Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Palladium-Catalyzed Sequential Heck Coupling/C-C Bond Activation Approach to Oxindoles with All-Carbon-Quaternary

Centers

Guoliang Mao,^{‡*a} Chenxiang Meng,^{‡ab} Fangyuan Cheng,^b Wenbo Wu,^b Yuan-Yuan Gao,^{*b} Gao-Wei Li^b and Lantao Liu^{*bc}

a. Provincial Key Laboratory of Oil and Gas Chemical Technology, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, China. E-mail: <u>maoguoliang@nepu.edu.cn</u>

b. Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China. E-mail: <u>gaoyuanyuan@iccas.ac.cn</u>

c. College of Chemistry, Zhengzhou University, Zhengzhou 450001, China. E-mail: <u>liult05@iccas.ac.cn</u>

†These authors contributed equally to this work and should be considered cofirst authors.

Table of Contents

1. General information	S2
2. General Procedure for the Synthesis of Products 3 and Characterization Data	S2
3. Gram-Scale Reaction	S13
4. Primitive Results of Enantioselective Reaction	S14
5. X-Ray Crystal Structure of Enantiopure 3aa	S16
6. Reference	S23
7. ¹ H, ¹⁹ F, ¹³ C NMR Spectras	S24

1. General information

¹H, ¹³C, and ¹⁹F NMR spectrometers were recorded on Bruker-400 MHz instruments internally referenced to tetramethylsilane (0.0 ppm) or residue of CDCl₃ (7.26 ppm) signal. Melting points were measured using a XT4A microscopic apparatus. IR spectra were obtained on a Bruker VECTOR22 spectrophotometer in KBr pellets. All reactions were performed under an inert atmosphere of dry nitrogen in glassware, unless otherwise stated. Solvents and chemicals were bought from commercial sources and used directly unless otherwise stated. Column chromatography was performed on 300-400 mesh silica gel. The substrates 1a¹⁻⁶ and 2⁷ were synthesized according to published procedures. Analytical thin-layer chromatography (TLC) was performed on pre-coated, glass-backed silica gel plates.

2. General Procedure for the Synthesis of Products 3 and Characterization Data

To a 10 mL Schlenk tube, **1** (0.1 mmol), **2** (0.12 mmol), K_3PO_4 (0.2 mmol, 2.0 equiv.), Pd(OAc)₂ (0.01 mmol, 10 mol%), **dppf** (0.02 mmol, 20.0mol%), and toluene (1.0 mL) were added sequentially under a N₂ atmosphere. The reaction mixture was stirred at 70 °C for 13 h. After the reaction was complete (monitored by TLC), the resulting mixture was filtered with ethyl acetate and concentrated, then the residue was purified by preparative TLC (petroleum ether : ethyl acetate = 3 : 1) directly and delivered the desired product.

Characterization data of the products.

3-(2-methoxy-6-(2-oxopropyl)benzyl)-1,3-dimethylindolin-2-one (3aa) : White Solid; (99% yield, petroleum ether: ethyl acetate = 3 : 1, R_f = 0.28) m.p. = 107 – 108 °C.¹H NMR (400 MHz, CDCl₃) δ 7.16 (td, J = 7.7, 1.3 Hz, 1H), 7.10 (t, J = 7.9 Hz, 1H), 6.87 (td, J = 7.5, 0.9 Hz, 1H), 6.76 (dd, J = 7.4, 0.8 Hz, 1H), 6.74 (d, J = 7.7 Hz, 1H), 6.64 (d, J = 7.9 Hz, 2H), 3.57 (s, 3H), 3.49 (dd, J = 19.9, 16.6 Hz, 2H), 3.37 (d, J = 14.0 Hz, 1H), 3.15 (s, 3H), 2.90 (d, J = 13.9 Hz, 1H), 2.03 (s, 3H), 1.38 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 206.5, 181.0, 158.4, 142.8, 135.5, 133.6, 127.6, 127.5, 124.4, 124.1, 122.7, 121.6, 108.7, 107.6, 54.6, 49.1, 48.4, 33.1, 29.5, 26.2, 22.97.. IR (KBr, cm⁻¹): 2965, 2923, 1711, 1613, 1584, 1493, 1471, 1377, 1351, 1261, 1158, 1104, 749. HRMS (ESI): calcd for C₂₁H₂₃NNaO₃ [M+Na]⁺ 360.1570, found 360.1568.

3-(2-methoxy-6-(2-oxobutyl)benzyl)-1,3-dimethylindolin-2-one (3ab): Yellow oil; (99% yield, petroleum ether: ethyl acetate = 3 : 1, $R_f = 0.34$). ¹H NMR (400 MHz, CDCl₃) δ 7.17 (td, J = 7.7, 1.3 Hz, 1H), 7.10 (t, J = 7.9 Hz, 1H), 6.87 (td, J = 7.5, 1.1 Hz, 1H), 6.74 (dd, J = 7.5, 1.2 Hz, 2H), 6.64 (d, J = 7.9 Hz, 2H), 3.57(s, 3H), 3.45 (s, 2H), 3.36 (d, J = 13.9 Hz, 1H), 3.15 (s, 3H), 2.89 (d, J = 14.0 Hz, 1H), 2.35-2.29 (m, 2H), 1.38 (s, 3H), 0.96 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 209.1, 181.0, 158.4, 142.8, 135.8, 133.7, 127.6, 127.5, 124.4, 124.1, 122.7, 121.7, 108.6, 107.6, 54.6, 49.1, 47.2, 35.3, 33.1, 26.2, 22.9, 7.8. IR (KBr, cm⁻¹): 2970, 2937, 1715, 1613, 1584, 1494, 1471, 1377, 1350, 1302, 1264, 1106, 755. HRMS (ESI): calcd for C₂₂H₂₆NO₃ [M+H]⁺ 352.1907, found 352.1901.

3-(2-methoxy-6-(2-oxohexyl)benzyl)-1,3-dimethylindolin-2-one (3ac):

Yellow oil; (99% yield, petroleum ether : ethyl acetate = 3 : 1, $R_f = 0.52$). ¹H NMR (400 MHz, CDCl₃) δ 7.17 (t, J = 7.8 Hz, 1H), 7.09 (t, J = 7.9 Hz, 1H), 6.87 (t, J = 7.5 Hz, 1H), 6.74 (d, J = 7.5 Hz, 2H), 6.63 (d, J = 6.9 Hz, 2H), 3.57 (s, 3H), 3.45 (s, 2H), 3.36 (d, J = 14.0 Hz, 1H), 3.15 (s, 3H), 2.87 (d, J = 13.9 Hz, 1H), 2.30 (t, J = 7.4 Hz, 2H), 1.49-1.42 (m, 2H), 1.37 (s, 3H), 1.27 - 1.17 (m, 2H), 0.84 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 208.7, 181.0, 158.4, 142.8, 135.7, 133.7, 127.5, 127.5, 124.4, 124.1, 122.7, 121.7, 108.6, 107.5, 54.6, 49.1, 47.6, 41.9, 33.2, 26.2, 25.9, 22.9, 22.3, 13.9. IR (KBr, cm⁻¹): 2960, 2933, 1714, 1614, 1584, 1493, 1471, 1377, 1349, 1262, 1106, 754. HRMS (ESI): calcd for C₂₄H₃₀NO₃ [M+H]⁺ 388.2220, found 380.2224.

3-(2-methoxy-6-(3-methyl-2-oxobutyl)benzyl)-1,3-dimethylindolin-2-one (3ad): Yellow oil; (99% yield, petroleum ether : ethyl acetate = 3 : 1, $R_f = 0.46$). ¹H NMR (400 MHz, CDCl₃) δ 7.18 (td, J = 7.7, 1.2 Hz, 1H), 7.10 (t, J = 7.9 Hz, 1H), 6.89 (td, J = 7.5, 1.0 Hz, 1H), 6.76 - 6.74 (m, 2H), 6.64 (dd, J = 8.3, 1.1 Hz, 1H), 6.60 (dd, J = 7.7, 1.1 Hz, 1H), 3.57 (s, 3H), 3.56 - 3.45 (m, 2H), 3.35 (d, J = 14.0 Hz, 1H), 3.16 (s, 3H), 2.80 (d, J = 14.0 Hz, 1H), 2.61-2.54 (m, 1H), 1.38 (s, 3H), 1.04 (s, 3H), 1.02 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 212.1, 181.1, 158.3, 142.8, 135.8, 133.8, 127.5, 127.4, 124.5, 124.1, 122.8, 121.7, 108.6, 107.5, 54.6, 49.1, 45.2, 40.2, 33.3, 26.2, 22.7, 18.5, 18.3. IR (KBr, cm⁻¹): 2968, 2933, 1714, 1614, 1584, 1494, 1471, 1377, 1349, 1301, 1261, 1106, 755. HRMS (ESI): calcd for C₂₃H₂₈NO₃ [M+H]⁺ 366.2064, found 366.2058.

