W. J. Lu, Synthesis 2018, 50, 2999–3005.
- [2] M. N. Esfahani, M. Montazerozohori, Z. Karami, Org. Prep. Proced. Int. 2016, 48, 321-327.
- [3] R. F. Sun, Z. W. Wang, Y. Q. Li, L. X. Xiong, Y. X. Liu, Q. M. Wang, J. Agric. Food Chem. 2013, 61,

517-522.

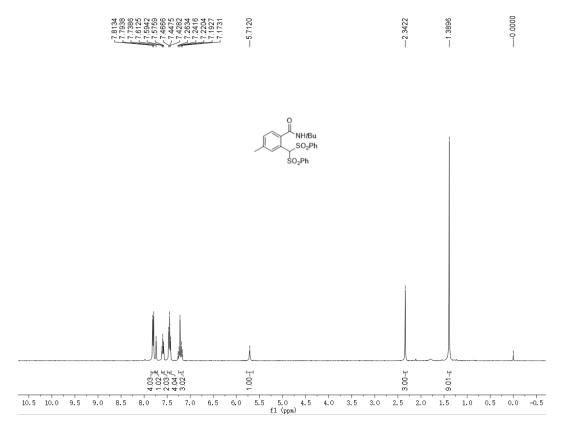

- [4] G. Heyes, G. Holt, J. Chem. Soc. Perkin I. 1973, 189–193.
- [5] Y. Dong, J. J. Chen, H. Xu, Chem. Commun. 2019, 55, 2027–2030.

8. NMR spectra of products

¹H NMR (400 MHz) Spectrum of 3a in CDCl₃

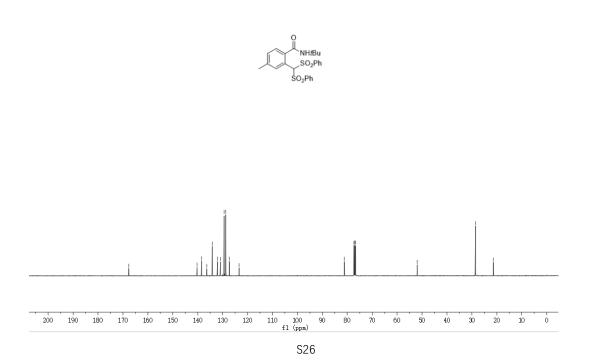


¹H NMR (400 MHz) Spectrum of 3c in CDCl₃

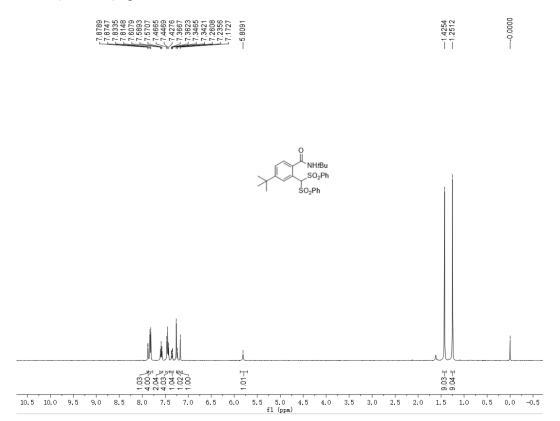


¹³C{¹H} NMR (101 MHz) Spectrum of 3c in CDCl₃

— 167.64	139.30 139.30 139.20 139.25 130.15 130.15 120.10 120.10	681.35 777.32 77.00 76.68	51.98	
----------	--	------------------------------------	-------	--

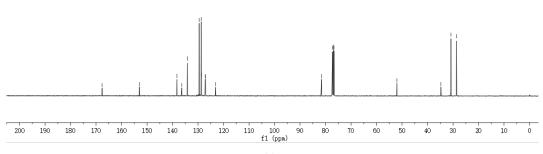


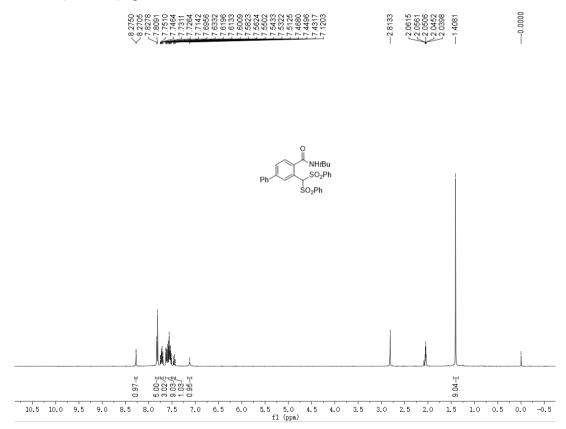
¹H NMR (400 MHz) Spectrum of 3d in CDCl₃



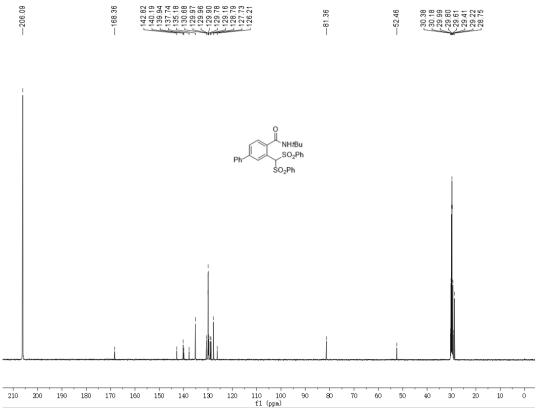
¹³C{¹H} NMR (101 MHz) Spectrum of 3d in CDCl₃

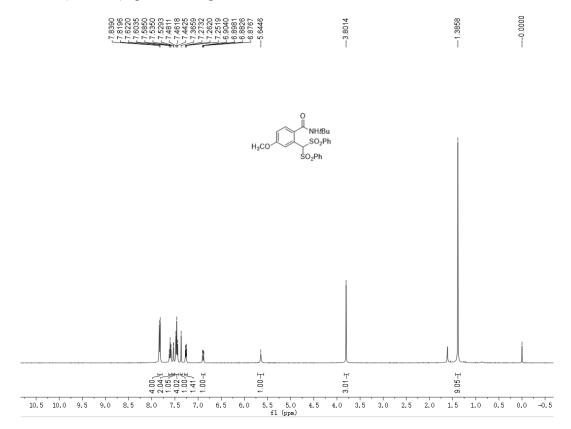
	140.26 138.46 138.46 132.09 132.09 132.09 132.09 132.09 123.38 123.38	81.16 777.32 77.00 76.68	-51.94	-28.56	-21.37
1		$\gamma \gamma$		1	


¹H NMR (400 MHz) Spectrum of 3e in CDCl₃

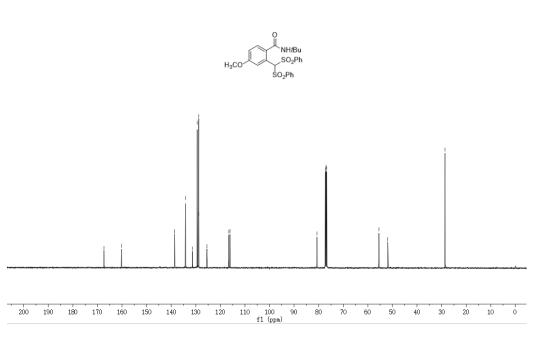

¹³C{¹H} NMR (101 MHz) Spectrum of 3e in CDCl₃

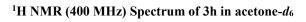
63	96	008 020 42 008 030 008 030	000	0	-~ m
r-	N	00040000000	ဖ်မံဝစ်	o.	r~ ∞ ∞
9	40	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		.	400
.	.		00 ~ ~ ~ ~	40	10 m m
			$\sim \checkmark \checkmark$		151

