Ligand Centered Redox Enabled Sustainable Synthesis of Triazines and Pyrimidines Using A Zinc-Stabilized Azo-Anion Radical Catalyst

Siuli Das, Rakesh Mondal, Amit Kumar Guin, and Nanda D. Paul*

Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India

Email: ndpaul@gamil.com; <a href="mailto:ndpaul@

Table of Contents						
Fig S1	X-band EPR spectrum of $[1a]^-$ in dichloromethane at 77K.					
Fig S2	Trapping of TEMPO bound single electron reduced catalyst 1a .					
Table S1	Solvent and base screening for the optimization of the reaction conditions for 2,4,6-trisubstituted pyrimidine synthesis.					
Table S2	Optimization of the reaction conditions for 2,4,6-trisubstituted triazine synthesis.					
Scheme S1	Control experiments with TEMPO.	S6				
Fig S3-S68 Copies of ¹ H and ¹³ C NMR of the isolated compounds.		S7-S41				
	References	S42				

Fig S1 X-band EPR spectrum of [1a]⁻ in dichloromethane at 77K.¹

Fig S2. Trapping of TEMPO bound single electron reduced catalyst 1a.¹

Table S1. Solvent and base screening for the optimization of the reaction conditions for 2,4,6-trisubstituted pyrimidine synthesis.^{a-c}

^aStoichiometry: For Path A: benzylalcohol (2.0 mmol), 1-phenylethanol (2.0 mmol), guanidine (1.0 mmol), Zn-dust (0.5 equiv). For Path B: benzylalcohol (2.0 mmol), phenylacetylene (2.0 mmol), guanidine (1.0 mmol), Zn-dust (0.5 equiv). ^bIsolated yields after column chromatography. ^cUnder air.

Table S2. Optimization of the reaction conditions for 2,4,6-trisubstituted triazine synthesis.^{a-f}

	NH ↓ +	ОН	Catalyst	N N	
	Ph´ NH ₂	(2a)	Base, Solvent	N	
	(40)	()		(6a)	
Entry	Catalyst (mol%)	Solvent	Base	Temp. (°C)	Yield (%)
1	1a (5.0 mol%)	Toluene	KO ^t Bu(0.7 equiv.)	110	85
2	1a (5.0 mol%)	Toluene	NaO ^t Bu(0.7 equiv.)	110	83
3	1a (5.0 mol%)	Toluene	K ₃ PO ₄ (0.7 equiv.)	110	51
4	1a (5.0 mol%)	Toluene	KOH (0.7 equiv.)	110	78
5	1a (5.0 mol%)	Toluene	NaOH (0.7 equiv.)	110	79
6	1a (2.0 mol%)	Toluene	KO ^t Bu (0.5 equiv.)	100	85
7	1a (3.0 mol%)	Toluene	KO ^t Bu (0.5 equiv.)	100	85
8	1a (2.0mol%)	ACN	KO ^t Bu (0.5 equiv.)	100	trace
9	1a (2.0 mol%)	Ethanol	KO ^t Bu (0.5 equiv.)	100	trace
10	1a (2.0 mol%)	THF	KO ^t Bu (0.5 equiv.)	100	71
11	1a (2.0 mol%)	Xylene	KO ^t Bu (0.5 equiv.)	100	84
12	1a (2.0 mol%)	Toluene	KO ^t Bu (0.5 equiv.)	90	83
13 ^d	1a (2.0 mol%)	Toluene	KO ^t Bu (0.5 equiv.)	100	80
14	1b (2.0 mol%)	Toluene	KO ^t Bu (0.5 equiv.)	100	81
15	1a (2.0 mol%)	Toluene	-	100	trace
16	$ZnCl_2(5.0 \text{ mol}\%)$	Toluene	KO ^t Bu (0.5 equiv.)	100	NR
17	$L^{1a,b}(5.0 \text{ mol}\%)$	Toluene	KO ^t Bu (0.5 equiv.)	100	40
18	-	Toluene	KO ^t Bu (0.5 equiv.)	100	trace
19	$ZnCl_2+L^{1a}(1:1)$ (5.0 mol%)	Toluene	KO ^t Bu (0.5 equiv.)	100	46
20 ^e	1a (2.0 mol%)	Toluene	KO ^t Bu (0.5 equiv.)	100	85
21 ^f	1a (2.0 mol%)	Toluene	KO ^t Bu (0.5 equiv.)	100	trace

^aStoichiometry: benzylalcohol (1.0 mmol), benzamidine (1.0 mmol), Zn-dust (0.5 equiv). ^bIsolated yields after column chromatography. ^cUnder air. ^dReaction time 8h. ^eUnder pure oxygen. ^fUnder argon atmosphere.