3-(2-(2-cyclohexyl-2-oxoethyl)-6-methoxybenzyl)-1,3-dimethylindolin-2-one (**3ae):** Yellow oil; (92% yield, petroleum ether : ethyl acetate = 3 : 1, R_f = 0.48). ¹H NMR (400 MHz, CDCl₃) & 7.18 (td, *J* = 7.7, 1.2 Hz, 1H), 7.09 (t, *J* = 7.9 Hz, 1H), 6.88 (td, *J* = 7.5, 0.6 Hz, 1H), 6.76 – 6.74 (m, 2H), 6.63 (d, *J* = 8.1 Hz, 1H), 6.58 (d, *J* = 7.6 Hz, 1H), 3.56 (s, 3H), 3.54 – 3.43 (m, 2H), 3.33 (d, *J* = 13.9 Hz, 1H), 3.16 (s, 3H), 2.78 (d, *J* = 14.0 Hz, 1H), 2.33 – 2.27 (m, 1H), 1.74 (d, *J* = 8.7 Hz, 4H), 1.64 (d, *J* = 9.4 Hz, 1H), 1.38 (s, 3H), 1.30 – 1.17 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) & 211.4, 181.1, 158.3, 142.8, 135.8, 133.8, 127.5, 127.4, 124.5, 124.2, 122.9, 121.7, 108.6, 107.5, 54.6, 50.3, 49.1, 45.4, 33.3, 28.8, 28.4, 26.2, 25.8, 25.7, 25.6, 22.8. IR (KBr, cm⁻¹): 2931, 1715, 1613, 1584, 1493, 1471, 1452, 1376, 1349, 1262, 1106, 749. HRMS (ESI): calcd for C₂₆H₃₂NO₃ [M+H]⁺ 406.2377, found 406.2372.

1,3-dimethyl-3-(2-(2-oxo-3-phenylpropyl)benzyl)indolin-2-one (3af): Yellow solid; (89% yield, petroleum ether : ethyl acetate = 3 : 1, $R_f = 0.53$), m.p.= 106 - 107 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.32 (m, 2H), 7.30-7.27 (m, 1H), 7.18 (d, J = 7.4 Hz, 3H), 7.05 (td, J = 7.5, 1.5 Hz, 1H), 7.00 – 6.91 (m, 3H), 6.88 (d, J = 7.5 Hz, 1H), 6.78 (d, J = 7.5 Hz, 1H), 6.64 (d, J = 7.7 Hz, 1H), 3.68 (s, 2H), 3.68 (d, J = 17.0 Hz, 3H), 3.60 (d, J = 17.1 Hz, 1H), 2.97 (s, 3H), 2.94 (d, J = 13.8 Hz, 1H), 2.87 (d, J = 13.9 Hz, 1H), 1.38 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 205.9, 180.1, 143.2, 135.2, 134.2, 133.2, 132.9, 130.8, 130.7, 129.5, 128.8, 128.0, 127.1, 126.9, 126.4, 123.3, 122.1, 107.9, 49.6, 49.5, 46.7, 40.0, 26.0, 23.0. IR (KBr, cm⁻¹): 2967, 1715, 1614, 1495, 1471, 1424, 1380, 1351, 1261, 1247, 1161, 1121, 744. HRMS (ESI): calcd for C₂₆H₂₆NO₂ [M+H]⁺ 384.1958, found384.1954.

3-(2-(3-(4-fluorophenyl)-2-oxopropyl)benzyl)-1,3-dimethylindolin-2-one (3ag): Yellow oil; (86% yield, petroleum ether : ethyl acetate = 3 : 1, $R_f = 0.42$). ¹H NMR (400 MHz, CDCl₃) δ 7.22-7.18 (m, 1H), 7.14 – 7.10 (m, 2H), 7.07 – 7.02 (m, 2H), 6.99 (dd, J = 7.1, 4.4 Hz, 3H), 6.94 (td, J = 7.5, 1.5 Hz, 1H), 6.89 (dd, J = 7.6, 1.5 Hz, 1H), 6.76 (dd, J = 7.9, 1.3 Hz, 1H), 6.65 (d, J = 7.8 Hz, 1H), 3.71 (d, J = 17.0 Hz, 1H), 3.65 (s, 2H), 3.61 (d, J = 17.0 Hz, 1H), 2.97 (m, 4H), 2.90 (d, J = 13.8 Hz, 1H), 1.40 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -115.75. ¹³C NMR (101 MHz, CDCl₃) δ 205.7, 162.0 (d, C-F, ¹ $J_{C-F} = 245.4$ Hz), 180.07, 143.2, 135.1, 133.1, 132.8, 131.06 (d, C-F, ³ $J_{C-F} = 8.0$ Hz), 130.95, 130.7, 129.9 (d, C-F, ⁴ $J_{C-F} = 3.3$ Hz), 128.0, 126.91, 126.4, 123.3, 122.2, 115.51 (d, C-F, ² $J_{C-F} = 21.4$ Hz), 107.9, 49.5, 48.3, 46.8, 40.0, 26.0, 23.0. IR (KBr, cm⁻¹): 2968, 2929, 1717, 1615, 1493, 1471, 1421, 1349, 1227, 1222, 1159, 1100, 744. HRMS (ESI): calcd for C₂₆H₂₅FNO₂ [M+H]⁺ 402.1864, found.402.1860.

1,3-dimethyl-3-(2-(2-oxo-3-(p-tolyl)propyl)benzyl)indolin-2-one (3ah): Yellow oil; (72% yield, petroleum ether : ethyl acetate = 3 : 1, $R_f = 0.47$). ¹H NMR (400 MHz, CDCl₃) δ 7.19 (td, J = 7.7, 1.4 Hz, 1H), 7.15 (d, J = 7.8 Hz, 2H), 7.07 (d, J = 7.9 Hz, 2H), 7.03 (dd, J = 7.5, 1.4 Hz, 1H), 6.99 – 6.90 (m, 3H), 6.87 (dd, J = 7.6, 1.5 Hz, 1H), 6.78 (dd, J = 7.5, 1.3 Hz, 1H), 6.64 (d, J = 7.8 Hz, 1H), 3.61 (dd, J = 26, 16.8 Hz, 4H), 2.97 (s, 3H), 2.94 (d, J = 14.0 Hz, 1H), 2.86 (d, J = 13.9 Hz, 1H), 2.34 (s, 3H), 1.38 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 206.1, 180.1, 143.1, 136.7, 135.1, 133.3, 132.9, 131.1, 130.8, 130.7, 129.5, 129.4, 128.0, 126.8, 126.3, 123.3, 122.1, 107.9, 49.6, 49.1, 46.5, 40.0, 26.0, 22.9, 21.1. IR (KBr, cm⁻¹): 2970, 2926, 1714, 1614, 1494, 1471, 1423, 1379, 1352, 1245, 1159, 1121, 737. HRMS (ESI): calcd for C₂₇H₂₈NO₂ [M+H]⁺ 398.2115, found 398.2111.

1,3-dimethyl-3-(2-(2-oxo-3-(m-tolyl)propyl)benzyl)indolin-2-one (3ai): Yellow oil; (93% yield, petroleum ether : ethyl acetate = 3 : 1, $R_f = 0.47$). ¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.21 (m, 1H), 7.18 (dd, J = 7.7, 1.3 Hz, 1H), 7.09 (d, J = 7.6 Hz, 1H), 7.04 (td, J = 7.5, 1.3 Hz, 1H), 7.01 – 6.97 (m, 3H), 6.97 – 6.94 (m, 1H), 6.93 – 6.91 (m, 1H), 6.90 – 6.86 (m, 1H), 6.79 (dd, J = 7.7, 1.1 Hz, 1H), 6.63 (d, J = 7.8 Hz, 1H), 3.67 – 3.57 (m, 4H), 2.97 – 2.84 (m, 4H), 2.86 (d, J = 13.9 Hz, 1H), 2.34 (s, 3H), 1.38 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 206.0, 180.0, 143.2, 138.4, 135.2, 134.1, 133.3, 132.9, 130.8, 130.7, 130.3, 128.7, 128.0, 127.8, 126.8, 126.5, 126.3, 123.3, 122.1, 107.9, 49.6, 49.5, 46.6, 40.0, 26.0, 22.9, 21.4. IR (KBr, cm⁻¹): 2967, 2928, 1714, 1614, 1494, 1471, 1379, 1352, 1327, 1120, 739. HRMS (ESI): calcd for C₂₇H₂₈NO₂ [M+H]⁺ 398.2115, found 398.2110.

1,3-dimethyl-3-(2-(2-oxo-3-(o-tolyl)propyl)benzyl)indolin-2-one (3aj): Yellow oil; (82% yield, petroleum ether : ethyl acetate = 3 : 1, $R_f = 0.48$). ¹H NMR (400 MHz, CDCl₃) δ 7.21 – 7.17 (m, 4H), 7.11 (dd, J = 6.9, 2.5 Hz, 1H), 7.05 (td, J = 7.4, 1.4 Hz, 1H), 6.98 (dd, J = 7.4, 0.8 Hz, 1H), 6.95 (s, 1H), 6.92 (dd, J = 6.5, 1.2 Hz, 1H), 6.89 (dd, J = 7.3, 1.4 Hz, 1H), 6.80 (dd, J = 7.7, 1.1 Hz, 1H), 6.64 (d, J = 7.8 Hz, 1H), 3.69 (d, J = 2.2 Hz, 2H), 3.65 – 3.55 (m, 2H), 2.98 – 2.95 (m, 4H), 2.89 (d, J = 13.9 Hz, 1H), 2.19 (s, 3H), 1.40 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 205.9, 180.0, 143.1, 137.0, 135.1, 133.3, 133.1, 132.8, 130.9, 130.6, 130.5, 130.5, 128.0, 127.4, 126.8, 126.4, 126.3, 123.3, 122.1, 107.9, 49.6, 47.6, 46.6, 40.0, 26.0, 22.9, 19.7. IR (KBr, cm⁻¹): 2963, 2927, 1713, 1614, 1494, 1471, 1454, 1380, 1351, 1123, 1058, 1027, 742. HRMS (ESI): calcd for C₂₇H₂₈NO₂ [M+H]⁺ 398.2115, found 398.2119.