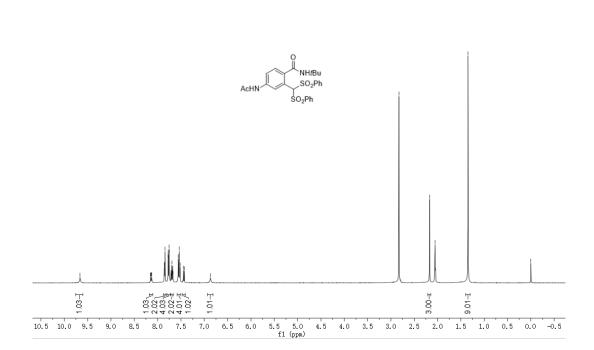



¹H NMR (400 MHz) Spectrum of 3f in acetone-*d*₆

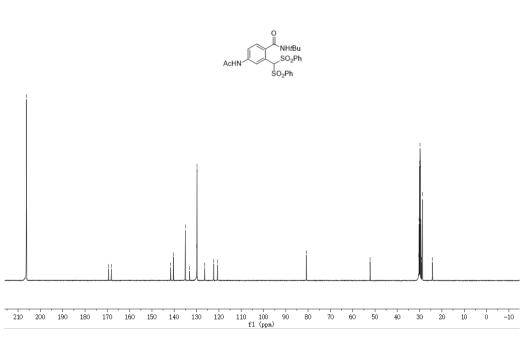
¹³C{¹H} NMR (101 MHz) Spectrum of 3f in acetone-*d*₆

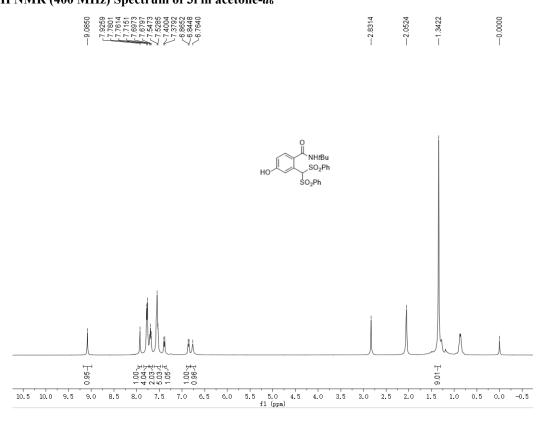



¹H NMR (400 MHz) Spectrum of 3g in CDCl₃

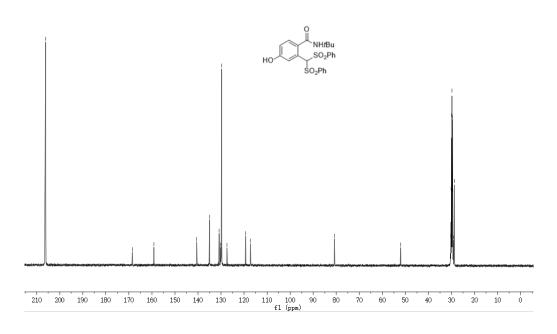

¹³C{¹H} NMR (101 MHz) Spectrum of 3g in CDCl₃

-167.36	-160.17	138.54 134.19 134.19 129.135 128.40 125.45 116.05	80.71 77.32 77.00	-55.51 -51.86	-28.60
			\searrow		

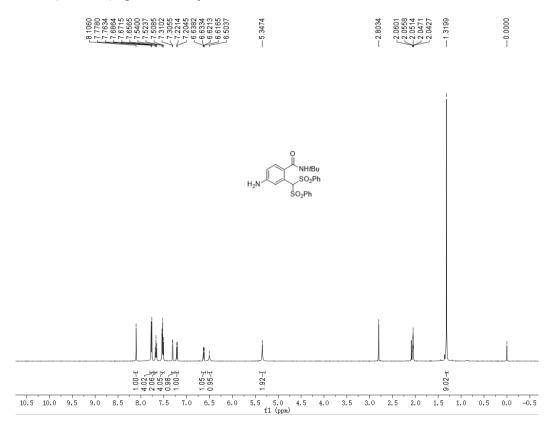




¹³C{¹H} NMR (101 MHz) Spectrum of 3h in acetone-*d*₆



¹H NMR (400 MHz) Spectrum of 3i in acetone-*d*₆

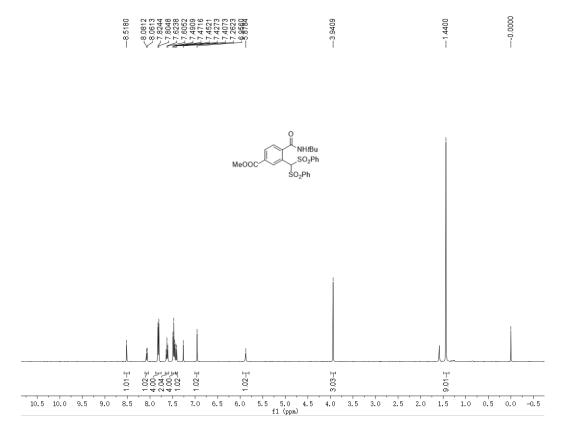


¹³C{¹H} NMR (101 MHz) Spectrum of 3i in acetone-*d*₆

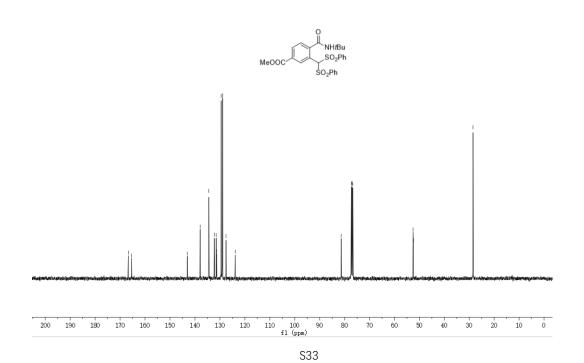
		20000000000000000000000000000000000000		52.12	29.29 29.29 29.29 29.20 28.80 29.22 28.80 20.80
--	--	--	--	-------	---



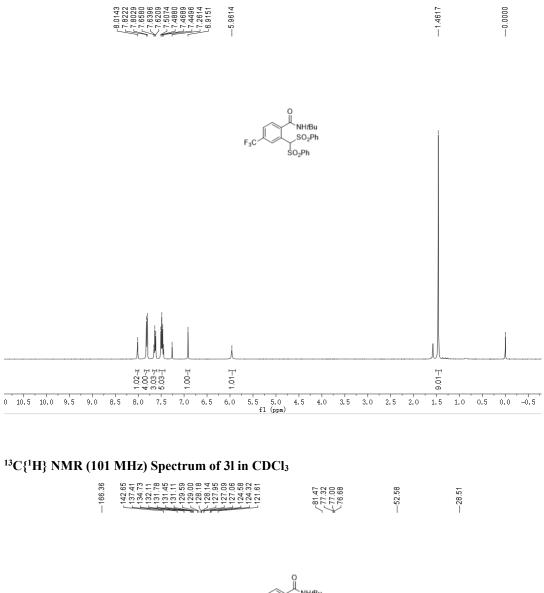
¹H NMR (500 MHz) Spectrum of 3j in acetone-*d*₆

