Visible-light-mediated tandem phosphorylation/cyclization for the

synthesis of phosphorylated oxindoles

Liu-Liang Mao,^a* An-Xi Zhou,^a Xian-Hong Zhu,^a Li-Xia Quan,^a* Fayun Chen, ^a Jie-Ping Wan, ^b Yin-Long Lai ^c

^a Key Laboratory of Applied Organic Chemistry, Higher Institutions of Jiangxi Province, Shangrao Normal University, Shangrao 334001, P. R. China.

^b College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China.

^c College of Chemistry and Environmental Engineering, Shaoguan University, Shaoguan, P. R. China

Contents:

1. General information	1
2. Optimization of Reaction Condition	1
3. The General Procedures	2
4. Preliminary mechanistic studies	3
5. References	3
6. Characterization data of products	4
7. Copies of NMR spectra	9

I. General Methods and Materials

All reactions involving air- and moisture-sensitive reagents were carried out under an argon atmosphere. ¹H and ¹³C NMR spectra were recorded on a Bruker advance III 400 spectrometer (400 MHz for ¹H and 101 MHz for ¹³C) in CDCl₃ with TMS as internal standard. Chemical shifts (δ) were measured in ppm relative to TMS $\delta = 0$ for ¹H, or to chloroform $\delta = 77.0$ for ¹³C as internal standard (DMSO-d₆ δ = 2.5 for ¹H NMR, or δ = 40.0 for ¹³C NMR). ³¹P and ¹⁹F NMR spectra were recorded on the same instrument. Data are reported as follows: Chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), Coupling constants, J, are reported in hertz. Mass data were measured with Thermo Scientific DSQ II mass spectrometer. High resolution mass spectra (HRMS) were obtained on an Agilent LC-MSD-Trap-XCT spectrometer with micromass MS software using electrospray ionisation (ESI). The starting materials were purchased from Aldrich, Acros Organics, J&K Chemicals or TCI and used without further purification. Solvents were dried and purified according to the procedure from "Purification of Laboratory Chemicals book". Thin-layer chromatography (TLC) was performed using 60 mesh silica gel plates visualized with short-wavelength UV light (254 nm). Column chromatography was carried out on silica gel (particle size 200-400 mesh ASTM) Substrates were prepared according to published literature methods.[S1]

Figure S1. Devices for the photocatalytic reactions

2. Optimization of Reaction Condition

Table S1. Optimization of the Solvent^[a]

	N O	O + "P Ph ⁻ H Ph	TBPB, Na	$P_3CI_2 \cdot 6H_2O,$ $P_2CO_3, Solvent, Blue LEDs,$		~P(O)Ph ₂ 三O
	1a	2a			3aa	a
Entry	Phot	ocatalyst	Oxidant	Base	Solvent	Yield $(\%)^{[b]}$
1	Ru(bpy)	$_{3}Cl_{2}$ • $6H_{2}O$	TBPB	Na ₂ CO ₃	MeCN	84 (82) ^[c]
2	Ru(bpy)	3Cl₂• 6H2O	TBPB	Na ₂ CO ₃	DMF	76
3	Ru(bpy)	3Cl₂• 6H₂O	TBPB	Na ₂ CO ₃	DCM	13
4	Ru(bpy))₃Cl₂• 6H₂O	TBPB	Na ₂ CO ₃	Toluene	23
5	Ru(bpy)	3Cl₂• 6H₂O	TBPB	Na ₂ CO ₃	Dioxane	trace
6	Ru(bpy)) ₃ Cl ₂ • 6H ₂ O	TBPB	Na ₂ CO ₃	CH ₃ NO ₂	trace

^[a] The reaction was performed with **1a** (0.2 mmol), **2a** (1.3 equiv.), TBPB (2.0 equiv.), Na₂CO₃ (1.3 equiv.), Ru(bpy)₃Cl₂• 6H₂O (2 mol%) in solvent (2.0 mL) was irradiated by 5 W blue LEDs under Ar at rt for 24 h. ^[b] The yields were determined based on crude ¹H NMR spectroscopy using 1,3,5-trimethoxybenzene as the internal standard. ^[c] Isolated yields.

Table S2. Optimization of the Oxidant^[a]

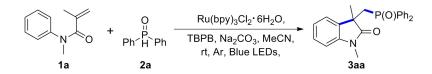
	O + Ph ⁻ H ⁻ Ph ⁻	Oxidant, Na	Cl ₂ •6H ₂ O, ₂ CO ₃ , MeCN, ue LEDs,	N N	∕─P(O)Ph ₂)=0
1a 2a				3a	a
entry	photocatalyst	oxidant	base	solvent	yield $(\%)^{[b]}$
1	Ru(bpy)3Cl2•6H2O	BPO	Na ₂ CO ₃	MeCN	15
2	Ru(bpy)3Cl2•6H2O	K2S2O8	Na ₂ CO ₃	MeCN	37
3	Ru(bpy)3Cl2•6H2O	TBHP ^[c]	Na ₂ CO ₃	MeCN	31
4	Ru(bpy)3Cl2+6H2O	TBHP	Na ₂ CO ₃	MeCN	54
5	Ru(bpy)3Cl2+6H2O	DTBP	Na ₂ CO ₃	MeCN	10