1,3-dimethyl-3-(2-(2-oxopropyl)benzyl)indolin-2-one (3ak): Yellow solid; (82% yield, petroleum ether : ethyl acetate = 3 : 1, $R_f = 0.29$), m.p.= 65 - 66 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.23 - 7.19 (m, 1H), 7.09 - 6.99 (m, 3H), 6.96 - 6.93 (m, 2H), 6.80 (dd, J = 8.1, 1.5 Hz, 1H), 6.67 (d, J = 7.7 Hz, 1H), 3.65 (d, J = 16.7 Hz, 1H), 3.57 (d, J = 16.7 Hz, 1H), 3.10 (d, J = 13.8 Hz, 1H), 3.03 (d, J = 13.9 Hz, 1H), 3.00 (s, 3H), 2.08 (s, 3H), 1.46 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 206.7, 180.1, 143.2, 135.0, 133.5, 132.9, 131.0, 130.6, 128.0, 127.0, 126.3, 123.4, 122.2, 108.0, 49.6, 48.4, 40.0, 29.5, 26.0, 23.1. IR (KBr, cm⁻¹): 2968, 2928, 1709, 1613, 1494, 1471, 1454, 1379, 1353, 1159, 1121, 1029, 750. HRMS (ESI): calcd for C₂₀H₂₂NO₂ [M+H]⁺ 308.1645, found 308.1638.

3-(2-(benzyloxy)-6-(2-oxopropyl)benzyl)-1,3-dimethylindolin-2-one (**3al):** Yellow oil; (99% yield, petroleum ether : ethyl acetate = 3 : 1, $R_f = 0.31$). ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.35 (m, 2H), 7.34 – 7.30 (m, 3H), 7.14 (t, J = 7.9 Hz, 2H), 6.79 (td, J = 7.6, 1.0 Hz, 1H), 6.75 (d, J = 8.1 Hz, 1H), 6.71 (d, J = 7.6 Hz, 1H), 6.66 (d, J = 7.7 Hz, 1H), 6.61 (dd, J = 7.4, 1.2 Hz, 1H), 4.87 (d, J = 11.6 Hz, 1H), 4.77 (d, J = 11.6 Hz, 1H), 3.62 (d, J = 16.6 Hz, 1H), 3.54 (d, J = 16.6 Hz, 1H), 3.38 (d, J = 14.0 Hz, 1H), 3.06 (s, 3H), 3.02 (d, J = 14.0 Hz, 1H), 2.07 (s, 3H), 1.35 (s, 3H). ¹³C NMR (101 MHz, CDCl3) δ 206.5, 181.0, 157.7, 142.7, 137.1, 135.6, 133.7, 128.5, 127.7, 127.7, 127.5, 127.2, 124.8, 124.1, 123.1, 121.7, 110.1, 107.6, 69.7, 48.9, 48.4, 33.0, 29.5, 26.1, 23.1. IR (KBr, cm⁻¹): 2963, 2930, 1717, 1615, 1493, 1471, 1451, 1377, 1352, 1264, 1158, 1101, 737. HRMS (ESI): calcd for C₂₇H₂₈NO₃ [M+H]⁺ 414.2064, found 414.2060.

3-(2-methoxy-4-methyl-6-(2-oxopropyl)benzyl)-1,3-dimethylindolin-2-one

(3am): Yellow oil; (99% yield, petroleum ether : ethyl acetate = 3 : 1, $R_f = 0.31$). ¹H NMR (400 MHz, CDCl₃) δ 7.18 (td, J = 7.7, 1.1 Hz, 1H), 6.89 (td, J = 7.5, 1.0 Hz, 1H), 6.78 (dd, J = 7.3, 1.3 Hz, 1H), 6.75 (d, J = 7.7 Hz, 1H), 6.46 (d, J = 3.2 Hz, 2H), 3.57 (s, 3H), 3.42 (dd, J = 18.84, 16.44 Hz, 2H), 3.32 (d, J = 14.1 Hz, 1H), 3.16 (s, 3H), 2.84 (d, J = 14.0 Hz, 1H), 2.26 (s, 3H), 2.02 (s, 3H), 1.36 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 206.9, 181.1, 158.3, 142.8, 137.4, 135.2, 133.9, 127.5, 124.1, 123.3, 121.7, 121.3, 109.8, 107.6, 54.6, 49.1, 48.4, 32.9, 29.4, 26.2, 22.8, 21.5. IR (KBr, cm⁻¹): 2963, 2933, 1714, 1613, 1493, 1471, 1377, 1352, 1302, 1159, 1106, 743. HRMS (ESI): calcd for C₂₂H₂₆NO₃ [M+H]⁺ 352.1907, found 352.1904.

3-(2,4-dimethoxy-6-(2-oxopropyl)benzyl)-1,3-dimethylindolin-2-one (3an): Yellow solid; (99% yield, petroleum ether : ethyl acetate = 3 : 1, $R_f = 0.21$), m.p.= 101 - 102 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.17 (td, J = 7.7, 1.3 Hz, 1H), 6.89 (td, J = 7.5, 1.0 Hz, 1H), 6.80 (dd, J = 7.5, 1.2 Hz, 1H), 6.75 (d, J = 7.7 Hz, 1H), 6.24 (d, J = 2.4 Hz, 1H), 6.17 (d, J = 2.5 Hz, 1H), 3.75 (s, 3H), 3.55 (s, 3H), 3.45 (s, 2H), 3.29 (d, J = 14.2 Hz, 1H), 3.15 (s, 3H), 2.83 (d, J = 14.2 Hz, 1H), 2.03 (s, 3H), 1.36 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 206.6, 181.1, 159.4, 159.0, 142.8, 136.1, 133.8, 127.5, 124.1, 121.7, 116.9, 107.6, 106.2, 96.9, 55.2, 54.7, 49.3, 48.7, 32.8, 29.4, 26.2, 22.7. IR (KBr, cm⁻¹): 2964, 2937, 1714, 1612, 1494, 1471, 1377, 1351, 1306, 1205, 1150, 741. HRMS (ESI): calcd for C₂₂H₂₆NO4 [M+H]⁺ 368.1856, found 368.1854.

Yellow oil; (92% yield, petroleum ether : ethyl acetate = 3 : 1, $R_f = 0.21$). ¹H NMR (400 MHz, CDCl₃) δ 7.18 (td, J = 7.7, 1.3 Hz, 1H), 6.85 (td, J = 7.5, 1.0 Hz, 1H), 6.79 – 6.75 (m, 2H), 6.72 (d, J = 8.4 Hz, 1H), 6.70 – 6.66 (m, 1H), 3.83 (s, 3H), 3.77 (s, 3H), 3.31 – 3.20 (m, 5H), 3.08 (d, J = 16.8 Hz, 1H), 2.76 (d, J = 13.9 Hz, 1H), 1.96 (s, 3H), 1.37 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 206.8, 181.2, 151.5, 148.6, 142.7, 133.4, 129.9, 127.7, 127.5, 125.8, 124.2, 122.1, 111.2, 107.7, 60.2, 55.7, 49.0, 47.8, 33.6, 29.4, 26.3, 23.0. IR (KBr, cm⁻¹): 2968, 2937, 1715, 1612, 1487, 1377, 1349,

1283, 1228, 1158, 1103, 741. HRMS (ESI): calcd for C₂₂H₂₆NO₄ [M+H]⁺ 368.1856, found 368.1853.

3-(3,6-dimethoxy-2-(2-oxopropyl)benzyl)-1,3-dimethylindolin-2-one (3ap): Yellow solid; (98% yield, petroleum ether : ethyl acetate = 3 : 1, $R_f = 0.21$), m.p. = 83 - 84 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.16 (td, J = 7.7, 1.3 Hz, 1H), 6.87 (td, J = 7.5, 1.0 Hz, 1H), 6.78 (dd, J = 7.5, 1.3 Hz, 1H), 6.75 (dd, J = 7.9, 0.9 Hz, 1H), 6.67 (d, J = 8.9 Hz, 1H), 6.59 (d, J = 8.9 Hz, 1H), 3.69 (s, 3H), 3.62 (d, J = 17.1 Hz, 1H), 3.53 (s, 3H), 3.38 (d, J = 17.1 Hz, 1H), 3.31 (d, J = 14.0 Hz, 1H), 3.16 (s, 3H), 2.92 (d, J = 14.0 Hz, 1H), 2.05 (s, 3H), 1.36 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 206.9, 181.0, 152.3, 151.5, 142.8, 133.7, 127.5, 125.9, 125.7, 124.1, 121.6, 109.1, 108.5, 107.6, 55.8, 54.8, 48.9, 42.3, 33.4, 29.5, 26.2, 23.1. IR (KBr, cm⁻¹): 2965, 2938, 1711, 1614, 1471, 1377, 1353, 1259, 1150, 1106, 741. HRMS (ESI): calcd for C₂₂H₂₆NO₄ [M+H]⁺ 368.1856, found 368.1853.