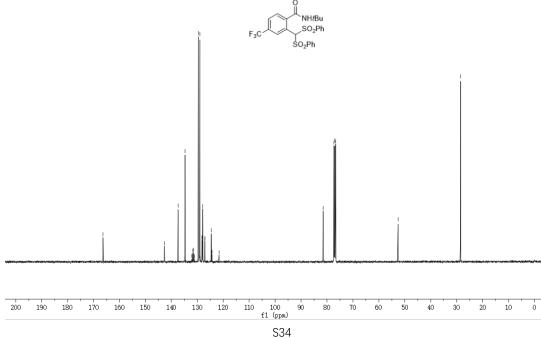


¹³C{¹H} NMR (126 MHz) Spectrum of 3j in acetone-*d*₆

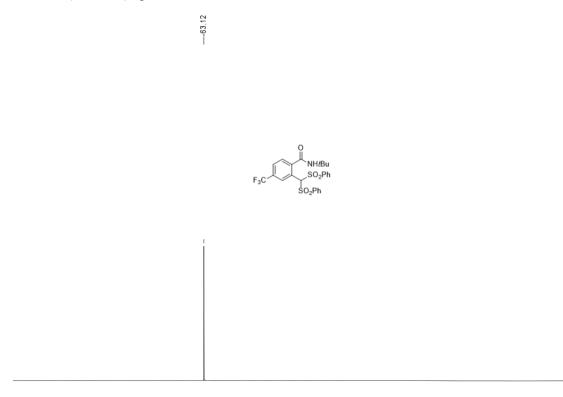


¹H NMR (400 MHz) Spectrum of 3k in CDCl₃

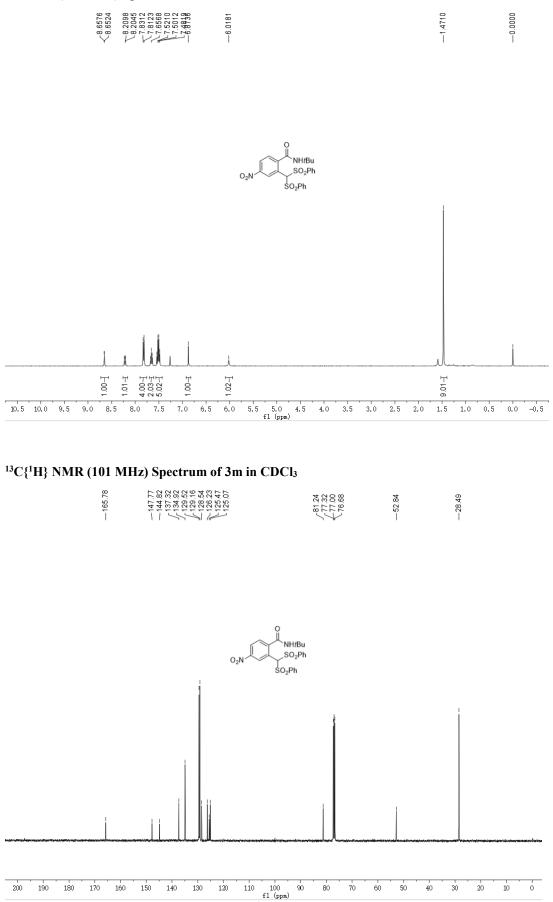



¹³C{¹H} NMR (101 MHz) Spectrum of 3k in CDCl₃

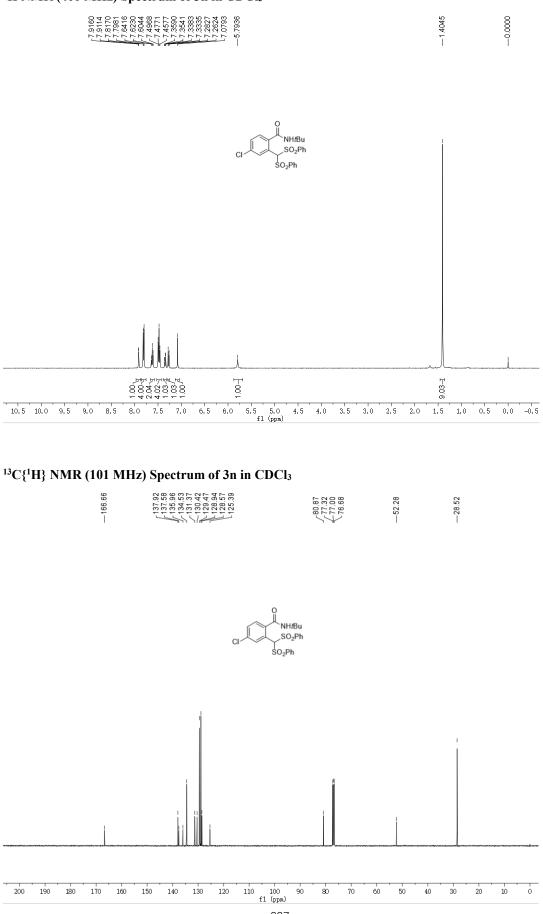
66.74 65.37	233.05 332.05 332.05 331.46 23.65 23.86 23.86 23.86	7.32 7.00 6.68	2.55	8.49
		00 h h h	66	Ñ
57		$\langle \downarrow \downarrow \rangle$	Y	T



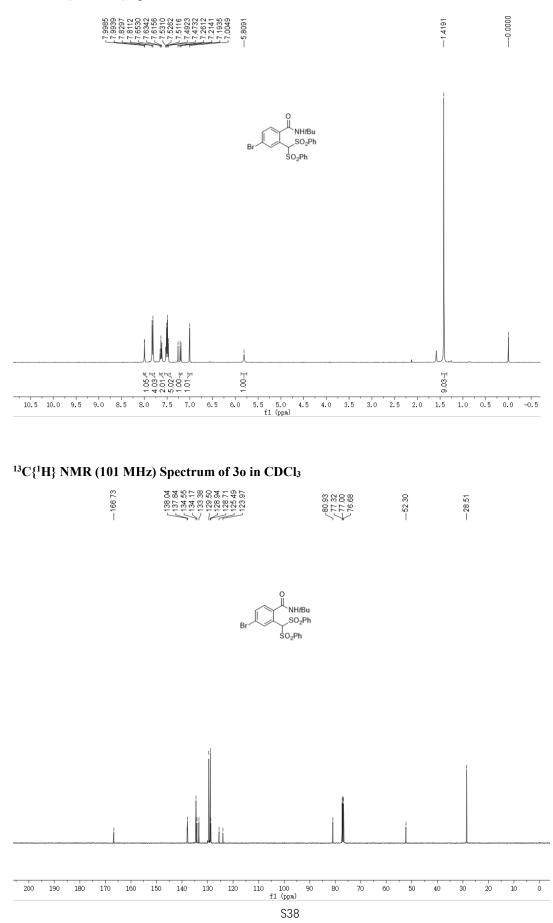
¹H NMR (400 MHz) Spectrum of 3l in CDCl₃



