Supporting Information

Regioselective Synthesis of 6-Nitroindole Derivatives from

Enaminones and Nitroaromatic Compounds via Transition

Metal-Free C-C and C-N Bonds Formation

Danhua Ge,^{a*} Li-Wen Sun,^a Zi-Lun Yu,^a Xin-Long Luo,^a Pei Xu,^{b*} and Zhi-Liang Shen^a

 ^a Chemical Experiment Teaching Center, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
^b Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.

Table of Contents

General information	page S2
General procedure for the regioselective synthesis of 6-nitroindole derivatives	page S2
General procedure for the synthesis of 8	page S2
Optimization of the reaction conditions	page S3
HRMS analysis of reaction intermediate	page S4
Analytical and spectral data for compounds	page S5
The ¹ H and ¹³ C NMR spectra of compounds	page S16

General information

Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification. All reactions were carried out under air using undistilled solvent, without any precautions to exclude air and moisture. Melting points were recorded on an Electrothermal digital melting point apparatus. IR spectra were recorded on a FT-IR spectrophotometer using KBr optics. ¹H, ¹³C, and ¹⁹F NMR spectra were recorded in CDCl₃ on 400 MHz spectometers. Tetramethylsilane (TMS) served as internal standard for ¹H NMR and ¹³C NMR. High resolution mass spectra were obtained using a commercial apparatus (ESI or EI Source).

General procedure for the regioselective synthesis of 6-nitroindole derivatives

Nitroaromatic compound **1** (0.3 mmol), enaminone **2** (0.45 mmol), and cesium carbonate (1.0 mmol) in chlorobenzene (2 mL) were stirred at 110 °C for a certain time shown in Tables 2-3. Upon completion of the reaction (indicated by TLC), the organic solvent was removed under vacuum and the residue was directly subjected to flash silica gel column chromatographic purification by using petroleum/ethyl acetate as eluant to afford pure product **3**.

General procedure for the synthesis of 8

p-Toluenesulfinate (SPTS, 0.75 mmol), **3aa** (0.4 mmol), NaHSO₃ (1.5 mmol), FeCl₂ (10 mol %), and *trans-N,N'*-dimethyl-1,2-diaminocyclohexane (DMDACH, 20 mol %) in DMSO (2 mL) was stirred at 60 °C for 24 h. Upon completion of the reaction (indicated by TLC), the mixture was then poured into water (20 mL), extracted with dichloromethane (3 \times 10 mL), and dried with anhydrous Na₂SO₄. The organic solvent was removed under vacuum and the residue was directly subjected to flash silica gel column chromatographic purification by using petroleum/ethyl acetate as eluant to afford pure product **8**.

Table S1 Optimization of reaction conditions^a

			rM-free <u>e (x equiv.)</u> vent, Temp. O ₂ N Time, air		Ĭ
	1a 2a		3aa		
Entry	Base (x equiv.)	Solvent	Temp. (°C)	Time (h)	Yield $(\%)^b$
1	$Cs_2CO_3(3.3)$	DCE	110	12	9
2	$Cs_2CO_3(3.3)$	1,4-dioxane	110	12	38
3	$Cs_2CO_3(3.3)$	DMF	110	12	trace
4	$Cs_2CO_3(3.3)$	DMSO	110	12	trace
5	$Cs_2CO_3(3.3)$	MeCN	reflux	12	33
6	$Cs_2CO_3(3.3)$	EtOH	reflux	12	trace
7	$Cs_2CO_3(3.3)$	toluene	110	12	44
8	$Cs_2CO_3(3.3)$	<i>p</i> -xylene	110	12	38
9	$Cs_2CO_3(3.3)$	PhCl	110	12	50
10	$Cs_2CO_3(2.3)$	PhCl	110	12	49
11	$Cs_2CO_3(1.3)$	PhCl	110	12	40
12		PhCl	110	24	0
13	CsF (3.3)	PhCl	110	12	0
14	CsOAc (3.3)	PhCl	110	12	0
15	$K_2CO_3(3.3)$	PhCl	110	12	0
16	$K_{3}PO_{4}(3.3)$	PhCl	110	12	25
17	<i>t</i> -BuOK (3.3)	PhCl	110	12	trace
18	LiOMe (3.3)	PhCl	110	12	trace
19	KOH (3.3)	PhCl	110	12	trace
20	Et ₃ N (3.3)	PhCl	110	12	0
21	DABCO (3.3)	PhCl	110	12	0
22	$Cs_2CO_3(3.3)$	PhCl	110	12	83 (68) ^{<i>c,d</i>}
23	$Cs_2CO_3(3.3)$	PhCl	110	12	47 ^e
24	$Cs_2CO_3(3.3)$	PhCl	110	24	84 (64) ^{<i>c,d</i>}
25	$Cs_2CO_3(3.3)$	PhCl	90	12	51 ^c
26	$Cs_2CO_3(3.3)$	PhCl	110	5	59 ^c