1-ethyl-3-(2-methoxy-6-(2-oxopropyl)benzyl)-3-methylindolin-2-one (**3ba**): Yellow oil; (95% yield, petroleum ether : ethyl acetate = 3 : 1, $R_f = 0.46$). ¹H NMR (400 MHz, CDCl₃) δ 7.16 (td, J = 7.6, 1.4 Hz, 1H), 7.09 (t, J = 7.9 Hz, 1H), 6.89 (t, J = 7.4 Hz, 1H), 6.82 (d, J = 7.1 Hz, 1H), 6.74 (d, J = 7.8 Hz, 1H), 6.66 – 6.59 (m, 2H), 3.78 - 3.70 (m, 1H), 3.66 – 3.61 (m, 1H), 3.59 (d, J = 6.4 Hz, 1H), 3.51 (s, 3H), 3.47 (d, J = 16.6 Hz, 1H), 3.36 (d, J = 13.9 Hz, 1H), 2.88 (d, J = 13.8 Hz, 1H), 2.04 (s, 3H), 1.39 (s, 3H), 1.11 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 206.6, 180.5, 158.4, 141.8, 135.7, 134.1, 127.6, 127.4, 124.4, 124.3, 122.7, 121.5, 108.7, 107.6, 54.6, 49.1, 48.6, 34.4, 33.4, 29.5, 22.9, 12.6. IR (KBr, cm⁻¹): 2973, 2934, 1705, 1583, 1511, 1489, 1469, 1376, 1358, 1260, 1221, 1106, 743. HRMS (ESI): calcd for C₂₂H₂₆NO₃ [M+H]⁺ 352.1907, found 352.1903.

3-(2-methoxy-6-(2-oxopropyl)benzyl)-1-(methoxymethyl)-3-methylindolin-2-

one (3ca): Yellow oil; (97% yield, petroleum ether : ethyl acetate = 3 : 1, $R_f = 0.45$). ¹H NMR (400 MHz, CDCl₃) δ 7.18 (t, J = 7.6 Hz, 1H), 7.10 (t, J = 7.9 Hz, 1H), 6.96-6.93 (m, 2H), 6.85 (d, J = 7.3 Hz, 1H), 6.63 (dd, J = 7.9, 5.1 Hz, 2H), 5.09 (d, J = 10.8 Hz, 1H), 5.01 (d, J = 10.9 Hz, 1H), 3.63

(d, J = 16.6 Hz, 1H), 3.53 - 3.49 (m, 4H), 3.40 (d, J = 13.9 Hz, 1H), 3.12 (s, 3H), 2.94 (d, J = 14.0 Hz, 1H), 2.06 (s, 3H), 1.44 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 206.5, 181.4, 158.4, 140.9, 135.7, 133.4, 127.7, 127.6, 124.3, 124.2, 122.8, 122.2, 109.0, 108.8, 71.2, 55.8, 54.5, 49.6, 48.7, 33.5, 29.5, 23.7. IR (KBr, cm⁻¹): 2935, 1715, 1614, 1488, 1470, 1351, 1261, 1185, 1158, 1112, 1085, 1028, 738. HRMS (ESI): calcd for C₂₂H₂₆NO4 [M+H]⁺ 368.1856, found 368.1853.

1-benzyl-3-(2-methoxy-6-(2-oxopropyl)benzyl)-3-methylindolin-2-one (3da): Yellow oil; (90% yield, petroleum ether : ethyl acetate = 3 : 1, $R_f = 0.42$). ¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.21 (m, 3H), 7.14 (t, J = 7.9 Hz, 1H), 7.07-7.02 (m, 1H), 7.01 – 6.99 (m, 2H), 6.91 – 6.88 (m, 2H), 6.64 (dd, J = 13.6, 7.9 Hz, 2H), 6.56 (d, J = 7.7 Hz, 1H), 5.06 (d, J = 15.8 Hz, 1H), 4.63 (d, J = 15.8 Hz, 1H), 3.74 (d, J = 16.8 Hz, 1H), 3.51 – 3.45 (m, 2H), 3.43 (s, 3H), 2.99 (d, J = 13.9 Hz, 1H), 2.05 (s, 3H), 1.49 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 206.7, 180.9, 158.4, 141.9, 135.9, 135.8, 133.9, 128.7, 127.7, 127.4, 127.3, 126.9, 124.5, 124.3, 122.9, 121.7, 108.8, 108.6, 54.5, 49.4, 48.6, 43.4, 33.6, 29.6, 23.7. IR (KBr, cm⁻¹): 2966, 1709, 1611, 1583, 1489, 1469, 1376, 1357, 1260, 1222, 1176, 1108, 754. HRMS (ESI): calcd for C₂₇H₂₈NO₃ [M+H]⁺ 414.2064, found 414.2060.

1-(4-fluorobenzyl)-3-(2-methoxy-6-(2-oxopropyl)benzyl)-3-methylindolin-2-

one (3ea): Yellow oil; (97% yield, petroleum ether : ethyl acetate = 3 : 1, $R_f = 0.35$). ¹H NMR (400 MHz, CDCl₃) δ 7.14 (t, J = 7.9 Hz, 1H), 7.05 (td, J = 7.4, 1.8 Hz, 1H), 6.97 – 6.90 (m, 6H), 6.66 (d, J = 7.6 Hz, 1H), 6.60 (d, J = 8.2 Hz, 1H), 6.52 (d, J = 7.7 Hz, 1H), 5.01 (d, J = 15.8 Hz, 1H), 4.55 (d, J = 15.8 Hz, 1H), 3.80 (d, J = 16.8 Hz, 1H), 3.53 – 3.44 (m, 2H), 3.39 (s, 3H), 2.99 (d, J = 13.9 Hz, 1H), 2.06 (s, 3H), 1.49 (s, 3H).¹⁹F NMR (376 MHz, CDCl₃) δ -115.16 (s).¹³C NMR (101 MHz, CDCl₃) δ 206.6, 180.8, 162.0 (d, C-F, ¹ $J_{C-F} = 245.4$ Hz), 158.4, 141.6, 135.8, 133.9, 131.6 (d, C-F, ⁴ $J_{C-F} = 3.2$ Hz), 128.5 (d, C-F, ³ $J_{C-F} = 8.1$ Hz), 127.7, 127.4, 124.44, 124.36, 123.0, 121.8, 115.6 (d, C-F, ² $J_{C-F} = 21.5$ Hz), 108.8, 108.4, 54.4, 49.5, 48.7, 42.8, 33.6, 29.6, 23.9. IR (KBr, cm⁻¹): 2930, 1710, 1612, 1583, 1511, 1489, 1470, 1377, 1358, 1261, 1178, 1109, 749. HRMS (ESI): calcd for C₂₇H₂₇FNO₃ [M+H]⁺ 432.1969, found 432.1963.

3-(2-methoxy-6-(2-oxopropyl)benzyl)-3-methyl-1-(4-methylbenzyl)indoli-2one (3fa): Yellow oil; (88% yield, petroleum ether : ethyl acetate = 3 : 1, $R_f = 0.44$). ¹H NMR (400 MHz, CDCl₃) δ 7.15 (t, J = 7.9 Hz, 1H), 7.06 – 7.02 (m, 3H), 6.93 – 6.86 (m, 4H), 6.65 (dd, J = 10.5, 8.1 Hz, 2H), 6.57 (d, J = 7.7 Hz, 1H), 5.01 (d, J = 15.7 Hz, 1H), 4.60 (d, J = 15.7 Hz, 1H), 3.71 (d, J = 16.8 Hz, 1H), 3.49 (d, J = 8.0 Hz, 1H), 3.45 (s, 4H), 2.98 (d, J = 13.9 Hz, 1H), 2.30 (s, 3H), 2.04 (s, 3H), 1.48 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 206.7, 180.9, 158.4, 141.9, 137.0, 135.8, 133.9, 132.9, 129.4, 127.7, 127.4, 126.9, 124.5, 124.2, 122.9, 121.6, 108.8, 108.7, 54.5, 49.4, 48.6, 43.2, 33.5, 29.6, 23.7, 21.1. IR (KBr, cm⁻¹): 2971, 1716, 1614, 1583, 1516, 1488, 1471, 1359, 1261, 1177, 1109, 744. HRMS (ESI): calcd for C₂₈H₃₀NO₃ [M+H]⁺ 428.2220, found 428.2216.