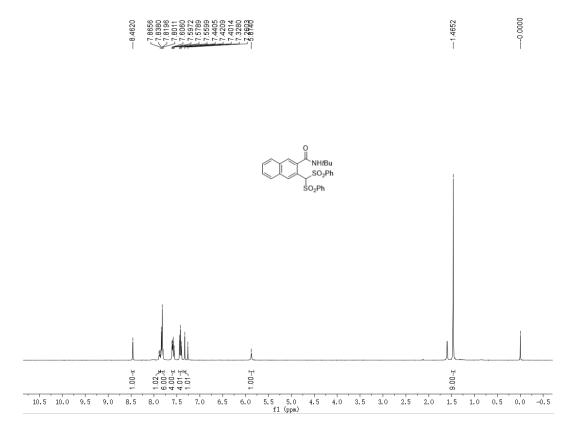
¹⁹F NMR (376 MHz) Spectrum of 3l in CDCl₃


10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

¹H NMR (400 MHz) Spectrum of 3m in CDCl₃

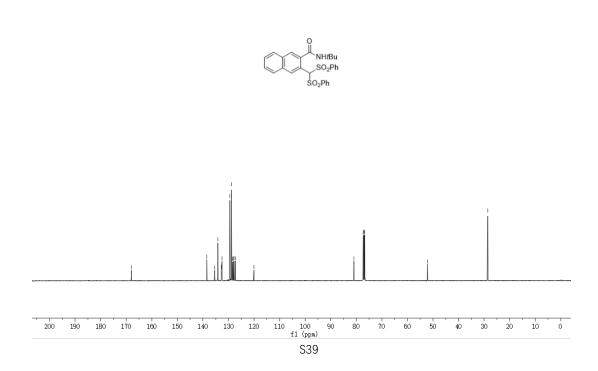


¹H NMR (400 MHz) Spectrum of 3n in CDCl₃

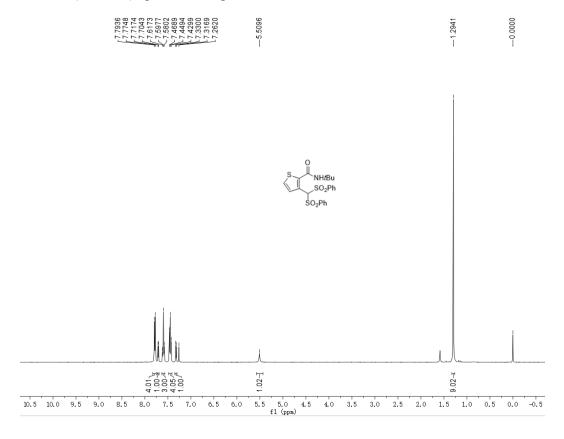


S37

¹H NMR (400 MHz) Spectrum of 30 in CDCl₃

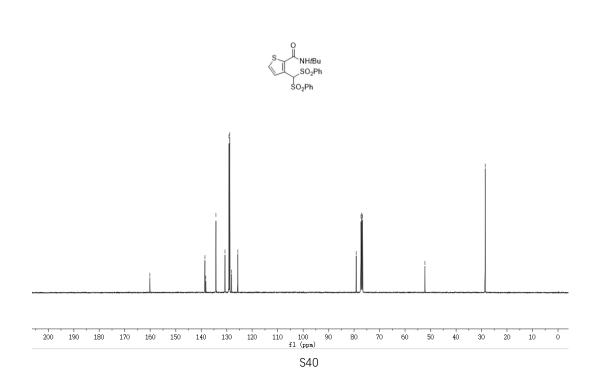


¹H NMR (400 MHz) Spectrum of 3p in CDCl₃

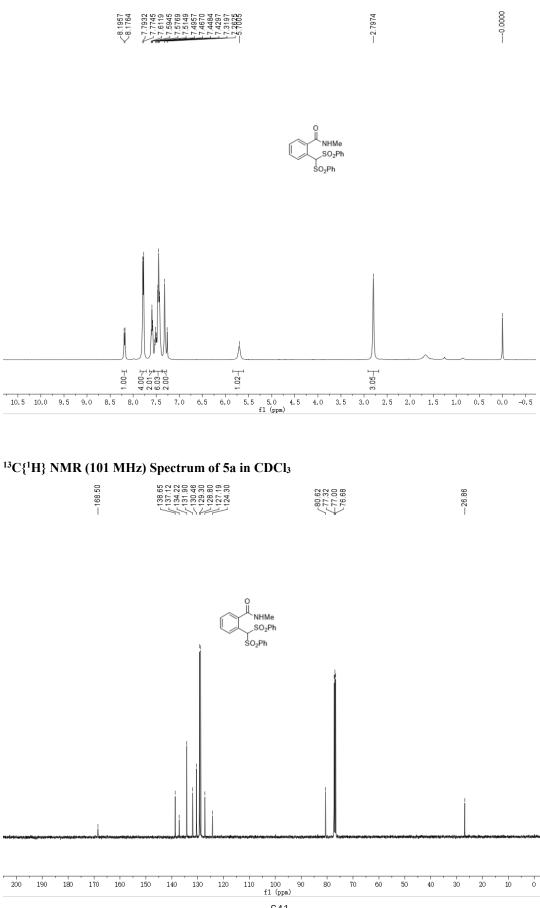


¹³C{¹H} NMR (101 MHz) Spectrum of 3p in CDCl₃

|--|--|--|--|--|--|

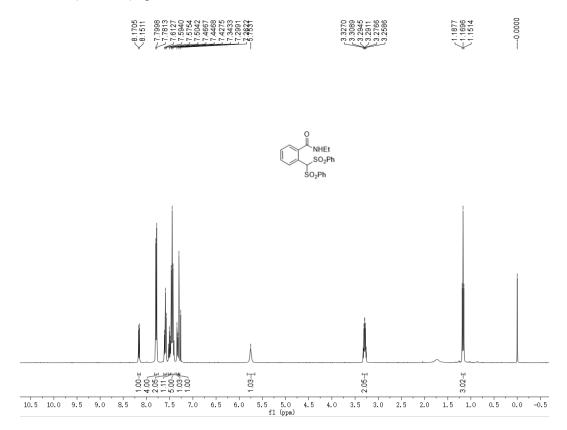


¹H NMR (400 MHz) Spectrum of 3q in CDCl₃

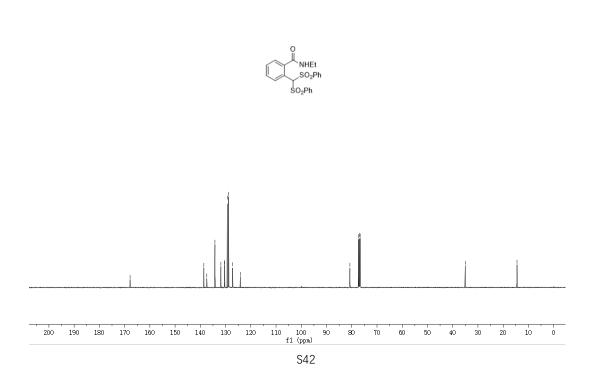


¹³C{¹H} NMR (101 MHz) Spectrum of 3q in CDCl₃

—160.14	138.15 138.16 139.20 139.20 129.08 128.18 128.13 126.65	79.14 77.32 76.68		
---------	--	-------------------------	--	--