^[a] The reaction was performed with **1a** (0.2 mmol), **2a** (1.3 equiv.), Oxidant (2.0 equiv.), Na₂CO₃ (1.3 equiv.), Ru(bpy)₃Cl₂•6H₂O (2 mol%) in MeCN (2.0 mL) was irradiated by 5 W blue LEDs under Ar at rt for 24 h. ^[b] The yields were determined based on crude ¹H NMR spectroscopy using 1,3,5-trimethoxybenzene as the internal standard. ^[c] TBHP 70% solution in H₂O.

Table S3. Optimization of the Base^[a]

		Ru(bpy) ₃ Cl ₂ •6H ₂ O,		P(O)Ph ₂	
	N O Ph H Ph		se, MeCN, rt, ue LEDs,	N	=0
··	1a 2a			3aa	a
Entry	Photocatalyst	Oxidant	Base	Solvent	Yield (%) ^[b]
1	Ru(bpy) ₃ Cl ₂ • 6H ₂ O	TBPB	NaHCO ₃	MeCN	60
2	Ru(bpy) ₃ Cl ₂ • 6H ₂ O	TBPB	K ₂ CO ₃	MeCN	56
3	Ru(bpy) ₃ Cl ₂ • 6H ₂ O	TBPB	K ₃ PO ₄	MeCN	78
4	Ru(bpy) ₃ Cl ₂ • 6H ₂ O	TBPB	DABCO	MeCN	34
5	Ru(bpy) ₃ Cl ₂ • 6H ₂ O	TBPB	Li ₂ CO ₃	MeCN	57
6	Ru(bpy) ₃ Cl ₂ • 6H ₂ O	TBPB	KH ₂ PO ₄	MeCN	70
7	Ru(bpy) ₃ Cl ₂ • 6H ₂ O	TBPB	K ₂ HPO ₄	MeCN	62
8	Ru(bpy) ₃ Cl ₂ • 6H ₂ O	TBPB	Et ₃ N	MeCN	31
7	Ru(bpy) ₃ Cl ₂ • 6H ₂ O	TBPB	2,6-Lutidine	MeCN	68
8	Ru(bpy) ₃ Cl ₂ • 6H ₂ O	TBPB	—	MeCN	21

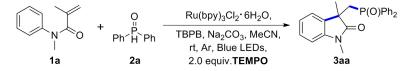
^[a] The reaction was performed with **1a** (0.2 mmol), **2a** (1.3 equiv.), TBPB (2.0 equiv.), Base (1.3 equiv.), Ru(bpy)₃Cl₂•6H₂O (2 mol%) in MeCN (2.0 mL) was irradiated by 5 W blue LEDs under Ar at rt for 24 h. ^[b] The yields were determined based on crude ¹H NMR spectroscopy using 1,3,5-trimethoxybenzene as the internal standard.


Table S4. Optimization of the Photocatalyst and Control Experiment [a]

N O + O Ph'H Ph -		Na₂CO₃, MeCN, rt, Ar, Blue LEDs,		P(O)Ph ₂	
	1a 2a			3a	а
Entry	Photocatalyst	Oxidant	Base	Solvent	$Yield (\%)^{[b]}$
1		TBPB	Na ₂ CO ₃	MeCN	trace
2	<i>fac</i> - Ir(ppy) ₃	TBPB	Na ₂ CO ₃	MeCN	41
3	Acid Red 94	TBPB	Na ₂ CO ₃	MeCN	73
4	Rhodamine B	TBPB	Na ₂ CO ₃	MeCN	trace
5 ^[c]	Ru(bpy) ₃ Cl ₂ •6H ₂ O	TBPB	Na ₂ CO ₃	MeCN	trace
6 ^[d]	$Ru(bpy)_3Cl_2 \bullet 6H_2O$	TBPB	Na ₂ CO ₃	MeCN	57

^[a] The reaction was performed with 1a (0.2 mmol), 2a (1.3 equiv.), TBPB (2.0 equiv.), Na₂CO₃ (1.3 equiv.), photocatalyst (2

mol%) in MeCN (2.0 mL) was irradiated by 5 W blue LEDs under Ar at rt for 24 h. ^[b] The yields were determined based on crude ¹H NMR spectroscopy using 1,3,5-trimethoxybenzene as the internal standard. ^[c] No irradiation. ^[d] Sunlight instead of blue LEDs.