3-(2-methoxy-6-(2-oxopropyl)benzyl)-3-methyl-1-(3-methylbenzyl)indolin -2one (3ga): Yellow oil; (70% yield, petroleum ether : ethyl acetate = 3 : 1, $R_f = 0.44$). ¹H NMR (400 MHz, CDCl₃) δ 7.13 (q, J = 7.7 Hz, 2H), 7.06 (dd, J = 7.5, 1.7 Hz, 1H), 7.05 – 7.00 (m, 2H), 6.90 – 6.84 (m, 2H), 6.76 (d, J = 7.6 Hz, 1H), 6.64 (t, J = 7.5 Hz, 2H), 6.60 (d, J = 7.7 Hz, 1H), 4.99 (d, J = 15.7 Hz, 1H), 4.64 (d, J = 15.8 Hz, 1H), 3.67 (d, J = 16.7 Hz, 1H), 3.48 (d, J = 11.9 Hz, 1H), 3.47 (s, 3H), 3.44 (d, J = 8.1 Hz, 1H), 2.99 (d, J = 13.9 Hz, 1H), 2.30 (s, 3H), 2.04 (s, 3H), 1.47 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 206.6, 181.0, 158.4, 142.0, 138.3, 136.0, 135.7, 133.8, 128.6, 128.2, 127.7, 127.7, 127.4, 124.5, 124.2, 123.9, 122.8, 121.7, 108.8, 108.7, 54.5, 49.3, 48.6, 43.5, 33.4, 29.5, 23.6, 21.5. IR (KBr, cm⁻¹): 2965, 2928, 1710, 1611, 1583, 1489, 1468, 1379, 1358, 1260, 1177, 1108, 756. HRMS (ESI): calcd for C₂₈H₃₀NO₃ [M+H]⁺ 428.2220, found 428.2221.

3-(2-methoxy-6-(2-oxopropyl)benzyl)-3-methyl-1-(2-methylbenzyl)indolin-2-

one (3ha): Yellow oil; (99% yield, petroleum ether : ethyl acetate = 3 : 1, $R_f = 0.36$). ¹H NMR (400 MHz, CDCl₃) δ 7.18-7.11 (m, 3H), 7.04 (td, J = 7.5, 1.8 Hz, 1H), 7.98 – 6.90 (m, 3H), 6.65 (dd, J

= 7.8, 5.1 Hz, 2H), 6.48 (dd, J = 11.6, 7.7 Hz, 2H), 5.03 (d, J = 16.5 Hz, 1H), 4.62 (d, J = 16.5 Hz, 1H), 3.79 (d, J = 16.8 Hz, 1H), 3.51 (d, J = 4.0 Hz, 1H), 3.47 (s, 4H), 3.04 (d, J = 13.9 Hz, 1H), 2.37 (s, 3H), 2.07 (s, 3H), 1.51 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 206.7, 181.0, 158.4, 142.1, 135.8, 135.4, 133.8, 133.3, 130.4, 127.7, 127.4, 127.1, 126.3, 125.6, 124.44, 124.38 122.9, 121.7, 108.8, 108.7, 54.5, 49.5, 48.7, 41.5, 33.5, 29.6, 23.8, 19.2. IR (KBr, cm⁻¹): 2967, 2930, 1715, 1614, 1489, 1470, 1379, 1324, 1261, 1224, 1177, 1108, 743. HRMS (ESI): calcd for C₂₈H₃₀NO₃ [M+H]⁺ 428.2220, found 428.2219.

3-fluoro-3-(2-methoxy-6-(2-oxopropyl)benzyl)-1,3-dimethylindolin-2-one

(3ia): Yellow solid; (86% yield, petroleum ether : ethyl acetate = 3 : 1, $R_f = 0.26$) m.p.= 142 - 143 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.11 (t, J = 7.9 Hz, 1H), 6.86 (td, J = 8.6, 2.6 Hz, 1H), 6.65 – 6.50 (m, 4H), 3.62 (d, J = 1.6 Hz, 2H), 3.59 (s, 3H), 3.36 (d, J = 14.0 Hz, 1H), 3.11 (s, 3H), 2.97 (d, J = 14.0 Hz, 1H), 2.10 (s, 3H), 1.38 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -122.09. ¹³C NMR (101 MHz, CDCl₃) δ 206.4, 180.6, 158.8 (d, C-F, ¹ $_{J_{CF}} = 238.9$ Hz), 158.1, 138.8 (d, C-F, ⁴ $_{J_{CF}} = 1.9$ Hz), 135.4 (d, C-F, ³ $_{J_{C-F}} = 8.1$ Hz), 135.4, 127.8, 124.1, 122.9, 113.5 (d, C-F, ² $_{J_{C-F}} = 23.5$ Hz), 112.4 (d, C-F, ² $_{J_{C-F}} = 25.0$ Hz), 108.7, 107.8 (d, C-F, ³ $_{J_{C-F}} = 8.1$ Hz), 54.6, 49.7 (d, C-F, ⁴ $_{J_{C-F}} = 1.8$ Hz), 48.3, 33.0, 29.5, 26.3, 23.3. IR (KBr, cm⁻¹): 2967, 1710, 1621, 1355, 1277, 1158, 1112, 1073, 1026, 879, 810, 764, 744. HRMS (ESI): calcd for C₂₁H₂₃FNO₃ [M+H]⁺ 356.1656, found 356.1655.

3-(2-methoxy-6-(2-oxopropyl)benzyl)-1,3-dimethyl-5-(trifluoromethyl)

indolin-2-one (3ja): Yellow oil; (79% yield, petroleum ether : ethyl acetate = 3 : 1, $R_f = 0.33$). ¹H NMR (400 MHz, CDCl₃) δ 7.44 (dd, J = 8.1, 0.9 Hz, 1H), 7.18 (d, J = 0.9 Hz, 1H), 7.09 (t, J = 8.0 Hz, 1H), 6.76 (d, J = 8.2 Hz, 1H), 6.63 (d, J = 7.7 Hz, 1H), 6.57 (d, J = 8.2 Hz, 1H), 3.71 – 3.61 (m, 2H), 3.53 (s, 3H), 3.40 (d, J = 14.0 Hz, 1H), 3.13 (s, 3H), 3.02 (d, J = 14.0 Hz, 1H), 2.12 (s, 3H), 1.43 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -61.23. ¹³C NMR (101 MHz, CDCl₃) δ 206.3, 180.9, 157.9, 145.8, 135.2, 134.0, 127.9, 125.2 (q, C-F, ³ $J_{C-F} = 4.0$ Hz), 124.6 (q, C-F, ¹ $J_{C-F} = 271.5$ Hz), 123.8 (q, C-F, ² $J_{C-F} = 32.4$ Hz), 123.8, 123.0, 121.4 (q, C-F, ³ $J_{C-F} = 3.8$ Hz), 108.6, 107.2, 54.5, 49.3, 48.3, 33.1, 29.5, 26.4, 23.4. IR (KBr, cm⁻¹): 2970, 1716, 1623, 1462, 1422, 1377, 1353, 1289, 1259, 1162, 1116, 1063, 738. HRMS (ESI): calcd for C₂₂H₂₃F₃NO₃ [M+H]⁺ 406.1625, found 406.1629.

5-bromo-3-(2-methoxy-6-(2-oxopropyl)benzyl)-1,3-dimethylindolin-2-

one (3ka): Yellow solid; (75% yield, petroleum ether : ethyl acetate = 3 : 1, $R_f = 0.30$) m.p.= 143 - 144 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.27 (dd, J = 8.4, 2.1 Hz, 1H), 7.10 (t, J = 8.0 Hz, 1H), 7.05 (d, J = 2.0 Hz, 1H), 6.66 – 6.62 (m, 1H), 6.61 (d, J = 8.2 Hz, 1H), 6.57 (d, J = 8.2 Hz, 1H), 3.67 (s, 2H), 3.59 (s, 3H), 3.36 (d, J = 14.0 Hz, 1H), 3.08 (s, 3H), 2.98 (d, J = 14.0 Hz, 1H), 2.12 (s, 3H), 1.39 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 206.4, 180.3, 158.0, 141.9, 135.6, 135.3, 130.2, 127.8, 127.7, 123.9, 122.9, 114.3, 108.9, 108.6, 54.7, 49.6, 48.3, 33.1, 29.6, 26.3, 23.3. IR (KBr, cm⁻¹): 2974, 2902, 1708, 1607, 1489, 1467, 1377, 1256, 1077, 1050, 913, 742, 534. HRMS (ESI): calcd for C₂₁H₂₃BrNO₃ [M+H]⁺ 416.0856, found 416.0857.

5-methoxy-3-(2-methoxy-6-(2-oxopropyl)benzyl)-1,3-dimethylindolin-2one (3la): Yellow oil; (81.1% yield, petroleum ether : ethyl acetate = 3 : 1, $R_f = 0.17$).¹H NMR (400 MHz, CDCl₃) δ 7.12 (t, J = 7.9 Hz, 1H), 6.71 (dd, J = 8.4, 2.5 Hz, 1H), 6.66 (td, J = 8.3, 5.6 Hz, 3H), 6.37 (d, J = 2.5 Hz, 1H), 3.66 (s, 3H), 3.61 (s, 3H), 3.49 (dd, J = 24.2, 16.6 Hz, 2H), 3.36 (d, J = 14.0 Hz, 1H), 3.14 (s, 3H), 2.89 (d, J = 14.0 Hz, 1H), 2.04 (s, 3H), 1.36 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 206.5, 180.7, 158.4, 155.4, 136.4, 135.6, 135.0, 127.7, 124.4, 122.7, 112.1, 111.5, 108.8, 107.7, 55.7, 54.7, 49.5, 48.4, 33.0, 29.5, 26.3, 23.1. IR (KBr, cm⁻¹): 2931, 1705, 1600, 1497, 1471, 1357, 1289, 1159, 1113, 1075, 1038, 912, 741. HRMS (ESI): calcd for C₂₂H₂₆NO₄ [M+H]⁺ 368.1856, found 368.1859.