~

^{*a*}Reaction conditions: **1a** (0.45 mmol), **2a** (0.3 mmol), base (0-3.3 equiv) and solvent (2 mL) under air. ^{*b*}Yields were determined by HPLC with an internal standard (biphenyl) on the basis of the ratio between the formed products and the initial amount of limiting reactant **2a**. ^{*c*}**1a** (0.3 mmol) and **2a** (0.45 mmol) were used. ^{*d*}Isolated yields. ^{*e*}**1a** (0.3 mmol) and **2a** (0.6 mmol) were used.

HRMS analysis of reaction intermediate

1,3-Dinitrobenzene (**1a**, 0.3 mmol), 5,5-dimethyl-3-(*p*-tolylamino)cyclohex-2-en-1-one (**2a**, 0.45 mmol), and cesium carbonate (1.0 mmol) in chlorobenzene (2 mL) were stirred at 110 °C under air for 1 h. The possible reaction intermediate **B**' was detected by HRMS analysis of the reaction mixture.

Analytical and spectral data for products:

2,2-Dimethyl-7-nitro-9-*p*-tolyl-2,3-dihydro-1*H*-carbazol-4(9*H*)-one (3aa): Yield = 68%. Yellow solid. Mp = 141.5–142.9 °C. IR (KBr): v = 2961, 2928, 2874, 1658, 1510, 1435, 1330, 1138, 1068, 875, 816, 728 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.34$ (d, J = 8.7 Hz, 1H), 8.17 (dd, J = 8.7, 2.0 Hz, 1H), 8.04 (d, J = 1.9 Hz, 1H), 7.45 (d, J = 8.0 Hz, 2H), 7.26 (d, J = 8.0 Hz, 2H), 2.72 (s, 2H), 2.52 (s, 5H), 1.15 (s, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 193.7$, 155.6, 144.3, 140.2, 137.8, 132.4, 131.1, 129.5, 127.2, 121.6, 118.5, 112.6, 107.5, 52.4, 37.3, 35.7, 28.8, 21.5 ppm. HRMS (m/z): calcd for C₂₁H₂₁N₂O₃ [M+H]⁺ 349.1547, found: 349.1550.

9-(4-*tert***-Butylphenyl)-2,2-dimethyl-7-nitro-2,3-dihydro-1***H***-carbazol-4(9***H***)-one (3ab):** Yield = 60%. Yellow solid. Mp = 199.9–200.5 °C. IR (KBr): v = 2959, 2902, 1660, 1509, 1438, 1335, 1177, 1067, 848, 737 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.35$ (d, J = 8.7 Hz, 1H), 8.18 (dd, J = 8.7, 1.9 Hz, 1H), 8.08 (d, J = 1.9 Hz, 1H), 7.65 (d, J = 8.5 Hz, 2H), 7.29 (d, J = 8.4 Hz, 2H), 2.73 (s, 2H), 2.52 (s, 2H), 1.45 (s, 9H), 1.16 (s, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 193.7$, 155.6, 153.2, 144.3, 137.8, 132.3, 129.5, 127.5, 126.8, 121.6, 118.5, 112.7, 107.6, 52.4, 37.3, 35.7, 35.2, 31.5, 28.8 ppm. HRMS (m/z): calcd for C₂₄H₂₇N₂O₃ [M+H]⁺ 391.2016, found: 391.2019.