3. The General Procedures

To a Schlenk tube were added *N*-arylacrylamides **1a** (0.2 mmol, 1.0 equiv.), diphenylphosphine oxide **2a** (0.26 mmol, 1.3 equiv.), Ru(bpy)₃Cl₂· 6H₂O (2 mol%), Na₂CO₃ (0.26 mmol, 1.3 equiv) and charged with argon for three times. TBPB (2.0 equiv.) and MeCN (2.0 mL) was added and the mixture was then irradiated by blue LED strips at room temperature for 24 h. After substrate was consumed (monitored by TLC), the reaction was concentrated in vacuo, and the resulting residue was purified by column chromatography (PE/*i*-PrOH = 20/1) to give the desired phosphorylated oxindoles derivatives **3**.

4. Preliminary mechanistic studies.

4.1 Radicals Trapping Experiments using TEMPO

In a Schlenk tube, *N*-arylacrylamides **1** (0.2 mmol, 1.0 equiv.), diphenylphosphine oxide (0.26 mmol, 1.3 equiv.), $Ru(bpy)_3Cl_2\cdot 6H_2O$ (2 mol%), Na_2CO_3 (0.26 mmol, 1.3 equiv) and TEMPO (1.0 equiv) were added and charged with Ar three times. Then, TBPB (2.0 equiv.) and MeCN (2.0 mL) were added and the mixture was then irradiated by blue LED strips at room temperature for 24 h (monitored by TLC). However, no desired product **3** is generated.

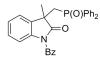
4.2 Radicals Trapping Experiments using 1,1-Diphenylethylene

In a Schlenk tube, *N*-arylacrylamides **1a** (0.2 mmol, 1.0 equiv.), diphenylphosphine oxide **2a** (0.26 mmol, 1.3 equiv.), $Ru(bpy)_3Cl_2\cdot 6H_2O$ (2 mol%), Na_2CO_3 (0.26 mmol, 1.3 equiv) and 1,1-diphenylethylene (1.0 equiv) were added and charged with Ar three times. Then, MeCN (2.0 mL) and TBPB (2.0 equiv.) were added and the mixture was then irradiated by blue LED strips at room temperature for 24 h, After substrate was consumed (monitored by TLC), the reaction was concentrated in vacuo, and the resulting residue was purified by column chromatography to give **3aa** and **4** in trace and 49% yield, respectively. The result show that the reaction system produces the diphenylphosphine oxide radical.

(2,2-diphenylvinyl)diphenylphosphine oxide, white solid, ¹H NMR (400 MHz, CDCl₃) δ 7.79 – 7.61 (m, 4H), 7.38 – 7.28 (m, 10H), 7.25 – 7.21 (m, 2H), 7.10 (dt, *J* = 14.2, 6.9 Hz, 4H), 6.79 (d, *J* = 18.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 161.9, 141.9, 141.7, 137.9, 137.9, 134.8, 133.7, 131.0, 130.9, 130.8, 130.7, 130.2, 129.4, 128.5, 128.3, 128.2, 128.2, 128.1, 127.5, 120.9, 119.9. ³¹P NMR (162 MHz, CDCl₃) δ 18.73. MS (ESI, m/z): calculated for C₂₆H₂₁OP [M+H]⁺: 381.1403, found: 381.4. Spectral data for this compound is consistent with that previously reported.^[S1j]

5. References

[S1] (a) Y.-M. Li, Y. Shen, K.-J. Chang and S.-D. Yang, *Tetrahedron*, 2014, 70, 1991; (b) Y.-M.
Li, M. Sun, H.-L. Wang, Q.-P. Tian and S.-D. Yang, *Angew. Chem. Int. Ed.* 2013, 52, 3972. (c) C.
X. Li, D. S. Tu, R. Yao, H. Yan and C. S. Lu, *Org. Lett.*, 2016, 18, 4928. (d) A. Pinto, Y. Jia, L.
Neuville and J. Zhu, *Chem. Eur. J.* 2007, 13, 961. (e) H. Wei, T. Piou, J. Dufour, L. Neuville and J.
Zhu, *Org. Lett.*, 2011, 13, 2244. (f) X. Mu, T. Wu, H. Wang, Y. Guo and G. Liu, *J. Am. Chem. Soc.* 2012, 134, 878. (g) S. Biros, R. Yeh and K. Raymond, *Angew. Chem., Int. Ed.* 2008, 47, 6062.
(h) N. Campbell, A. Finch and S. Rokita, *ChemPhysChem* 2010, 11, 1768. (i) C. Chen, W. Sun, Y.
Yan, F. Yang, Y. Wang, Y. –P. Zhu, L. Liu and B. Zhu, *Adv. Syn. Cat.*, 2020, 362, 2970, (j) L.-L.
Mao, A.-X. Zhou, N. Liu and S.-D. Yang, *Synlett*, 2014, 25, 2727.