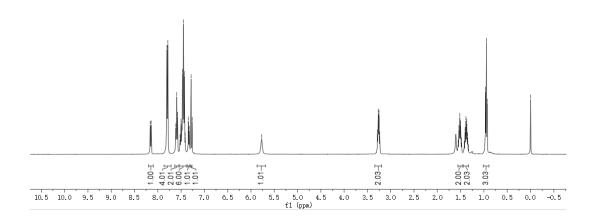


¹H NMR (400 MHz) Spectrum of 5a in CDCl₃

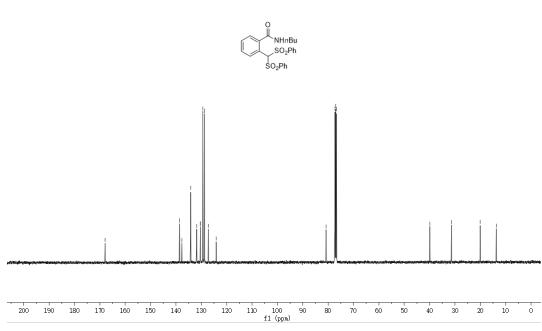


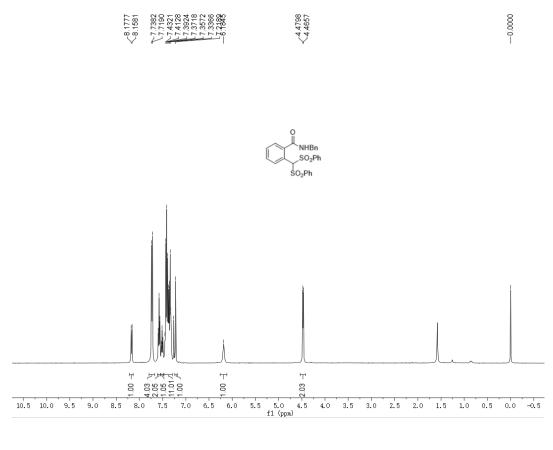
S41

¹H NMR (400 MHz) Spectrum of 5b in CDCl₃


¹³C{¹H} NMR (101 MHz) Spectrum of 5b in CDCl₃

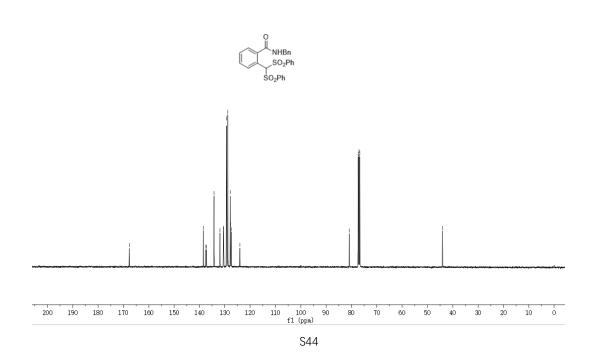
¹H NMR (400 MHz) Spectrum of 5c in CDCl₃



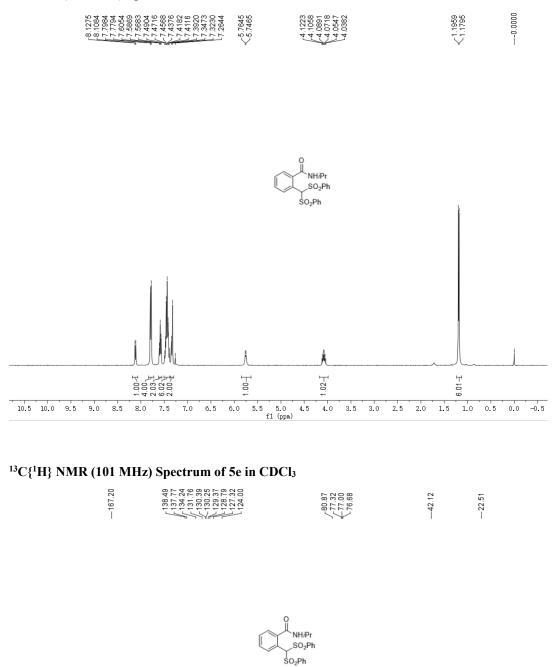


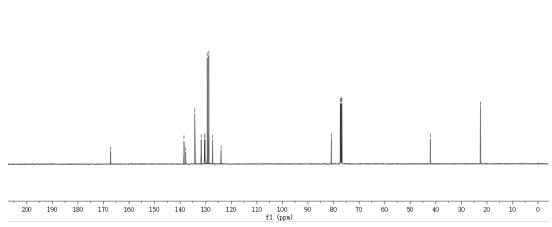
¹³C{¹H} NMR (101 MHz) Spectrum of 5c in CDCl₃

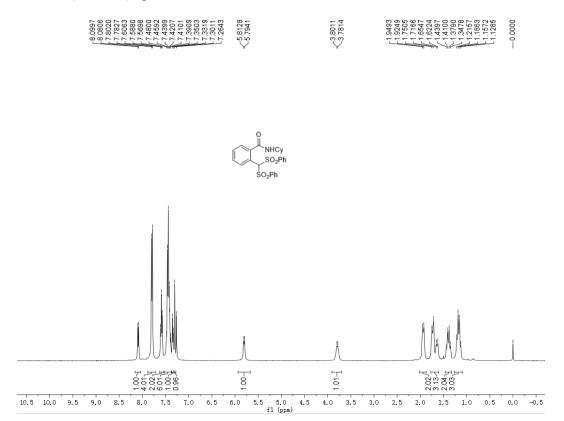
	138.61 137.65 134.25 134.25 134.28 139.34 139.34 129.33 128.38 129.38 129.38 129.38 129.38 129.38 129.38 129.38 129.38 129.38 129.38 129.38 129.38 129.39 129.39 129.39 129.39 129.39 129.39 129.39 129.39 129.39 129.39 129.59 10	80.83 77.32 76.68	- 39.91	-31.37	20.06 13.72	
1		ъγ	1			



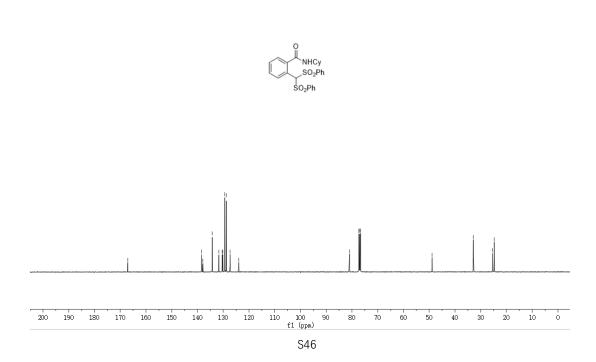
¹H NMR (400 MHz) Spectrum of 5d in CDCl₃