3-(2-methoxy-6-(2-oxopropyl)benzyl)-1,3,5-trimethylindolin-2-one (3ma): white solid; (91% yield, petroleum ether : ethyl acetate = 3 : 1, $R_f = 0.28$) m.p.= 125 - 126 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.12 (t, J = 7.9 Hz, 1H), 6.97 (dd, J = 7.8, 0.9 Hz, 1H), 6.66 (s, 1H), 6.65 - 6.61 (m, 2H), 6.58 (d, J = 1.1 Hz, 1H), 3.59 (s, 3H), 3.49 (s, 2H), 3.36 (d, J = 13.9 Hz, 1H), 3.13 (s, 3H), 2.89 (d, J = 13.9 Hz, 1H), 2.23 (s, 3H), 2.04 (s, 3H), 1.36 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 206.5, 180.9, 158.4, 140.4, 135.6, 133.7, 131.0, 127.7, 127.6, 125.1, 124.5, 122.6, 108.6, 107.2, 54.6, 49.2, 48.3, 33.1, 29.5, 26.2, 22.9, 21.1. IR (KBr, cm⁻¹): 2965, 2935, 1705, 1603, 1499, 1469, 1354, 1264, 1112, 1056, 913, 747. HRMS (ESI): calcd for C₂₂H₂₆NO₃ [M+H]⁺ 352.1907, found.352.1910.

3-(2-methoxy-6-(2-oxopropyl)benzyl)-1,3,6-trimethylindolin-2-

one(3na):Yellow oil; (75.2% yield, petroleum ether : ethyl acetate = 3 : 1, $R_f = 0.22$).¹H NMR (400 MHz, CDCl₃) δ 7.12 (t, J = 7.9 Hz, 1H), 6.71 – 6.60 (m, 4H), 6.58 (s, 1H), 3.62 (s, 3H), 3.51 – 3.40 (m, 2H), 3.36 (d, J = 13.9 Hz, 1H), 3.14 (s, 3H), 2.86 (d, J = 13.9 Hz, 1H), 2.32 (s, 3H), 2.02 (s, 3H), 1.35 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 206.72, 181.34, 158.42, 142.81, 137.56, 135.55, 130.67, 127.6, 124.5, 123.8, 122.7, 122.2, 108.8, 108.6, 54.7, 48.9, 48.4, 33.0, 29.5, 26.2, 23.1, 21.8.IR (KBr, cm-1): 2929, 1710, 1621, 1470, 1584, 1380, 1262, 1106, 812, 530. HRMS (ESI): calcd for C₂₂H₂₅NNaO₃ [M+Na]⁺ 374.1727, found 374.1730.

3-(2-methoxy-6-(2-oxopropyl)benzyl)-1-methyl-3-phenylindolin-2-one (3oa):

Yellow oil; (99% yield, petroleum ether : ethyl acetate = 3 : 1, $R_f = 0.34$). ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, J = 7.4 Hz, 2H), 7.32 – 7.21 (m, 3H), 7.20 – 7.14 (m, 1H), 7.03 (t, J = 7.9 Hz, 1H), 6.90 (q, J = 7.5 Hz, 2H), 6.70 (d, J = 7.8 Hz, 1H), 6.57 (d, J = 7.6 Hz, 1H), 6.46 (d, J = 8.2 Hz, 1H), 3.81 (d, J = 13.9 Hz, 1H), 3.59 (dd, J = 15.4, 11.6 Hz, 2H), 3.48 (d, J = 16.9 Hz, 1H), 3.32 (s, 3H), 3.09 (s, 3H), 2.03 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 206.4, 178.8, 158.1, 143.6, 140.8, 135.2, 130.7, 128.3, 127.8, 127.6, 127.4, 127.2, 126.9, 124.6, 122.7, 121.3, 108.3, 107.6, 56.8, 54.3, 48.2, 34.9, 29.5, 26.4. IR (KBr, cm⁻¹): 2969, 1706, 1611, 1494, 1471, 1374, 1354, 1260, 1157, 1131, 1095, 753. HRMS (ESI): calcd for C₂₆H₂₆NO₃ [M+H]⁺ 400.1907, found 400.1910.

3. Gram-Scale Reaction

To a 100 mL Schlenk tube, **1** (1.00g, 3.32 mmol), **2** (654 mg, 3.99 mmol), K_3PO_4 (1.41 g, 2.0 equiv), Pd(OAc)₂ (74.54 mg, 10 mol %), **dppf** (368.10 mg, 20.0 mol%), and toluene (33 mL) were added sequentially under a N₂ atmosphere. The reaction mixture was stirred at 70 °C for 36 h. After the reaction was complete (monitored by TLC), The reaction mixture was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to furnish 1.07 g (95% yield) of the **3aa**.

4. Primitive Results of Enantioselective Reaction

Table S1. Optimization of enantioselective reaction^a

^{*a*}Reaction conditions, unless otherwise noted: **1a** (0.1 mmol), **2a** (0.12 mmol), L(Chiral) (20 mol%), Pd(OAc)₂ (10 mol%), Cs₂CO₃ (2.0 equiv.) and 1 mL toluene under N₂ for 13 h. ^{*b*}Isolated yield. ^{*c*} Determined by HPLC analysis using a chiral stationary phase.

To a 10 mL Schlenk tube, 1a (0.1 mmol), 2a (0.12 mmol), Cs₂CO₃ (0.2 mmol, 2.0 equiv.),

Pd(OAc)₂ (0.01 mmol, 10 mol%), **L(chiral)** (0.02 mmol, 20.0 mol%), and toluene (1.0 mL) were added sequentially under a N₂ atmosphere. The reaction mixture was stirred at 80 °C (entry 10 at 60 °C and entry 10 at 40 °C) for 13 h. The resulting mixture was filtered with ethyl acetate and concentrated, then the residue was purified by preparative TLC (petroleum ether : ethyl acetate = 3 : 1) directly and delivered the desired product. (49% yield, 41% ee (determined by HPLC analysis [Daicel CHIRALPAK OD-H column, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, λ = 254 nm, t (major) = 13.8 min, t (minor) = 17.0 min].

5. X-Ray Crystal Structure of Enantiopure 3aa

The crystal of **3aa** (CCDC 2120493) suitable for X-ray analysis was prepared by slow evaporation of the solvent of the solution of **3aa** in *n*-hexane/acetone at room temperature (Figure S1).

Figure S1. X-ray crystal structure of 3aa

Table S2. Crystal data and structure refinement for 3aa

Identification code	3 aa	
Empirical formula	$C_{21}H_{23}NO_3$	
Formula weight	337.40	
Temperature	294(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 21	
Unit cell dimensions	a = 8.2614(3) Å	$\alpha = 90^{\circ}$
	b = 13.2824(5) Å	$\beta = 110.0190(10)^{\circ}$
	c = 8.9573(3) Å	$\gamma = 90^{\circ}$
Volume	923.51(6) Å ³	
Z	2	
Density (calculated)	1.213 Mg/m ³	
Absorption coefficient	0.081 mm^{-1}	
F(000)	360	
Crystal size	$0.170 \ge 0.150 \ge 0.120 \text{ mm}^3$	
Theta range for data collection	2.624 to 25.996°.	
Index ranges	-10<=h<=10, -16<=k<=16, -	
	11<=1<=11	
Reflections collected	8924 2570 [B(int) = 0.0240]	
Completeness to theta $= 25.242^{\circ}$	3570 [K(IIII) = 0.0249]	
Absorption correction	Sami ampirical from aquivalents	
Max and min transmission	0 7456 and 0 6986	
Refinement method	Full-matrix least-squares on F^2	
Data / restraints / parameters	3570 / 1 / 231	
Goodness-of-fit on F^2	1.032	
Final R indices [I>2sigma(I)]	R1 = 0.0378, $wR2 = 0.0959$	
_		

R indices (all data)	R1 = 0.0460, wR2 = 0.1035
Absolute structure parameter	-0.1(5)
Extinction coefficient	0.12(3)
Largest diff. peak and hole	0.148 and -0.115 e.Å ⁻³

Table S3. Atomic coordinates $(x10^4)$ and equivalent isotropic displacement parameters $(Å^2x10^3)$ **3aa**.