6. Characterization data of products

3-((diphenylphosphoryl)methyl)-1,3-dimethylindolin-2-one (3aa) White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.55 (m, 2H), 7.51 – 7.46 (m, 2H), 7.44 – 7.29 (m, 6H), 7.17 (dd, *J* = 10.7, 4.1Hz, 2H), 6.85 – 6.75 (m, 1H), 6.67 (d, *J* = 8.1 Hz, 1H), 3.09 (dd, *J* = 15.2, 10.1 Hz, 1H), 3.01 (s, 3H), 2.87 (dd, *J* = 15.2, 10.9 Hz, 1H), 1.43 (d, *J* = 1.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 179.4 (d, *J* = 4.3 Hz), 142.9, 133.9 (d, *J* = 76.7 Hz), 132.9 (d, *J* = 76.1 Hz), 131.4 (d, *J* = 2.7 Hz), 131.3 (d, *J* = 2.6 Hz), 131.2 (d, *J* = 2.8 Hz), 130.6 (d, *J* = 9.4 Hz), 130.4 (d, *J* = 9.2 Hz), 128.3 (d, *J* = 11.7 Hz), 128.1 (d, *J* = 11.7 Hz), 127.9, 124.8, 122.1, 107.8, 45.4 (d, *J* = 3.8 Hz), 37.5 (d, *J* = 71.8 Hz), 26.8 (d, *J* = 12.1 Hz). 26.3. ³¹P NMR (162 MHz, CDCl₃) δ 26.02. MS (ESI, m/z): calculated for C₂₃H₂₂NO₂P [M+H]⁺: 376.1461, found: 376.1. Spectral data for this compound is consistent with that previously reported.^[S1b]

1-benzyl-3-((diphenylphosphoryl)methyl)-3-methylindolin-2-one (3ab) White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.58 (m, 4H), 7.43 (t, J = 7.2 Hz, 2H), 7.36 (m, 4H), 7.28 (t, J = 6.3 Hz, 4H), 7.24 (dd, J = 6.2, 2.0 Hz, 1H), 7.19 (d, J = 7.4 Hz, 1H), 7.03 (t, J = 7.7 Hz, 1H), 6.73 (t, J = 7.5 Hz, 1H), 6.55 (d, J = 7.8 Hz, 1H), 5.04 (d, J = 15.8 Hz, 1H), 4.40 (d, J = 15.8 Hz, 1H), 3.09 (dd, J = 15.2, 10.9 Hz, 1H), 1.49 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 179.6 (d, J = 5.2 Hz), 142.0, 136.1, 133.9 (d, J = 38.0 Hz), 132.9 (d, J = 37.6 Hz), 131.6 (d, J = 2.7 Hz), 131.4 (d, J = 2.8 Hz),

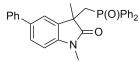
131.3 (d, J = 2.7 Hz), 130.7 (d, J = 9.4 Hz), 130.6 (d, J = 9.2 Hz), 128.7, 128.4 (d, J = 11.8 Hz), 128.2 (d, J = 11.8 Hz), 127.8, 127.4, 127.1, 124.9, 122.2, 108.9, 45.6 (d, J = 3.9 Hz), 43.9, 37.3 (d, J = 71.5 Hz), 26.9 (d, J = 11.4 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 26.20. MS (ESI, m/z): calculated for C₂₉H₂₆NO₂P [M+H]⁺: 452.1774, found: 452.2. Spectral data for this compound is consistent with that previously reported. ^[S1c]

3-((diphenylphosphoryl)methyl)-3-methyl-1-tosylindolin-2-one (3ac) White solid; ¹H NMR (400 MHz, CDCl₃) δ 8.48 (s, 1H), 7.70 – 7.60 (m, 2H), 7.49 – 7.40 (m, 5H), 7.36 (m, 3H), 7.25 (dd, J = 9.5, 6.0 Hz, 4H), 7.09 (d, J = 8.2 Hz, 2H), 7.04 (t, J = 7.3 Hz, 1H), 6.81 (d, J = 8.1 Hz, 2H), 3.26 (dd, J = 15.6, 12.2 Hz, 1H), 3.09 (dd, J = 15.6, 8.5 Hz, 1H), 2.18 (s, 3H), 1.96 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.4 (d, J = 9.4 Hz), 138.2 (d, J = 6.0 Hz), 136.9, 134.2 (d, J = 100.3 Hz), 132.9 (d, J = 99.6 Hz), 131.3 (d, J = 2.7 Hz), 130.7 (d, J = 2.7 Hz), 130.5, 130.4, 130.3, 130.2, 128.9, 128.7, 128.4 (d, J = 11.7 Hz), 128.1 (d, J = 11.8 Hz), 127.0, 123.9, 119.7, 50.5 (d, J = 2.7 Hz), 39.3 (d, J = 71.2 Hz), 25.8 (d, J = 5.0 Hz), 20.8. ³¹P NMR (162 MHz, CDCl₃) δ 28.69. MS (ESI, m/z): calculated for C₂₉H₂₆NO₄PS [M+H]⁺: 516.1393, found: 516.0. Spectral data for this compound is consistent with that previously reported. [^{S1b}]