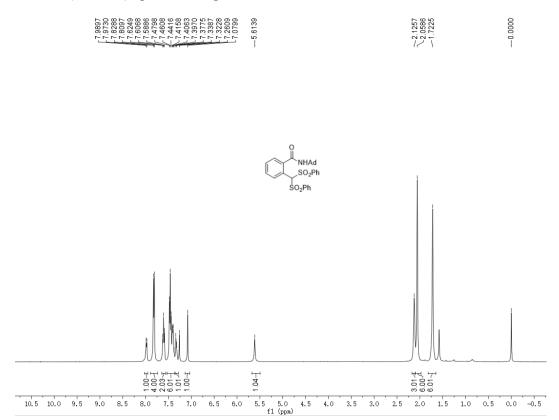

¹³C{¹H} NMR (101 MHz) Spectrum of 5d in CDCl₃



¹H NMR (400 MHz) Spectrum of 5e in CDCl₃

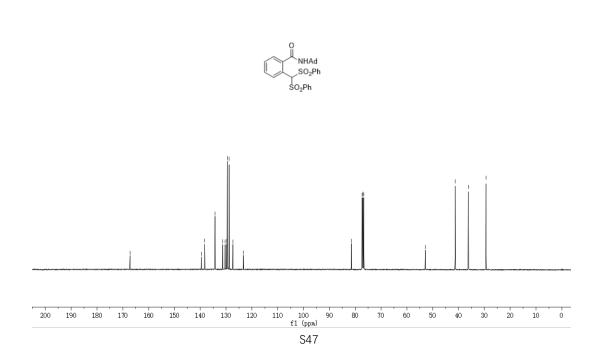


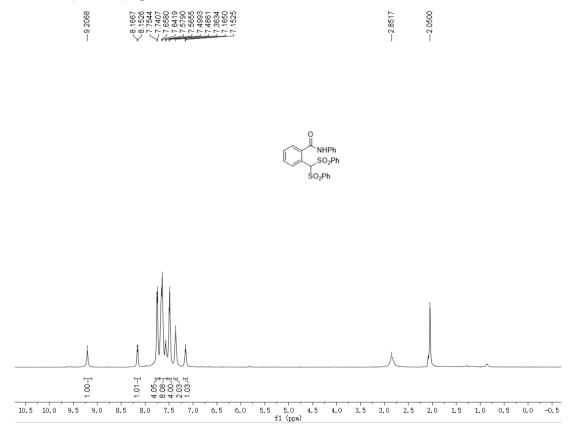
¹H NMR (400 MHz) Spectrum of 5f in CDCl₃



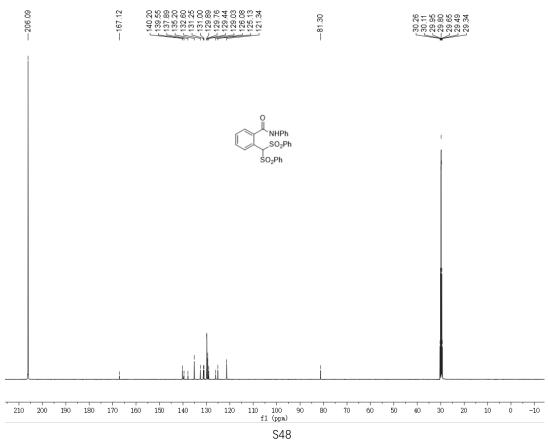
¹³C{¹H} NMR (101 MHz) Spectrum of 5f in CDCl₃

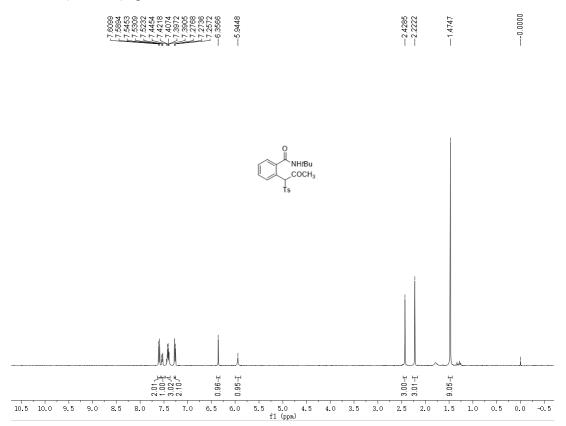
	138 42 137.94 131.71 130.139 123.39 123.395 123.365	777.32 777.32 76.68	48.87	-32.83 < 25.38 < 24.74
--	---	---------------------------	-------	------------------------------


¹H NMR (400 MHz) Spectrum of 5g in CDCl₃

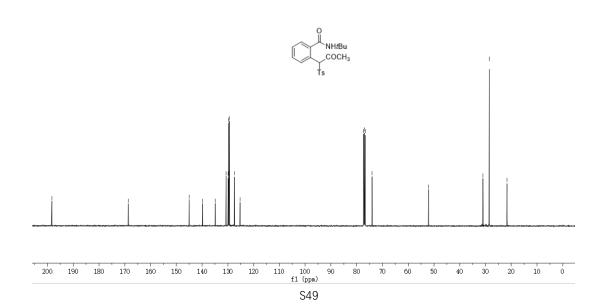

¹³C{¹H} NMR (101 MHz) Spectrum of 5g in CDCl₃

-167.18

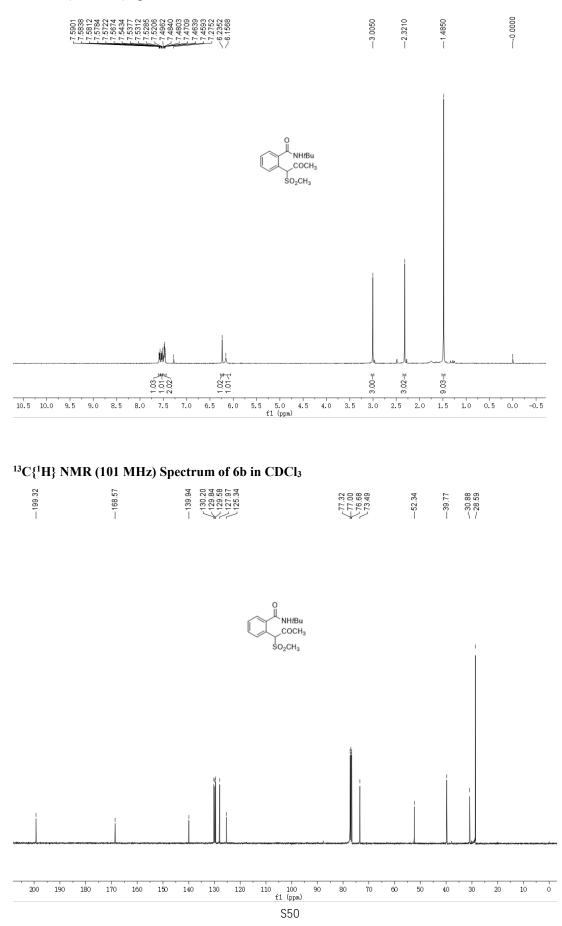

13950 13950 13928 13428 13428 13428 13328 129350 129351 129351 123331	81.44 77.32 77.00 76.68	52.84	41.29	-36.22	
11 1 100 7 7	1 1				