9-(4-Methoxyphenyl)-2,2-dimethyl-7-nitro-2,3-dihydro-1*H***-carbazol-4(9***H***)-one (3ac):** Yield = 64%. Brown solid. Mp = 198.0–200.8 °C. IR (KBr): v = 2960, 2901, 1659, 1610, 1509, 1441, 1332, 1250, 1172, 1068, 1029, 875, 840, 754, 737 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.34$ (d, J = 8.7 Hz, 1H), 8.17 (dd, J = 8.7, 1.8 Hz, 1H), 8.02 (d, J = 1.7 Hz, 1H), 7.29 (d, J = 8.8 Hz, 2H), 7.13 (d, J = 8.8 Hz, 2H), 3.94 (s, 3H), 2.70 (s, 2H), 2.52 (s, 2H), 1.15 (s, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 193.7$, 160.6, 155.8, 144.3, 138.1, 129.4, 128.7, 127.5, 121.6, 118.5, 115.7, 112.5, 107.5, 55.9, 52.4, 37.2, 35.7, 28.8 ppm. HRMS (m/z): calcd for C₂₁H₂₁N₂O₄ [M+H]⁺ 365.1496, found: 365.1492 .

9-(4-Ethoxyphenyl)-2,2-dimethyl-7-nitro-2,3-dihydro-1*H*-carbazol-4(9*H*)-one (3ad): Yield = 64%. Yellow solid. Mp = 145.8–147.8 °C. IR (KBr): v = 2972, 2936, 1656, 1511, 1334, 1251, 1172, 1048, 847, 734 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.34$ (d, J = 8.7 Hz, 1H), 8.18 (dd, J = 8.7, 2.0 Hz, 1H), 8.02 (d, J = 1.9 Hz, 1H), 7.30–7.26 (m, 2H), 7.11 (d, J = 8.8 Hz, 2H), 4.16 (q, J = 7.0 Hz, 2H), 2.70 (s, 2H), 2.52 (s, 2H), 1.51 (t, J = 7.0 Hz, 3H), 1.15 (s, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 193.7$, 160.0, 155.8, 144.3, 138.1, 129.4, 128.6, 127.3, 121.5, 118.5, 116.1, 112.5, 107.5, 64.3, 52.4, 37.2, 35.7, 28.8, 15.0 ppm. HRMS (m/z): calcd for C₂₂H₂₃N₂O₄ [M+H]⁺ 379.1652, found: 379.1641.

2,2-Dimethyl-7-nitro-9-(4-(trifluoromethoxy)phenyl)-2,3-dihydro-1*H*-carbazol-4(9*H*)-one (**3ae):** Yield = 70%. Yellow solid. Mp = 203.1–204.6 °C. IR (KBr): v = 2967, 1655, 1514, 1443, 1335, 1254, 1166, 1069, 873, 834, 736, 685 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.36$ (d, J =

8.7 Hz, 1H), 8.19 (dd, J = 8.7, 1.4 Hz, 1H), 8.03 (s, 1H), 7.52 (d, J = 8.5 Hz, 2H), 7.46 (d, J = 8.8 Hz, 2H), 2.72 (s, 2H), 2.53 (s, 2H), 1.17 (s, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 193.6$, 155.1, 150.0, 149.9, 144.5, 137.5, 133.5, 129.5, 129.1, 122.9, 121.8, 118.8, 113.1, 107.1, 52.3, 37.3, 35.8, 28.8 ppm. HRMS (m/z): calcd for C₂₁H₁₈F₃N₂O₄ [M+H]⁺ 419.1213, found: 419.1223.

9-(Benzo[*d*][1,3]dioxol-5-yl)-2,2-dimethyl-7-nitro-2,3-dihydro-1*H*-carbazol-4(9*H*)-one (3af): Yield = 58%. Yellow solid. Mp = 177.9–179.8 °C. IR (KBr): v = 2971, 2893, 1657, 1517, 1332, 1239, 1040, 842, 739 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.34$ (d, J = 8.7 Hz, 1H), 8.18 (dd, J = 8.7, 2.0 Hz, 1H), 8.05 (d, J = 1.9 Hz, 1H), 7.02 (d, J = 8.1 Hz, 1H), 6.87–6.79 (m, 2H), 6.17 (s, 2H), 2.72 (s, 2H), 2.52 (s, 2H), 1.16 (s, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 193.6$, 155.7, 149.3, 149.0, 144.3, 138.0, 129.4, 128.5, 121.6, 121.3, 118.6, 112.6, 109.3, 108.3, 107.4, 102.6, 52.3, 37.2, 35.7, 28.8 ppm. HRMS (m/z): calcd for C₂₁H₁₉N₂O₅ [M+H]⁺ 379.1288, found: 379.1279.