Scheme S1. Control experiments with TEMPO.

Fig S3. ¹H NMR spectrum of compound 6a (400 MHz, CDCl₃).

Fig S4. ¹³C NMR spectrum of compound 6a (100 MHz, CDCl₃).

Fig S5. ¹H NMR spectrum of compound 6b (100 MHz, CDCl₃) (*water, *hexane).

Fig S6. ¹³C NMR spectrum of compound 6b (100 MHz, CDCl₃).

Fig S7. ¹H NMR spectrum of compound 6c (400 MHz, CDCl₃) ([#]hexane).

Fig S8. ¹³C NMR spectrum of compound 6c (100 MHz, CDCl₃) ([#]hexane).

Fig S9. ¹H NMR spectrum of compound 6d (400 MHz, CDCl₃) ([#]hexane).

Fig S10. ¹³C NMR spectrum of compound 6d (100 MHz, CDCl₃).

Fig S11. ¹H NMR spectrum of compound 6e (400 MHz, CDCl₃) (*water, [#]hexane).

Fig S12. ¹³C NMR spectrum of compound 6e (100 MHz, CDCl₃) ([#]hexane).

Fig S13. ¹H NMR spectrum of compound 6f (400 MHz, CDCl₃) (*water, [#]hexane).

Fig S14. ¹³C NMR spectrum of compound 6f (100 MHz, CDCl₃) ([#]hexane).

Fig S15. ¹H NMR spectrum of compound 6g (400 MHz, CDCl₃) (*water, [#]hexane).

Fig S16. ¹³C NMR spectrum of compound 6g (100 MHz, CDCl₃).

Fig S17. ¹H NMR spectrum of compound 6h (400 MHz, CDCl₃) ([#]hexane).

Fig S18. ¹³C NMR spectrum of compound 6h (100 MHz, CDCl₃).

Fig S19. ¹H NMR spectrum of compound 6i (400 MHz, CDCl₃) (*water, [#]hexane).

Fig S20. ¹³C NMR spectrum of compound 6i (100 MHz, CDCl₃).

Fig S22. ¹³C NMR spectrum of compound 6j (100 MHz, CDCl₃).

Fig S23. ¹H NMR spectrum of compound 7a (400 MHz, CDCl₃) ([#]hexane).

Fig S24. ¹³C NMR spectrum of compound 7a (100 MHz, CDCl₃) ([#]hexane).

Fig S25. ¹H NMR spectrum of compound 7b (400 MHz, CDCl₃) ([#]hexane).

Fig S26. ¹³C NMR spectrum of compound 7b (100 MHz, CDCl₃) ([#]hexane).

Fig S27. ¹H NMR spectrum of compound 7c (400 MHz, CDCl₃).

Fig S28. 13 C NMR spectrum of compound 7c (100 MHz, CDCl₃).

Fig S29. ¹H NMR spectrum of compound 7d (400 MHz, CDCl₃).

Fig 30. ¹³C NMR spectrum of compound 7d (100 MHz, CDCl₃).

Fig S31. ¹H NMR spectrum of compound 7e (400 MHz, CDCl₃) ([#]hexane).

Fig S32. ¹³C NMR spectrum of compound 7e (100 MHz, CDCl₃) ([#]hexane).

Fig S33. ¹H NMR spectrum of compound 7f (400 MHz, CDCl₃) ([#]hexane).

Fig S34. ¹³C NMR spectrum of compound 7f (100 MHz, CDCl₃).

Fig S35. ¹H NMR spectrum of compound 7g (400 MHz, CDCl₃) ([#]hexane).