¹H NMR (500 MHz) Spectrum of 5h in acetone-d₆

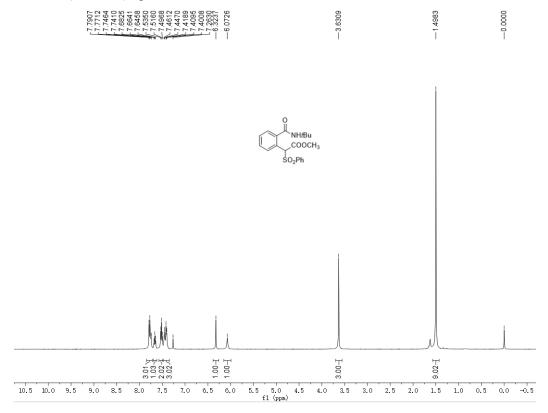
¹³C{¹H} NMR (126 MHz) Spectrum of 5h in acetone-*d*₆



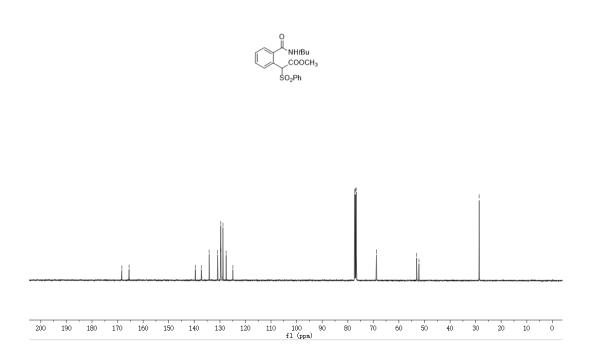
¹H NMR (400 MHz) Spectrum of 6a in CDCl₃



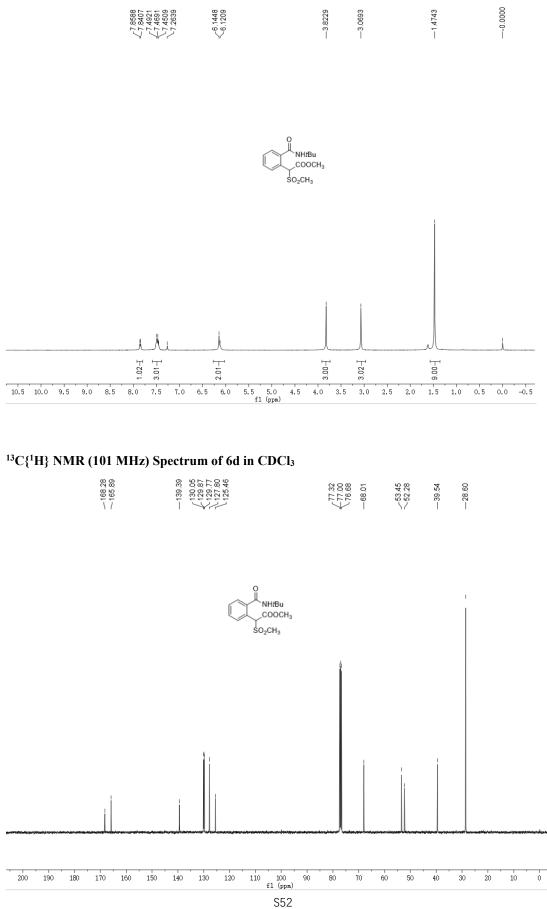
¹³C{¹H} NMR (101 MHz) Spectrum of 6a in CDCl₃


		145.01 139.86 139.86 129.85 125.25	77.32 77.00 74.02		
--	--	--	-------------------------	--	--

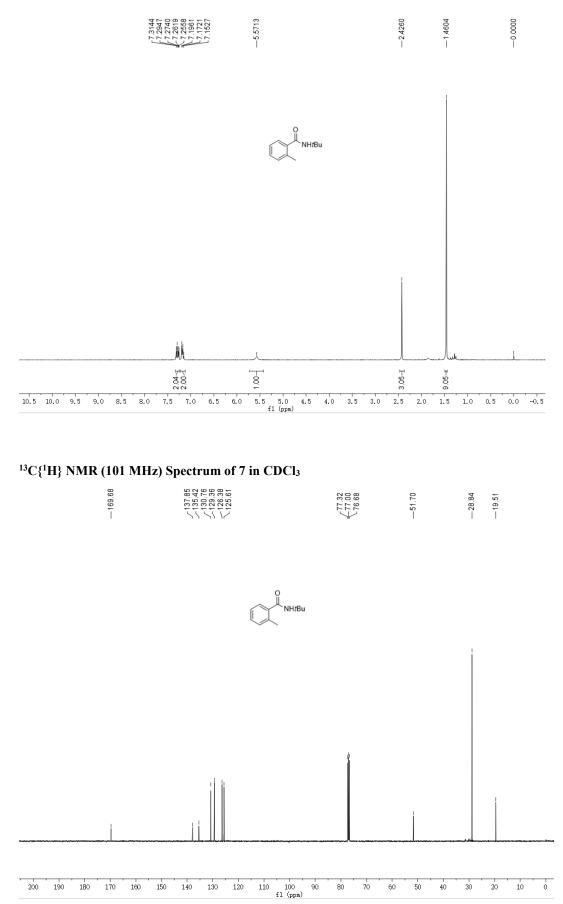
¹H NMR (400 MHz) Spectrum of 6b in CDCl₃



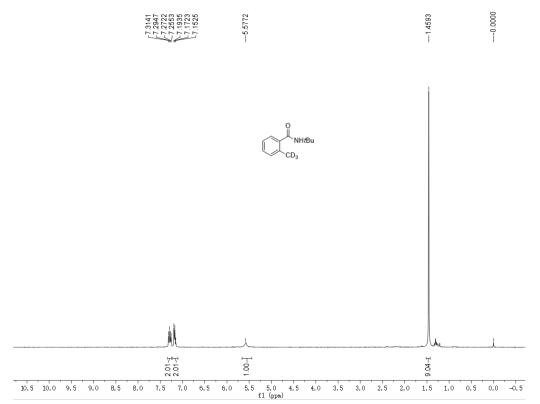
¹H NMR (400 MHz) Spectrum of 6c in CDCl₃



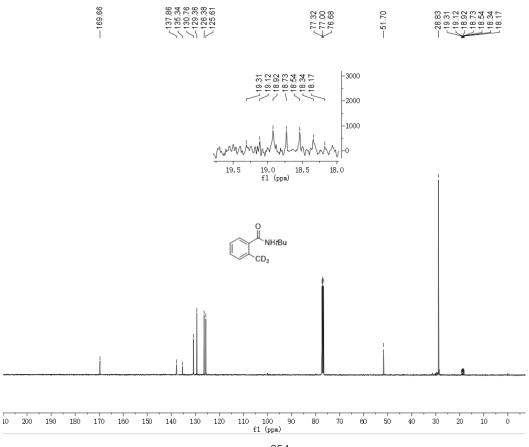
¹³C{¹H} NMR (101 MHz) Spectrum of 6c in CDCl₃