2,2-Dimethyl-7-nitro-9-*m***-tolyl-2,3-dihydro-1***H***-carbazol-4(9***H***)-one** (**3ag**): Yield = 68%. Yellow solid. Mp = 162.1–163.2 °C. IR (KBr): v = 2957, 2882, 1665, 1513, 1437, 1335, 1138, 830, 736 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.35$ (d, J = 8.7 Hz, 1H), 8.18 (dd, J = 8.7, 2.0 Hz, 1H), 8.04 (d, J = 1.9 Hz, 1H), 7.53 (t, J = 7.7 Hz, 1H), 7.42 (d, J = 7.7 Hz, 1H), 7.17 (d, J = 7.7 Hz, 2H), 2.72 (s, 2H), 2.53 (s, 2H), 2.51 (s, 3H), 1.16 (s, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 193.7$, 155.5, 144.3, 140.9, 137.8, 135.0, 130.8, 130.3, 129.5, 127.9, 124.5, 121.6, 118.6, 112.7, 107.6, 52.4, 37.3, 35.7, 28.8, 21.7 ppm. HRMS (m/z): calcd for C₂₁H₂₁N₂O₃ [M+H]⁺ 349.1547, found: 349.1546.

2,2-Dimethyl-7-nitro-9-*o*-tolyl-2,3-dihydro-1*H*-carbazol-4(9*H*)-one (3ah): Yield = 63%. Yellow solid. Mp = 138.6–139.9 °C. IR (KBr): v = 2969, 2901, 1650, 1513, 1438, 1340, 1065, 880, 738, 655 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.37$ (d, J = 8.7 Hz, 1H), 8.19 (dd, J = 8.7, 2.0 Hz, 1H), 7.80 (d, J = 1.9 Hz, 1H), 7.59–7.41 (m, 3H), 7.26 (d, J = 3.7 Hz, 1H), 2.70–2.54 (m, 2H), 2.53–2.42 (m, 2H), 1.97 (s, 3H), 1.17 (s, 3H), 1.15 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 193.6$, 155.9, 144.4, 137.5, 136.5, 133.9, 132.1, 130.7, 129.4, 128.7, 128.1, 121.7, 118.6, 112.6, 107.3, 52.4, 36.9, 35.7, 29.2, 28.3, 17.5 ppm. HRMS (m/z): calcd for C₂₁H₂₁N₂O₃ [M+H]⁺ 349.1547, found: 349.1549.

9-(4-Methoxy-2-methylphenyl)-2,2-dimethyl-7-nitro-2,3-dihydro-1*H***-carbazol-4(9***H***)-one** (**3ai):** Yield = 55%. Yellow solid. Mp = 171.4–172.6 °C. IR (KBr): v = 2965, 2901, 1648, 1504, 1337, 1245, 1055, 739 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.35$ (d, J = 8.7 Hz, 1H), 8.18 (dd, J = 8.7, 1.9 Hz, 1H), 7.82 (d, J = 1.8 Hz, 1H), 7.16 (d, J = 8.5 Hz, 1H), 6.99 (d, J = 2.5 Hz, 1H), 6.94 (dd, J = 8.5, 2.7 Hz, 1H), 3.92 (s, 3H), 2.70–2.42 (m, 4H), 1.93 (s, 3H), 1.16 (s, 3H), 1.14 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 193.5$, 161.0, 156.4, 144.3, 137.9, 129.6, 129.3, 126.3, 121.6, 118.5, 117.0, 113.2, 112.4, 107.3, 55.8, 52.4, 36.9, 35.7, 29.2, 28.3, 17.7 ppm. HRMS (m/z): calcd for C₂₂H₂₃N₂O₄ [M+H]⁺ 379.1652, found: 379.1651.