Fig S36. ¹³C NMR spectrum of compound 7g (100 MHz, CDCl₃) ([#]hexane).

Fig S37. ¹H NMR spectrum of compound 7h (400 MHz, CDCl₃) ([#]hexane).

Fig S38. ¹³C NMR spectrum of compound 7h (100 MHz, CDCl₃) ([#]hexane).

Fig S39. ¹H NMR spectrum of compound 7i (400 MHz, CDCl₃) ([#]hexane).

Fig S40. ¹³C NMR spectrum of compound 7i (100 MHz, CDCl₃).

Fig S41. ¹H NMR spectrum of compound 7j (400 MHz, CDCl₃) (*water, [#]hexane).

Fig S42. ¹H NMR spectrum of compound 7j (100 MHz, CDCl₃) ([#]hexane).

Fig S43. ¹H NMR spectrum of compound 7k (400 MHz, CDCl₃) ([#]hexane).

Fig S44. ¹³C NMR spectrum of compound 7k (100 MHz, CDCl₃) ([#]hexane).

Fig S45. ¹H NMR spectrum of compound 7l (400 MHz, CDCl₃).

Fig S46. ¹³C NMR spectrum of compound 7l (100 MHz, CDCl₃).

Fig S47. ¹H NMR spectrum of compound 7m (400 MHz, CDCl₃) ([#]hexane).

Fig S48. ¹³C NMR spectrum of compound 7m (100 MHz, CDCl₃) ([#]hexane).

Fig S49. ¹H NMR spectrum of compound 7n (400 MHz, CDCl₃) ([†]DCM, [#]hexane).

Fig S50. 13 C NMR spectrum of compound 7n (100 MHz, CDCl₃) ([#]hexane).

Fig S51. ¹H NMR spectrum of compound 70 (400 MHz, CDCl₃).

Fig S52. ¹³C NMR spectrum of compound 70 (100 MHz, CDCl₃).

Fig S53. ¹H NMR spectrum of compound 7p (400 MHz, CDCl₃) ([#]hexane).

Fig S54. ¹³C NMR spectrum of compound 7p (100 MHz, CDCl₃) ([#]hexane).

Fig S56. ¹³C NMR spectrum of compound **7q** (100 MHz, CDCl₃ + 1drop CD₃OD) ([§]diethyl ether, [#]hexane).

Fig S57. ¹H NMR spectrum of compound 7r (400 MHz, CDCl₃) ([#]hexane).

Fig S58. ¹³C NMR spectrum of compound 7r (100 MHz, CDCl₃).

Fig 59. ¹H NMR spectrum of compound 7s (400 MHz, CDCl₃) ([#]hexane).

Fig 60. ¹³C NMR spectrum of compound 7s (100 MHz, CDCl₃) ([§]diethyl ether, [#]hexane).

Fig S61. ¹H NMR spectrum of compound 7t (400 MHz, CDCl₃).

Fig S62. ¹³C NMR spectrum of compound 7t (100 MHz, CDCl₃).

Fig S63. ¹H NMR spectrum of compound 7u (400 MHz, CDCl₃).

Fig S64. ¹³C NMR spectrum of compound 7u (100 MHz, CDCl₃).

Fig S65. ¹H NMR spectrum of compound 7v (400 MHz, CDCl₃).

Fig S66. 13 C NMR spectrum of compound 7v (100 MHz, CDCl₃).

Fig S67. ¹H NMR spectrum of compound 7x (400 MHz, CDCl₃) (*water, *hexane).

Fig S68. ¹³C NMR spectrum of compound 7x (100 MHz, CDCl₃) ([#]hexane).

Fig S69. 1 H NMR spectrum of compound 7y (400 MHz, CDCl₃).

Fig S70. ¹³C NMR spectrum of compound 7y (100 MHz, CDCl₃).

Fig S71. ¹H NMR spectrum of compound 8 (300 MHz, CDCl₃).

Fig S72. ¹³C NMR spectrum of compound 8 (75 MHz, CDCl₃).

Reference

 S. Das, R. Mondal, G. Chakraborty, A. K. Guin, A. Das and N. D. Paul. ACS Catal., 2021, 11, 7498–7512.