1-benzoyl-3-((diphenylphosphoryl)methyl)-3-methylindolin-2-one (3ad) White solid; M.p. = 228-230 °C, ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, J = 7.8 Hz, 1H), 7.60 (dd, J = 11.5, 7.4 Hz, 2H), 7.49 (dd, J = 14.0, 6.7 Hz, 3H), 7.46 – 7.26 (m, 8H), 7.26 – 7.15 (m, 3H), 7.00 (d, J = 3.6 Hz, 2H), 3.79 (dd, J = 14.7, 12.5 Hz, 1H), 2.97 (dd, J = 14.9, 5.9 Hz, 1H), 1.79 (d, J = 1.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.9, 164.1, 140.7, 136.0, 133.8 (d, J = 99.7 Hz), 132.7, 132.2 (d, J = 99.0 Hz),131.4 (d, J = 75.8 Hz), 131.3 (d, J = 81.3 Hz), 130.8, 130.7, 130.6, 129.1, 128.9, 128.6, 128.5, 128.3, 128.2 (d, J = 18.2 Hz), 127.5, 126.2, 125.0, 45.4 (d, J = 3.7 Hz), 41.8 (d, J = 70.0 Hz), 32.8 (d, J = 13.8 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 27.09. HRMS (ESI, m/z): calculated for C₂₉H₂₄NO₃P (M+Na)⁺, 488.1386; found, 488.1384.

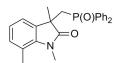
3-((diphenylphosphoryl)methyl)-1,3,5-trimethylindolin-2-one (3af) Light yellow solid; ¹H NMR **(400 MHz, CDCl₃)** δ 7.57 – 7.46 (m, 4H), 7.40 (t, J = 7.1 Hz, 2H), 7.37 – 7.28 (m, 4H), 6.93 (d, J = 7.8 Hz, 1H), 6.78 (s, 1H), 6.59 (d, J = 7.9 Hz, 1H), 3.14 – 3.02 (m, 4H), 2.82 (dd, J = 15.1, 9.5 Hz, 1H), 2.06 (s, 3H), 1.43 (s, 3H). ¹³C NMR **(101 MHz, CDCl₃)** δ 179.3 (d, J = 4.1 Hz), 140.7, 133.9 (d, J = 23.7 Hz), 132.9 (d, J = 23.2 Hz), 131.3 (d, J = 2.6 Hz), 131.2, 131.1 (d, J = 2.7 Hz), 130.9 (d, J = 2.7 Hz), 130.5 (d, J = 9.3 Hz), 130.4 (d, J = 9.2 Hz), 128.1 (d, J = 1.9 Hz), 128.1, 128.0 (d, J = 5.7 Hz), 125.4, 107.5, 45.3 (d, J = 3.9 Hz), 37.5 (d, J = 71.7 Hz), 26.6 (d, J = 12.1 Hz). 26.3, 20.8. ³¹P NMR **(162 MHz, CDCl₃)** δ 25.71. MS **(ESI, m/z)**: calculated for C₂₄H₂₄NO₂P [M+H]⁺: 390.1617, found: 390.2. Spectral data for this compound is consistent with that previously reported. [S1a]

3-((diphenylphosphoryl)methyl)-5-methoxy-1,3-dimethylindolin-2-one (3ag) White solid; ¹H NMR **(400 MHz, CDCl₃)** δ 7.59 – 7.48 (m, 4H), 7.41 (m, 2H), 7.39 – 7.29 (m, 4H), 6.75 (d, *J* = 2.4 Hz, 1H), 6.70 (dd, *J* = 8.4, 2.5 Hz, 1H), 6.59 (d, *J* = 8.4 Hz, 1H), 3.64 (s, 3H), 3.15 – 3.01 (m, 4H), 2.82 (dd, *J* = 15.2, 9.9 Hz, 1H), 1.43 (d, *J* = 1.3 Hz, 3H). ¹³C NMR **(101 MHz, CDCl₃)** δ 179.1 (d, *J* = 4.2 Hz), 155.4, 136.5, 133.9 (d, *J* = 50.5 Hz), 132.9 (d, *J* = 50.2 Hz), 132.5 (d, *J* = 2.6 Hz), 131.4 (d, *J* = 2.5 Hz), 131.2 (d, *J* = 2.6 Hz), 130.6 (d, *J* = 9.4 Hz), 130.5 (d, *J* = 9.3 Hz), 128.3 (d, *J* = 6.9 Hz), 128.2 (d, *J* = 6.9 Hz), 131.2, 111.5, 108.2, 55.5, 45.9 (d, *J* = 3.8 Hz), 37.4 (d, *J* = 71.6 Hz), 26.7 (d, *J* = 12.3 Hz), 26.4. ³¹P NMR **(162 MHz, CDCl₃)** δ 26.02. **MS (ESI, m/z)**: calculated for C₂₄H₂₄NO₃P [M+H]⁺: 406.1567, found: 406.0. Spectral data for this compound is consistent with that previously reported. ^[S1b]