2,2-Dimethyl-7-nitro-9-phenyl-2,3-dihydro-1*H***-carbazol-4**(*9H*)**-one** (**3aj**): Yield = 62%. Yellow solid. Mp = 172.1–173.6 °C. IR (KBr): v = 3090, 2959, 2866, 1656, 1509, 1439, 1337, 1181, 1069, 881, 858, 826, 775, 740, 724, 693, 658 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.36$ (d, J = 8.7 Hz, 1H), 8.19 (dd, J = 8.7, 2.0 Hz, 1H), 8.05 (d, J = 1.9 Hz, 1H), 7.70–7.61 (m, 3H), 7.39 (dd, J = 8.0, 1.3 Hz, 2H), 2.73 (s, 2H), 2.53 (s, 2H), 1.16 (s, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 193.7$, 155.4, 144.4, 137.7, 135.1, 130.6, 130.0, 129.5, 127.5, 121.7, 118.6, 112.8, 107.5, 52.4, 37.3, 35.7, 28.8 ppm. HRMS (m/z): calcd for C₂₀H₁₉N₂O₃ [M+H]⁺ 335.1390, found: 335.1397.

9-(4-Fluorophenyl)-2,2-dimethyl-7-nitro-2,3-dihydro-1H-carbazol-4(9H)-one (3ak): Yield = 55%. Yellow solid. Mp = 159.2–160.3 °C. IR (KBr): v = 2961, 2927, 1655, 1508, 1337, 1227, 850, 729 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.35$ (d, J = 8.7 Hz, 1H), 8.18 (dd, J = 8.7, 2.0 Hz, 1H), 8.00 (d, J = 1.9 Hz, 1H), 7.42–7.33 (m, 4H), 2.70 (s, 2H), 2.52 (s, 2H), 1.16 (s, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 193.6$, 163.1 (d, J = 249.8 Hz), 155.4, 144.4, 137.8, 131.0 (d, J = 3.3 Hz), 129.4 (d, J = 8.8 Hz), 121.7, 118.7, 117.9, 117.6, 112.9, 107.2, 52.3, 37.2, 35.7, 28.8 ppm. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -109.63$ ppm. HRMS (m/z): calcd for C₂₀H₁₈FN₂O₃ [M+H]⁺ 353.1296, found: 353.1313.

9-(4-Chlorophenyl)-2,2-dimethyl-7-nitro-2,3-dihydro-1*H*-carbazol-4(9*H*)-one (**3a**l): Yield = 63%. Yellow solid. Mp = 189.4–189.9 °C. IR (KBr): v = 3093, 2947, 2869, 1657, 1608, 1513, 1493, 1403, 1333, 1179, 1089, 1014, 879, 850, 736 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.35$ (d, J = 8.7 Hz, 1H), 8.18 (dd, J = 8.7, 1.9 Hz, 1H), 8.02 (d, J = 1.8 Hz, 1H), 7.65 (d, J = 8.6 Hz, 2H), 7.36 (d, J = 8.6 Hz, 2H), 2.72 (s, 2H), 2.52 (s, 2H), 1.16 (s, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 193.6$, 155.1, 144.4, 137.5, 136.1, 133.6, 130.9, 129.5, 128.8, 121.8, 118.7, 113.0, 107.1, 52.3, 37.3, 35.7, 28.8 ppm. HRMS (m/z): calcd for C₂₀H₁₈ClN₂O₃ [M+H]⁺ 369.1000, found: 369.0095.

9-(4-Bromophenyl)-2,2-dimethyl-7-nitro-2,3-dihydro-1*H*-carbazol-4(9*H*)-one (3am): Yield = 64%. Yellow solid. Mp = 210.7–211.2 °C. IR (KBr): v = 2960, 2948, 1656, 1513, 1438, 1332, 1067, 1010, 848, 736 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.34$ (d, J = 8.7 Hz, 1H), 8.17 (dd, J = 8.7, 1.9 Hz, 1H), 8.02 (d, J = 1.8 Hz, 1H), 7.80 (d, J = 8.5 Hz, 2H), 7.29 (d, J = 8.5 Hz, 2H), 2.72 (s, 2H), 2.52 (s, 2H), 1.16 (s, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 193.6$, 155.0, 144.5, 137.4, 134.1, 133.9, 129.5, 129.0, 124.1, 121.8, 118.8, 113.1, 107.2, 52.3, 37.3, 35.7, 28.8 ppm. HRMS (m/z): calcd for C₂₀H₁₈⁸¹BrN₂O₃ [M+H]⁺ 415.0475, found: 415.0472.