U(ea) is defined as on	e third of the trace (of the orthogonalized	l I ^j ij tensor
-0(cu) is defined as one	e unit u or the trace (JI LIE OI LIOZOHANZE	

Atom	v	v		7	U(ea)
$\Omega(1)$	<u>x</u> 5587(2)	$\frac{J}{4326(2)}$		7803(2)	$\frac{0(eq)}{70(1)}$
O(1)	768(3)	+520(2) 6536(4)		7867(3)	120(1)
O(2)	-277(2)	4657(2)		2401(2)	64(1)
N(1)	5844(2)	4627(2)		5383(2)	50(1)
C(1)	4974(3)	4316(2)		3806(3)	49(1)
C(2)	5482(4)	4310(2) 4451(3)		2505(3)	49(1) 66(1)
C(3)	4465(5)	4010(3)		1090(3)	79(1)
C(3) C(4)	3049(5)	3455(3)		1000(3)	75(1)
C(4)	2540(4)	3327(2)		2328(3)	63(1)
C(6)	3511(3)	3779(2)		3730(3)	47(1)
C(7)	3342(3)	3770(2)		5355(3)	48(1)
C(8)	5032(3)	4259(2)		6359(3)	49(1)
C(9)	7494(4)	5136(3)		5955(4)	73(1)
C(10)	3219(4)	2713(3)		5979(4)	71(1)
C(11)	1809(3)	4422(2)		5470(3)	50(1)
C(12)	1551(3)	5444(2)		4698(3)	48(1)
C(12)	507(3)	5527(2)		3093(3)	53(1)
C(14)	260(4)	6436(3)		2290(4)	72(1)
C(15)	1011(6)	7288(3)		3086(5)	86(1)
C(16)	1966(5)	7244(3)		4658(5)	78(1)
C(17)	2267(3)	6331(2)		5488(3)	59(1)
C(18)	3301(4)	6368(3)		7231(4)	70(1)
C(19)	2306(4)	6549(2)		8327(4)	65(1)
C(20)	3353(5)	6722(3)		10039(4)	83(1)
C(21)	-1131(4)	4648(4)		724(3)	87(1)
Table S4. Bond le	ngths [Å] and angles	s [°] fo r 3 a	na.		
O(1)-C(8)	8		1 218(3)		
O(2)-C(19)			1.194(4)		
O(3)-C(13)			1.366(4)		
O(3)-C(21)			1.424(3)		
N(1)-C(8)			1.360(3)		
N(1)-C(1)			1.408(3)		
N(1)-C(9)			1.452(4)		
C(1)-C(2)			1.378(4)		
C(1)-C(6)			1.386(4)		
C(2)-C(3)			1.388(5)		
C(2)-H(2)			0.9300		
C(3)-C(4)	1.363(5)				
C(3)-H(3) C(4) $C(5)$	0.9300				
C(4)-C(3) C(4)-H(4)	1.395(4)				
$C(4) - \Pi(4)$ C(5) - C(6)	0.9300 1 375(<u>4</u>)				
C(5) - H(5)	0.9300				
C(6)- $C(7)$	1 510(3)				
C(7)-C(8)	1.523(3)				
C(7)-C(10)			1.528(4)		
C(7)-C(11)			1.567(4)		
C(9)-H(9A)			0.9600		
C(9)-H(9B)			0.9600		
C(9)-H(9C)			0.9600		
C(10)-H(10A)			0.9600		

C(10)-H(10B)	0.9600
C(10)-H(10C)	0.9600
C(11)-C(12)	1 505(4)
$C(11) - H(11\Delta)$	0.9700
C(11) H(11R)	0.9700
C(11) - H(11B)	0.9700
C(12)-C(17)	1.397(4)
C(12)-C(13)	1.405(3)
C(13)-C(14)	1.384(4)
C(14)-C(15)	1.369(6)
C(14)-H(14)	0.9300
C(15)-C(16)	1.359(5)
C(15)-H(15)	0.9300
C(16)-C(17)	1.400(5)
C(16)-H(16)	0.9300
C(17)-C(18)	1.501(4)
C(18)-C(19)	1.500(4)
C(18) - H(18A)	0.9700
C(18) - H(18B)	0.9700
C(10) - H(10D) C(10) - C(20)	1 408(4)
C(20) = U(20A)	0.0600
C(20) - H(20R) C(20) - H(20R)	0.2000
C(20) - H(20B)	0.9600
C(20)-H(20C) C(21)-H(21A)	0.9000
C(21)-H(21A)	0.9600
C(21)-H(21B)	0.9600
C(21)-H(21C)	0.9600
C(13)-O(3)-C(21)	118.2(3)
C(8)-N(1)-C(1)	110.4(2)
C(8)-N(1)-C(9)	123.3(2)
C(1)-N(1)-C(9)	125.8(2)
C(2)-C(1)-C(6)	122.5(2)
C(2)-C(1)-N(1)	127.8(3)
C(6)-C(1)-N(1)	109.58(19)
C(1)-C(2)-C(3)	116.9(3)
C(1)-C(2)-H(2)	121.5
C(3)-C(2)-H(2)	121.5
C(4)-C(3)-C(2)	121.2(3)
C(4)-C(3)-H(3)	119.4
C(2)-C(3)-H(3)	119.4
C(3)-C(4)-C(5)	121 5(3)
C(3) - C(4) - H(4)	119.3
C(5) - C(4) - H(4)	110.3
C(5) - C(4) - H(4)	112.5
C(0) - C(3) - C(4)	10.0(3)
$C(0)-C(3)-\Pi(3)$ $C(4), C(5), \Pi(5)$	121.0 121.0
C(4)-C(5)-H(5)	121.0
C(5)-C(6)-C(1)	119.8(2)
C(5)-C(6)-C(7)	131.3(2)
C(1)-C(6)-C(7)	108.9(2)
C(6)-C(7)-C(8)	101.4(2)
C(6)-C(7)-C(10)	113.5(2)
C(8)-C(7)-C(10)	109.8(2)
C(6)-C(7)-C(11)	113.7(2)
C(8)-C(7)-C(11)	108.9(2)
C(10)-C(7)-C(11)	109.2(2)
O(1)-C(8)-N(1)	124.6(2)
O(1)-C(8)-C(7)	126.4(2)
N(1)-C(8)-C(7)	109.02(19)
N(1)-C(9)-H(9A)	109.5
N(1)-C(9)-H(9B)	109.5
$H(0\Delta) - C(0) - H(0B)$	109.5
$\mathbf{N}(\mathbf{J}) = \mathbf{C}(\mathbf{J}) - \mathbf{I}(\mathbf{J}\mathbf{D})$ $\mathbf{N}(\mathbf{J}) = \mathbf{C}(0) + \mathbf{I}(0\mathbf{C})$	109.5
IN(1)-U(Y)-H(YU)	109.3

H(9A)-C(9)-H(9C)	109.5
H(9B)-C(9)-H(9C)	109.5
C(7)-C(10)-H(10A)	109.5
C(7)-C(10)-H(10B)	109.5
H(10A)-C(10)-H(10B)	109.5
C(7)-C(10)-H(10C)	109.5
H(10A)-C(10)-H(10C)	109.5
H(10B)-C(10)-H(10C)	109.5
C(12)-C(11)-C(7)	117.31(19)
C(12)-C(11)-H(11A)	108.0
C(7)-C(11)-H(11A)	108.0
C(12)-C(11)-H(11B)	108.0
C(7)-C(11)-H(11B)	108.0
H(11A)-C(11)-H(11B)	107.2
C(17)-C(12)-C(13)	117.3(3)
C(17)-C(12)-C(11)	124.0(2)
C(13)-C(12)-C(11)	118.8(2)
O(3)-C(13)-C(14)	122.6(2)
O(3)-C(13)-C(12)	115.4(2)
C(14)-C(13)-C(12)	122.0(3)
C(15)-C(14)-C(13)	119.4(3)
C(15)-C(14)-H(14)	120.3
C(13)-C(14)-H(14)	120.3
C(16)-C(15)-C(14)	120.2(4)
C(16)-C(15)-H(15)	119.9
C(14)-C(15)-H(15)	119.9
C(15)-C(16)-C(17)	121.5(3)
C(15) - C(16) - H(16)	119.3
C(17)- $C(16)$ - $H(16)$	119.3
C(12)-C(17)-C(16)	119.6(3)
C(12)-C(17)-C(18)	123.1(3)
C(16)-C(17)-C(18)	117.3(3)
C(19)-C(18)-C(17)	116.2(2)
C(19)-C(18)-H(18A)	108.2
C(17)- $C(18)$ - $H(18A)$	108.2
C(19)-C(18)-H(18B)	108.2
C(17)-C(18)-H(18B)	108.2
H(18A)-C(18)-H(18B)	107.4
O(2)-C(19)-C(20)	121.9(3)
O(2) - C(19) - C(18)	121.9(3)
C(20)-C(19)-C(18)	116 2(3)
C(19)-C(20)-H(20A)	109.5
C(19)-C(20)-H(20B)	109.5
H(20A)-C(20)-H(20B)	109.5
C(19)-C(20)-H(20C)	109.5
H(20A)-C(20)-H(20C)	109.5
H(20R) - C(20) - H(20C)	109.5
O(3)-C(21)-H(21A)	109.5
O(3)-C(21)-H(21B)	109.5
H(21A)-C(21)-H(21B)	109.5
O(3)-C(21)-H(21C)	109.5
H(21A)-C(21)-H(21C)	109.5
H(21R) - C(21) - H(21C)	109.5
$11(21D)^{-}(21)^{-}11(21C)$	107.J

Symmetry transformations used to generate equivalent atoms:

Table S5. Anisotropic displacement parameters $(Å^2 x 10^3)$ for **3aa**. **The anisotropic displacement factor exponent takes the form:** $-2p^2[h^2 a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}]$

\bigcup^{12}						
Atom	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	56(1)	111(2)	38(1)	-5(1)	6(1)	5(1)