3-((diphenylphosphoryl)methyl)-5-fluoro-1,3-dimethylindolin-2-one (3ah) Light yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.63 – 7.49 (m, 4H), 7.43 (m, 2H), 7.39 – 7.32 (m, 4H), 6.85 (m, 1H), 6.79 (dd, J = 8.2, 2.4 Hz, 1H), 6.63 (dd, J = 8.5, 4.1 Hz, 1H), 3.16 – 3.00 (m, 4H), 2.83 (dd, J = 15.1, 9.2 Hz, 1H), 1.42 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 178.9 (d, J = 4.3 Hz), 158.6 (d, J = 240.2 Hz), 138.9 (d, J = 1.8 Hz), 133.6 (d, J = 16.2 Hz), 132.9 (d, J = 2.7 Hz), 132.8 (d, J = 2.6 Hz), 132.7 (d, J = 16.1 Hz), 131.4 (d, J = 2.7 Hz), 131.3 (d, J = 2.7 Hz), 130.4 (d, J = 9.4 Hz), 130.3 (d, J = 9.2 Hz), 128.3 (d, J = 6.5 Hz), 128.2 (d, J = 6.5 Hz), 114.1 (d, J = 23.5 Hz), 112.7 (d, J = 25.2 Hz), 108.1 (d, J = 8.1 Hz), 45.7 (d, J = 2.2 Hz), 37.4 (d, J = 71.3 Hz), 26.4, 26.3. ³¹P NMR (162 MHz, CDCl₃) δ 25.59. ¹⁹F NMR (376 MHz, CDCl₃) δ -121.23. MS (ESI): MS (ESI, m/z): calculated for C₂₃H₂₁FNO₂P [M+H]⁺: 394.1367, found: 394.4. Spectral data for this compound is consistent with that previously reported. ^[S1b]

5-chloro-3-((diphenylphosphoryl)methyl)-1,3-dimethylindolin-2-one (3ai) White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.52 (m, 2H), 7.49 – 7.39 (m, 4H), 7.39 – 7.29 (m, 4H), 7.08 (dd, J = 8.3, 2.1 Hz, 1H), 6.81 (d, J = 2.1 Hz, 1H), 6.64 (d, J = 8.3 Hz, 1H), 3.17 – 3.01 (m, 4H), 2.77 (dd, J = 15.1, 8.3 Hz, 1H), 1.40 (d, J = 1.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 178.9 (d, J = 3.7 Hz), 141.9, 133.6 (d, J = 41.1 Hz), 132.8 (d, J = 2.9 Hz), 132.6 (d, J = 35.6 Hz), 131.6 (d, J = 2.7 Hz), 131.5 (d, J = 2.7 Hz), 130.4 (d, J = 9.4 Hz), 130.3 (d, J = 9.3 Hz), 128.4 (d, J = 6.0 Hz), 128.3 (d, J = 6.1 Hz), 127.9, 127.2, 125.0, 108.7, 45.5 (d, J = 4.0 Hz), 37.6 (d, J = 71.3 Hz), 26.6, 26.5. ³¹P NMR (162 MHz, CDCl₃) δ 25.52. MS (ESI, m/z): calculated for C₂₃H₂₁ClNO₂P [M+H]⁺: 410.1071, found: 410.2. Spectral data for this compound is consistent with that previously reported. [S1b]

5-bromo-3-((diphenylphosphoryl)methyl)-1,3-dimethylindolin-2-one (3aj) White solid; ¹H NMR **(400 MHz, CDCl₃)** δ 7.62 – 7.53 (m, 2H), 7.47 – 7.39 (m, 4H), 7.39 – 7.29 (m, 4H), 7.25 – 7.19 (m, 1H), 6.92 (d, *J* = 1.9 Hz, 1H), 6.60 (d, *J* = 8.3 Hz, 1H), 3.18 – 3.01 (m, 4H), 2.76 (dd, *J* = 15.1, 8.1 Hz,


1H), 1.40 (d, J = 1.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 178.8 (d, J = 3.5 Hz), 142.4, 133.6 (d, J = 56.2 Hz), 133.1 (d, J = 2.7 Hz), 132.6 (d, J = 56.3 Hz), 131.6 (d, J = 1.7 Hz), 130.8, 130.4 (d, J = 9.4 Hz), 130.2 (d, J = 9.3 Hz), 128.4 (d, J = 6.3 Hz), 128.3 (d, J = 6.3 Hz), 127.7, 114.6, 109.3, 45.5 (d, J = 4.0 Hz), 37.6 (d, J = 71.2 Hz), 26.5, 26.5 (d, J = 12.1 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 25.54. MS (ESI, m/z): calculated for C₂₃H₂₁BrNO₂P [M+H]⁺: 454.0566, found: 454.5. Spectral data for this compound is consistent with that previously reported. ^[S1b]