9-(4-Iodo-2-methylphenyl)-2,2-dimethyl-7-nitro-2,3-dihydro-1*H*-carbazol-4(9*H*)-one (3an): Yield = 71%. Yellow solid. Mp = 180.6–182.3 °C. IR (KBr): ν = 2959, 2931, 1648, 1512, 1336, 1177, 865, 734 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 8.36 (d, *J* = 8.7 Hz, 1H), 8.20 (dd, *J* = 8.7, 2.0 Hz, 1H), 7.88 (d, *J* = 1.2 Hz, 1H), 7.82–7.77 (m, 2H), 6.99 (d, *J* = 8.2 Hz, 1H), 2.69–2.42 (m, 4H), 1.93 (s, 3H), 1.17 (s, 3H), 1.14 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 193.4, 155.5, 144.5, 141.1, 138.9, 137.4, 137.2, 133.7, 130.3, 129.4, 121.9, 118.7, 112.8, 107.0, 96.7, 52.3, 36.9, 35.7, 29.2, 28.3, 17.2 ppm. HRMS (m/z): calcd for C₂₁H₂₀IN₂O₃ [M+H]⁺ 475.0513, found: 475.0525.

9-(3,5-Bis(trifluoromethyl)phenyl)-2,2-dimethyl-7-nitro-2,3-dihydro-1*H*-carbazol-4(9*H*)-one (**3ao):** Yield = 62%. Yellow solid. Mp = 180.1–181.3 °C. IR (KBr): v = 3042, 2969, 2933, 1656, 1515, 1435, 1340, 1276, 1131, 1056, 889, 726, 709, 682 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 8.45 (d, *J* = 8.7 Hz, 1H), 8.28 (dd, *J* = 8.7, 1.8 Hz, 1H), 8.21 (s, 1H), 8.04 (d, *J* = 1.9 Hz, 1H), 7.96 (s, 2H), 2.76 (s, 2H), 2.60 (s, 2H), 1.24 (s, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 193.5, 154.4, 144.9, 137.3, 137.0, 134.8, 134.4, 134.1, 129.6, 128.0, 124.0, 124.0, 124.0, 122.3, 121.2, 119.3, 113.8, 106.8, 52.2, 37.2, 35.9, 28.8 ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -65.24 ppm. HRMS (m/z): calcd for C₂₂H₁₇F₆N₂O₃ [M+H]⁺ 471.1138, found: 471.1156.

Ethyl 4-(2,2-dimethyl-7-nitro-4-oxo-3,4-dihydro-1*H*-carbazol-9(2*H*)-yl)benzoate (3ap): Yield = 31%. Yellow solid. Mp = 209.0–209.5 °C. IR (KBr): v = 2923, 2363, 1718, 1662, 1509, 1439, 1275, 1129, 866, 738 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.40-8.32$ (m, 3H), 8.19 (dd, J = 8.7, 2.0 Hz, 1H), 8.07 (d, J = 1.9 Hz, 1H), 7.50 (d, J = 8.5 Hz, 2H), 4.48 (q, J = 7.1 Hz, 2H), 2.75 (s, 2H), 2.54 (s, 2H), 1.46 (t, J = 7.1 Hz, 3H), 1.16 (s, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 193.6$, 165.4, 154.8, 144.5, 138.9, 137.2, 131.9, 131.9, 129.6, 127.3, 121.8, 118.8, 113.2, 107.2, 61.9, 52.3, 37.4, 35.8, 28.7, 14.5, 14.4 ppm. HRMS (m/z): calcd for C₂₃H₂₃N₂O₅ [M+H]⁺ 407.1601, found: 407.1606.