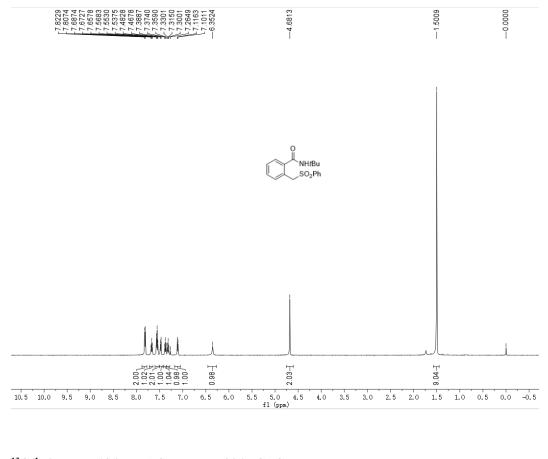

88	000040000000000000000000000000000000000	0000	99	2
82	00000000000	8	2.10	0. 0.
		NNN 0	4040	2
11		\checkmark I	52	1

¹H NMR (400 MHz) Spectrum of 6d in CDCl₃

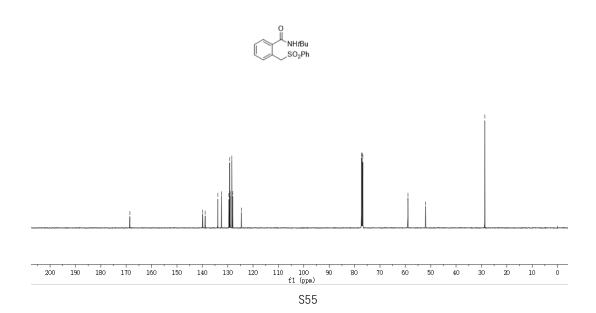


¹H NMR (400 MHz) Spectrum of 7 in CDCl₃

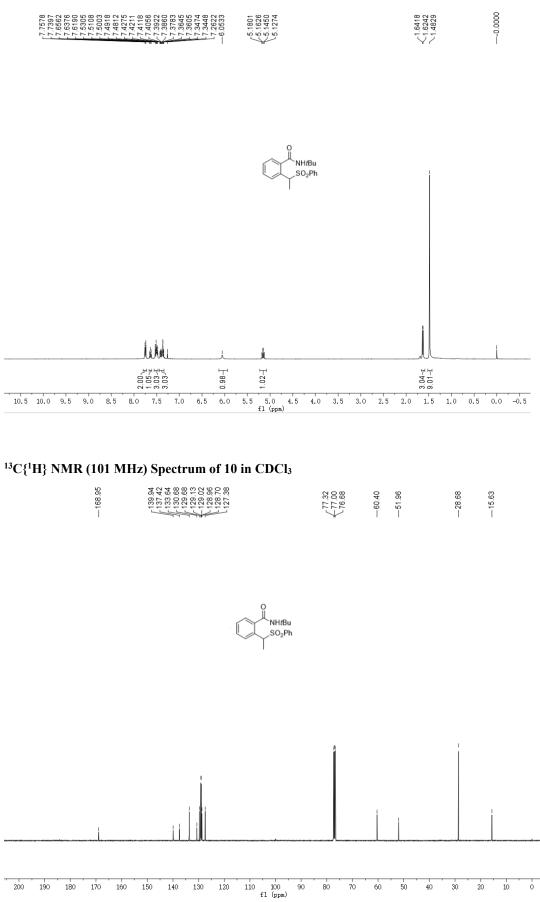



¹H NMR (400 MHz) Spectrum of 8 in CDCl₃

¹³C{¹H} NMR (101 MHz) Spectrum of 8 in CDCl₃

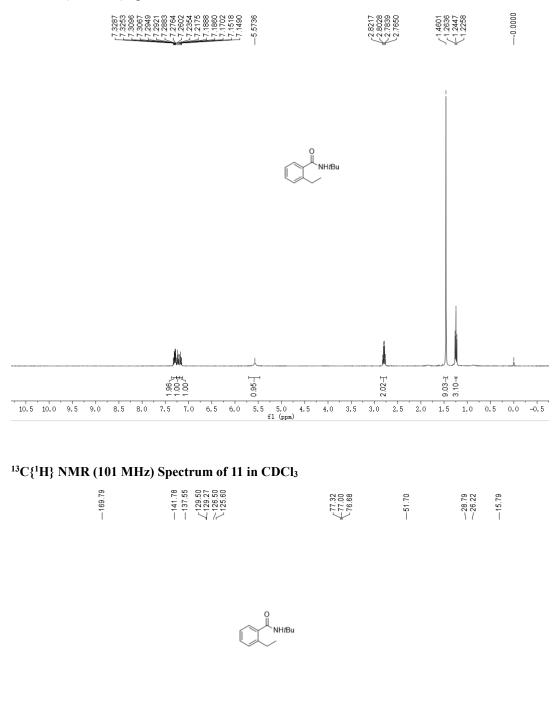


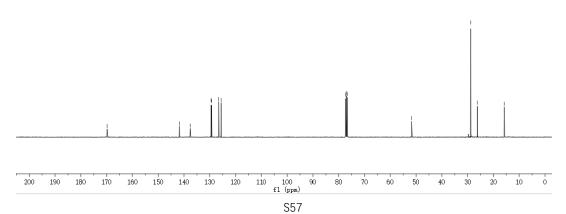
¹H NMR (500 MHz) Spectrum of 9 in CDCl₃

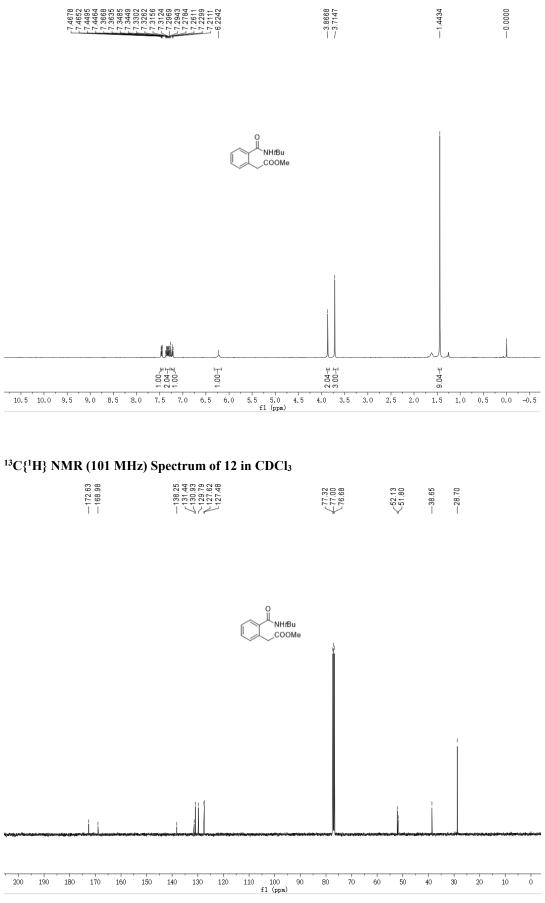


¹³C{¹H} NMR (126 MHz) Spectrum of 9 in CDCl₃

-168.57 -168.57 -138.89 -133.88 -123.288 -123.288 -122.923 -122.923 -124.64	$\left\{ \frac{77.25}{77.00} \right\}$	58.98 52.04	
---	--	----------------	--




¹H NMR (400 MHz) Spectrum of 10 in CDCl₃



¹H NMR (400 MHz) Spectrum of 11 in CDCl₃

¹H NMR (400 MHz) Spectrum of 12 in CDCl₃

S58