O(2)	64(2)	205(4)	96(2)	-34(2)	34(1)	-7(2)
O(3)	50(1)	83(1)	46(1)	-11(1)	1(1)	-8(1)
N(1)	41(1)	58(1)	49(1)	-1(1)	13(1)	-2(1)
C(1)	48(1)	56(1)	44(1)	6(1)	17(1)	12(1)
C(2)	67(2)	82(2)	60(2)	14(2)	34(1)	12(2)
C(3)	95(3)	105(3)	45(2)	9(2)	35(2)	26(2)
C(4)	79(2)	97(3)	44(2)	-16(2)	13(1)	16(2)
C(5)	56(2)	76(2)	51(2)	-15(1)	12(1)	0(1)
C(6)	45(1)	58(2)	40(1)	-3(1)	15(1)	4(1)
C(7)	42(1)	62(2)	38(1)	0(1)	12(1)	-2(1)
C(8)	39(1)	65(2)	41(1)	-1(1)	10(1)	8(1)
C(9)	49(2)	74(2)	89(2)	1(2)	15(2)	-9(1)
C(10)	72(2)	73(2)	71(2)	11(2)	28(2)	1(2)
C(11)	38(1)	74(2)	40(1)	-5(1)	16(1)	-6(1)
C(12)	34(1)	70(2)	44(1)	-7(1)	17(1)	-1(1)
C(13)	39(1)	69(2)	49(1)	-5(1)	14(1)	1(1)
C(14)	73(2)	84(2)	59(2)	9(2)	21(2)	10(2)
C(15)	98(3)	72(2)	90(2)	9(2)	35(2)	3(2)
C(16)	75(2)	66(2)	98(3)	-19(2)	34(2)	-12(2)
C(17)	43(1)	73(2)	63(2)	-19(2)	21(1)	-6(1)
C(18)	50(2)	88(2)	67(2)	-32(2)	16(1)	-7(2)
C(19)	58(2)	68(2)	68(2)	-16(2)	20(1)	-5(1)
C(20)	97(3)	93(2)	61(2)	-9(2)	29(2)	-7(2)
C(21)	68(2)	127(3)	49(2)	-18(2)	-1(1)	-4(2)

Table S6. Hydrogen coordinates $(x10^4)$ and isotropic displacement parameters $(Å^2x10^3)$ For **3**22

ror 3aa.					
Atom	X	У	Z	U(eq)	
H(2)	6461	4820	2572	80	
H(3)	4755	4094	182	95	
H(4)	2407	3155	49	90	
H(5)	1572	2947	2262	75	
H(9A)	7590	5501	6907	109	
H(9B)	7575	5597	5158	109	
H(9C)	8407	4651	6179	109	
H(10A)	3209	2756	7045	106	
H(10B)	4194	2322	5970	106	
H(10C)	2178	2396	5312	106	
H(11A)	755	4040	5002	60	
H(11B)	1968	4514	6586	60	
H(14)	-411	6466	1219	87	
H(15)	868	7900	2550	103	
H(16)	2429	7834	5193	94	
H(18A)	3914	5735	7525	83	
H(18B)	4157	6895	7403	83	
H(20A)	3405	7430	10263	125	
H(20B)	4498	6467	10251	125	
H(20C)	2828	6379	10699	125	
H(21A)	-325	4817	205	130	
H(21B)	-2050	5131	442	130	
H(21C)	-1593	3989	394	130	
Table S7. Tor	sion angles [°] for .	3aa.			
$C(\overline{8})-N(1)-C($	1)-C(2)	-1′	73.4(3)		

C(9)-N(1)-C(1)-C(2)	-1.0	(4)	
C(8)-N(1)-C(1)-C(6)	2.8(3)	
C(9)-N(1)-C(1)-C(6)	175.	2(3)	
C(6)-C(1)-C(2)-C(3)	-0.8	(4)	
N(1)-C(1)-C(2)-C(3)	175.	0(3)	
C(1)-C(2)-C(3)-C(4)	-1.1	(5)	
C(2)-C(3)-C(4)-C(5)	1.50	5)	
C(3)-C(4)-C(5)-C(6)	0.10	5)	
C(4)-C(5)-C(6)-C(1)	-1.9	(4)	
C(4)-C(5)-C(6)-C(7)	-178	34(3)	
C(2)-C(1)-C(6)-C(5)	2 3(4)	
N(1)-C(1)-C(6)-C(5)	-174	(2)	
C(2)-C(1)-C(6)-C(7)	179	5(2)	
N(1)-C(1)-C(6)-C(7)	3.10	3)	
C(5)-C(6)-C(7)-C(8)	169	9(3)	
C(1)-C(6)-C(7)-C(8)	-6.9	$\mathcal{I}(3)$	
C(5) C(6) C(7) C(10)	-0.7 52 2	(3)	
C(3)- $C(0)$ - $C(7)$ - $C(10)$	J2.2 124	(4)	
C(1)- $C(0)$ - $C(7)$ - $C(10)$	-124	4(4)	
C(3) - C(0) - C(7) - C(11)	-/3.4	+(+) 9(2)	
C(1) - C(0) - C(1) - C(11)	109.	0(<i>2</i>)	
C(1)-N(1)-C(8)-O(1)	172.	9(<i>5)</i>	
C(9)-N(1)-C(8)-O(1)	0.2(4	4)	
C(1)-N(1)-C(8)-C(7)	-7.5	(3)	
C(9)-N(1)-C(8)-C(7)	179.	9(2)	
C(6)-C(7)-C(8)-O(1)	-171	.7(3)	
C(10)-C(7)-C(8)-O(1)	-51.4	4(4)	
C(11)-C(7)-C(8)-O(1)	68.1	(3)	
C(6)-C(7)-C(8)-N(1)	8.7(3)	
C(10)-C(7)-C(8)-N(1)	129.	0(2)	
C(11)-C(7)-C(8)-N(1)	-111	.5(2)	
C(6)-C(7)-C(11)-C(12)	-43.	6(3)	
C(8)-C(7)-C(11)-C(12)	68.7	(3)	
C(10)-C(7)-C(11)-C(12)	-171	.4(2)	
C(7)-C(11)-C(12)-C(17)	-92.4	4(3)	
C(7)-C(11)-C(12)-C(13)	88.7	(3)	
C(21)-O(3)-C(13)-C(14)	11.3	(4)	
C(21)-O(3)-C(13)-C(12)	-170	0.3(2)	
C(17)-C(12)-C(13)-O(3)	-175	5.0(2)	
C(11)-C(12)-C(13)-O(3)	3.9(3)	
C(17)-C(12)-C(13)-C(14)	3.4(4	4)	
C(11)-C(12)-C(13)-C(14)	-177	.7(2)	
O(3)-C(13)-C(14)-C(15)	176.	3(3)	
C(12)-C(13)-C(14)-C(15)	-1.9	(5)	
C(13)-C(14)-C(15)-C(16)	-1.1	(6)	
C(14)-C(15)-C(16)-C(17)	2.6((0) f)	
C(13)-C(12)-C(17)-C(16)	-1.8	(4)	
C(11)-C(12)-C(17)-C(16)	179	3(3)	
C(12) - C(12) - C(17) - C(18)	175.	J(3)	
C(13)- $C(12)$ - $C(17)$ - $C(18)$	2.5	(4)	
C(11)- $C(12)$ - $C(17)$ - $C(10)$	-3.3	(T) (5)	
C(13) - C(10) - C(17) - C(12)	-1.1	(5)	
C(13)-C(10)-C(17)-C(18)	-1/8	$\mathcal{L}(\mathcal{I})$	
C(12)-C(17)-C(18)-C(19)	-89.	D(4)	
C(16)-C(17)-C(18)-C(19)	87.7	(4)	
C(17)-C(18)-C(19)-O(2)	9.4(b)	
C(17)-C(18)-C(19)-C(20)	-172		
Table S8. Hydrogen bonds for 3a	ia [Å and °].		
D-H···A d(D-H)	d(HA)	d(DA)	<(DHA)
/	\ /	\ /	× /

$\begin{array}{c} C(18)-\\ H(18A)\cdots O(1) \end{array} 0.97 2.29 3.243(4) 167.8 \end{array}$	
--	--

6. Reference

- 1. R. Liang, R. Chen, C. Zhong, J. Zhu, Z. Cao and Y. Jia. Org. Lett., 2020, 22, 3215-3218.
- 2. J. Chen, J. Li, Y. Zhu and Q. Wang. Org. Chem. Front., 2021, 8, 2532-2536.
- 3. X. Wu, H. Ye, G. Jiang and L. Hu. Org. Biomol. Chem., 2021, 19, 4254-4257.
- 4. G. Lu, X. Huangfu, Z. Wu, G. Tang and Y. Zhao, Adv. Synth. Catal., 2019, 361, 4961-4965.
- 5. J. Rodríguez, A. Marchese and M. Lautens. Org. Lett., 2018, 20, 4367-4370.
- 6. Q. Pan, Y. Ping, Y. Wang, Y. Guo and W. Kong. J. Am. Chem. Soc., 2021, 143, 10282-10291.
- L. Liu, F. Cheng, C. Meng, A. Zhang, M. Zhang, K. Xu, N. Ishida and M. Murakami. *ACS Catal.*, 2021, 11, 8942–8947.

7. ¹H, ¹⁹F, ¹³C NMR Spectras

S24

S25

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

7.333 7.335 7.3555 7.3555 7.3555 7.3555 7.3555 7.3555 7.3555 7.3555 7

7.33 7.34 7.35 7.4

S36

S37

7.25 7.12

110 100 f1 (ppm)

S47

7.126 7.112 7.112 6.68 6.68 6.68 6.68