2,2-Dimethyl-9-(naphthalen-2-yl)-7-nitro-2,3-dihydro-1*H*-carbazol-4(9*H*)-one (3aq): Yield = 56%. Yellow solid. Mp = 208.2–210.2 °C. IR (KBr): v = 3059, 2957, 2868, 1664, 1507, 1428, 1326, 1140, 1066, 861, 831, 738 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.38$ (d, J = 8.7 Hz, 1H), 8.19 (dd, J = 8.7, 2.0 Hz, 1H), 8.12 (d, J = 8.6 Hz, 1H), 8.07 (d, J = 1.9 Hz, 1H), 8.05–8.00 (m, 1H), 7.99–7.94 (m, 1H), 7.90 (d, J = 1.6 Hz, 1H), 7.71–7.63 (m, 2H), 7.44 (dd, J = 8.6, 2.0 Hz, 1H), 2.77 (s, 2H), 2.54 (s, 2H), 1.15 (s, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 193.7$, 155.7, 144.4, 137.9, 133.6, 133.4, 132.4, 130.9, 129.5, 128.4, 128.3, 128.0, 127.9, 126.5, 124.5, 121.7, 118.6, 112.8, 107.5, 52.4, 37.4, 35.7, 28.7 ppm. HRMS (m/z): calcd for C₂₄H₂₁N₂O₃ [M+H]⁺ 385.1547, found: 385.1556.

2,2-Dimethyl-9-(naphthalen-1-yl)-7-nitro-2,3-dihydro-1*H*-carbazol-4(9*H*)-one (3ar): Yield = 61%. Yellow solid. Mp = 208.8–209.4 °C. IR (KBr): v = 2959, 2926, 1655, 1513, 1441, 1332, 1100, 775, 734 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 8.42 (d, *J* = 8.7 Hz, 1H), 8.21 (dd, *J* = 8.7, 2.0 Hz, 1H), 8.16 (d, *J* = 8.3 Hz, 1H), 8.07 (d, *J* = 8.3 Hz, 1H), 7.76 (d, *J* = 1.9 Hz, 1H), 7.73–7.67 (m, 1H), 7.66–7.59 (m, 1H), 7.55 (dd, *J* = 7.2, 0.8 Hz, 1H), 7.50–7.44 (m, 1H), 7.05 (d, *J* = 8.4 Hz, 1H), 2.67–2.40 (m, 4H), 1.12 (s, 3H), 1.10 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 193.7, 156.8, 144.4, 138.6, 134.8, 131.3, 131.1, 130.5, 129.4, 129.1, 128.5, 127.7, 126.7, 125.9, 121.8, 121.7, 118.6, 112.7, 107.6, 52.4, 36.8, 35.7, 29.0, 28.2 ppm. HRMS (m/z): calcd for C₂₄H₂₁N₂O₃ [M+H]⁺ 385.1547, found: 385.1559.

3,3-Dimethyl-7-nitro-9-*p*-tolyl-2,3-dihydro-1*H*-carbazol-4(9*H*)-one (3au): Yield = 28%. Yellow solid. Mp = 141.5–142.9 °C. IR (KBr): v = 2964, 2921, 1658, 1515, 1333, 1308, 1070, 819, 744 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.38$ (d, J = 8.7 Hz, 1H), 8.18 (dd, J = 8.7, 2.0 Hz, 1H), 8.05 (d, J = 1.9 Hz, 1H), 7.43 (d, J = 7.7 Hz, 2H), 7.28 (d, J = 8.3 Hz, 2H), 2.87 (t, J = 6.2 Hz, 2H), 2.51 (s, 3H), 2.08 (t, J = 6.2 Hz, 2H), 1.29 (s, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 199.4$, 155.1, 144.4, 140.1, 137.8, 132.5, 131.1, 130.4, 127.1, 121.8, 118.4, 112.0, 107.4, 42.1, 37.2, 24.5, 21.5, 20.7 ppm. HRMS (m/z): calcd for C₂₁H₂₁N₂O₃ [M+H]⁺ 349.1547, found: 349.1550.