3-((diphenylphosphoryl)methyl)-1,3-dimethyl-2-oxoindoline-5-carbonitrile (3ak) White solid; ¹H **NMR (400 MHz, CDCl₃)** δ 7.61 – 7.53 (m, 2H), 7.50 – 7.29 (m, 9H), 6.88 (d, *J* = 1.2 Hz, 1H), 6.79 (d, *J* = 8.2 Hz, 1H), 3.24 – 3.03 (m, 4H), 2.80 (dd, *J* = 15.1, 7.0 Hz, 1H), 1.41 (d, *J* = 1.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl3) δ 179.1 (d, *J* = 2.9 Hz), 147.3, 133.3 (d, *J* = 75.5 Hz), 133.1, 132.3 (d, *J* = 74.9 Hz), 131.8 (d, *J* = 2.7 Hz), 131.7 (d, *J* = 2.8 Hz), 131.7 (d, *J* = 2.8 Hz), 130.2 (d, *J* = 10.1 Hz), 130.1, 128.4 (d, *J* = 9.1 Hz), 128.3 (d, *J* = 9.1 Hz), 127.5, 118.8, 108.3, 104.7, 44.9 (d, *J* = 4.0 Hz), 37.7 (d, *J* = 71.1 Hz), 26.7, 26.2 (d, *J* = 12.5 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 25.25. **MS (ESI, m/z)**: calculated for C₂₄H₂₁N₂O₂P [M+H]⁺: 401.1413, found: 401.0. Spectral data for this compound is consistent with that previously reported. [^{S1b}]

3-((diphenylphosphoryl)methyl)-1,3-dimethyl-5-phenylindolin-2-one (3al) White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.46 (m, 4H), 7.45 – 7.35 (m, 6H), 7.34 – 7.25 (m, 7H), 6.75 (d, J = 8.1 Hz, 1H), 3.20 (dd, J = 15.2, 10.6 Hz, 1H), 3.09 (s, 3H), 2.93 (dd, J = 15.2, 10.2 Hz, 1H), 1.48 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 179.5 (d, J = 3.4 Hz), 142.6, 140.6, 135.3, 133.2 (d, J = 45.8 Hz), 132.2 (d, J = 45.4 Hz), 131.7 (d, J = 2.9 Hz), 131.5 (d, J = 2.6 Hz), 131.5 (d, J = 2.7 Hz), 130.7 (d, J = 9.5 Hz), 130.4 (d, J = 9.4 Hz), 128.5, 128.3 (d, J = 7.4 Hz), 128.2 (d, J = 7.4 Hz), 126.8, 126.7 (d, J = 9.2 Hz), 123.8, 108.1, 45.5 (d, J = 3.8 Hz), 37.5 (d, J = 71.6 Hz), 27.1 (d, J = 12.4 Hz), 26.5. ³¹P NMR (162 MHz, CDCl₃) δ 27.40. MS (ESI, m/z): calculated for C₂₉H₂₆NO₂P [M+H]⁺: 452.1774, found: 452.3. Spectral data for this compound is consistent with that previously reported. [^{S1c]}

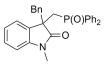
3-((diphenylphosphoryl)methyl)-1,3-dimethyl-5-(trifluoromethyl)indolin-2-one (3am) White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.54 (m, 2H), 7.47 – 7.33 (m, 7H), 7.29 (td, J = 7.3, 2.8 Hz, 2H), 7.08 (s, 1H), 6.82 (d, J = 8.2 Hz, 1H), 3.30 – 3.08 (m, 4H), 2.86 (dd, J = 15.1, 7.8 Hz, 1H), 1.46 (d, J = 1.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 179.46 (d, J = 3.2 Hz), 146.40, 133.59 (d, J = 74.8 Hz), 132.60 (d, J = 74.6 Hz), 131.56 (d, J = 2.5 Hz), 131.47 (d, J = 2.7 Hz), 130.34 (d, J = 9.4 Hz), 130.10 (d, J = 9.3 Hz), 128.39 (d, J = 6.8 Hz), 128.27 (d, J = 7.0 Hz), 125.81 (dd, J = 11.4, J = 3.8 Hz), 124.71 (d, J = 136.6 Hz), 123.20 (d, J = 102.5 Hz), 121.14 (dd, J = 11.4, J = 3.8 Hz), 107.73, 45.22 (d, J = 4.0 Hz), 37.66 (d, J = 71.2 Hz), 26.65, 26.52. ³¹P NMR (162 MHz, CDCl₃) δ 25.36. ¹⁹F NMR (376 MHz, CDCl₃) δ -61.10. MS (ESI, m/z): calculated for C₂₄H₂₁F₃NO₂P [M+H]⁺: 444.1335, found: 444.6. Spectral data for this compound is consistent with that previously reported. ^[S1c]