9-(4-Methoxyphenyl)-7-nitro-2,3-dihydro-1*H***-carbazol-4**(*9H***)-one (3av):** Yield = 41%. Yellow solid. Mp = 126.9–127.7 °C. IR (KBr): v = 2960, 2923, 1511, 1423, 1334, 1244, 1023, 742, 683 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.36$ (d, J = 8.7 Hz, 1H), 8.17 (dd, J = 8.7, 2.1 Hz, 1H), 8.02 (d, J = 2.1 Hz, 1H), 7.33–7.28 (m, 2H), 7.15–7.09 (m, 2H), 3.93 (s, 3H), 2.85 (t, J = 6.2 Hz, 2H), 2.65 (dd, J = 7.3, 5.5 Hz, 2H), 2.30–2.19 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 194.1$, 160.3, 156.6, 144.1, 137.5, 129.4, 128.4, 127.3, 121.5, 118.3, 115.4, 113.4, 107.2, 55.7, 38.0, 23.2, 23.2 ppm. HRMS (m/z): calcd for C₁₉H₁₇N₂O₄ [M+H]⁺ 337.1183, found: 337.1178.

Methyl 9-(4-methoxyphenyl)-2,2-dimethyl-7-nitro-4-oxo-2,3,4,9-tetrahydro-1*H*-carbazole-6carboxylate (3bc): Yield = 48%. Yellow solid. Mp = 110.6–112.5 °C. IR (KBr): v = 2971, 2901, 1732, 1660, 1514, 1336, 1255, 1056, 847 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.57$ (s, 1H), 7.73 (s, 1H), 7.30–7.26 (m, 2H), 7.15–7.11 (m, 2H), 3.94 (s, 3H), 3.94 (s, 3H), 2.70 (s, 2H), 2.52 (s, 2H), 1.15 (s, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 193.4$, 167.1, 160.8, 156.1, 144.3, 138.3, 128.6, 127.1, 127.1, 123.4, 123.0, 115.8, 113.0, 108.0, 56.0, 53.3, 52.3, 37.2, 35.7, 28.8 ppm. HRMS (m/z): calcd for C₂₃H₂₃N₂O₆ [M+H]⁺ 423.1551, found: 423.1557.

9-(4-Methoxyphenyl)-2,2-dimethyl-5,7-dinitro-2,3-dihydro-1*H*-carbazol-4(9*H*)-one (3dc): Yield = 30%. Yellow solid. Mp =179.8–181.9 °C. IR (KBr): v = 3082, 2961, 2851, 1612, 1517, 1441, 1408, 1336, 1280, 1256, 1173, 1020, 841, 774, 742, 643 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 11.11$ (s, 1H), 7.54 (d, J = 1.8 Hz, 1H), 7.50 (d, J = 1.8 Hz, 1H), 7.27 (d, J = 8.7 Hz, 2H), 7.15–7.10 (m, 2H), 3.94 (s, 3H), 2.67 (s, 2H), 2.55 (s, 2H), 1.16 (s, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 196.1$, 160.8, 155.0, 151.8, 146.7, 139.4, 128.5, 127.3, 118.9, 115.7, 113.0, 103.5, 99.3, 56.0, 50.7, 36.9, 36.1, 28.7 ppm. HRMS (m/z): calcd for C₂₁H₂₁N₂O₅ [M+H]⁺ 381.1445, found: 381.1451.

N-(2,2-Dimethyl-4-oxo-9-*p*-tolyl-2,3,4,9-tetrahydro-1*H*-carbazol-7-yl)-4-methylbenzenesulfon amide (8): Yield = 43%. Yellow solid. Mp = 234.5–235.6 °C. IR (KBr): v = 3258, 2961, 2937, 1645, 1493, 1407, 1335, 1158, 904, 659 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.05$ (d, J = 8.3 Hz, 1H), 7.55 (d, J = 8.3 Hz, 2H), 7.37 (d, J = 8.0 Hz, 2H), 7.21–7.13 (m, 4H), 7.04 (d, J = 1.8 Hz, 1H), 6.75 (dd, J = 8.3, 1.9 Hz, 1H), 6.64 (s, 1H), 2.63 (s, 2H), 2.49 (s, 3H), 2.46 (s, 2H), 2.37 (s, 3H), 1.11 (s, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 193.8$, 151.8, 143.7, 139.2, 138.8, 136.0, 133.0, 132.0, 130.6, 129.5, 127.4, 126.9, 122.6, 121.8, 118.8, 112.1, 106.1, 52.2, 37.0, 35.5, 28.6, 21.6, 21.2 ppm. HRMS (m/z): calcd for C₂₈H₂₉N₂O₃S [M+H]⁺ 473.1893, found: 473.1889.

The ¹H and ¹³C NMR spectra of products