3-((diphenylphosphoryl)methyl)-1,3,7-trimethylindolin-2-one (3an) Light yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.55 (m, 2H), 7.47 – 7.38 (m, 4H), 7.33 (tdd, J = 7.2, 5.3, 2.4 Hz, 4H), 7.00 (d, J = 7.3 Hz, 1H), 6.88 (d, J = 7.6 Hz, 1H), 6.69 (t, J = 7.6 Hz, 1H), 3.24 (s, 3H), 3.18 – 3.08 (m, 1H), 2.83 (dd, J = 15.2, 11.7 Hz, 1H), 2.45 (s, 3H), 1.40 (d, J = 1.9 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 180.0 (d, J = 3.4 Hz), 140.6, 133.2 (d, J = 197.1 Hz),133.2, 131.8 (d, J = 2.9 Hz), 131.6, 131.2 (d, J = 8.0 Hz), 131.1 (d, J = 2.3 Hz), 130.6 (d, J = 47.3 Hz), 130.6 (d, J = 28.7 Hz), 128.3 (d, J = 11.7 Hz), 127.9 (d, J = 11.8 Hz), 122.6, 122.0, 119.2, 44.7 (d, J = 3.7 Hz), 37.8 (d, J = 71.2 Hz),29.6, 27.4 (d, J = 12.5 Hz), 18.9. ³¹P NMR (162 MHz, CDCl₃) δ 25.82. MS (ESI, m/z): calculated for C₂₄H₂₄NO₂P [M+H]⁺: 390.1617, found: 390.2. Spectral data for this compound is consistent with that previously reported. ^[S1b]

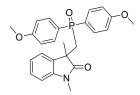
3-((diphenylphosphoryl)methyl)-7-methoxy-1,3-dimethylindolin-2-one (3ao) Light yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.58 (m, 2H), 7.48 (dd, J = 11.5, 7.9 Hz, 2H), 7.44 – 7.27 (m, 6H), 6.84 (dt, J = 6.2, 2.3 Hz, 1H), 6.80 – 6.68 (m, 2H), 3.80 (d, J = 1.9 Hz, 3H), 3.26 (s, 3H), 3.08 (dd, J = 15.2, 10.0 Hz, 1H), 2.83 (dd, J = 15.2, 11.4 Hz, 1H), 1.40 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 179.4 (d, J = 4.2 Hz), 144.9, 133.7 (d, J = 99.1 Hz), 132.6 (d, J = 78.1 Hz), 132.6 (d, J = 75.3 Hz), 131.2 (d, J = 2.7 Hz), 131.1 (d, J = 2.7 Hz), 130.6 (d, J = 9.6 Hz), 130.4 (d, J = 9.1 Hz), 128.2 (d, J = 11.7 Hz), 127.9 (d, J = 11.8 Hz), 122.5, 117.5, 111.8, 55.8, 45.4 (d, J = 3.8 Hz), 37.6 (d, J = 71.2 Hz), 29.5, 26.9 (d, J = 12.0 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 25.89. MS (ESI, m/z): calculated for C₂₄H₂₄NO₃P [M+H]⁺: 406.1567, found: 406.3. Spectral data for this compound is consistent with that previously reported. ^[S1b]

3-((diphenylphosphoryl)methyl)-7-fluoro-1,3-dimethylindolin-2-one (3ap) Light yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.53 (m, 2H), 7.53 – 7.38 (m, 4H), 7.38 – 7.27 (m, 4H), 6.91 (d, J = 7.4 Hz, 1H), 6.86 (dd, J = 11.5, 8.4 Hz, 1H), 6.68 (m, 1H), 3.18 (d, J = 2.6 Hz, 3H), 3.09 (dd, J = 15.2, 10.1 Hz, 1H), 2.81 (dd, J = 15.2, 11.0 Hz, 1H), 1.40 (d, J = 1.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 178.9 (d, J = 3.7 Hz), 147.5 (d, J = 242.9 Hz), 134.2 (d, J = 5.9 Hz), 134.1 (d, J = 18.2 Hz), 133.1 (d, J = 12.0 Hz), 132.2, 131.4 (d, J = 2.7 Hz), 131.3 (d, J = 2.7 Hz), 130.7 (d, J = 9.5 Hz), 130.4 (d, J = 9.2 Hz), 129.6 (d, J = 8.2 Hz), 128.3 (d, J = 11.7 Hz), 128.1 (d, J = 11.8 Hz), 122.5 (d, J = 6.3 Hz), 120.6 (d, J = 3.2 Hz), 115.7 (d, J = 19.1 Hz), 45.6 (dd, J = 3.7, 2.2 Hz), 37.7 (d, J = 71.0 Hz), 28.7 (d, J = 5.9 Hz), 27.1 (d, J = 12.1 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 25.58. ¹⁹F NMR (376 MHz, CDCl₃) δ - 137.29. MS (ESI, m/z): calculated for C₂₃H₂₁FNO₂P [M+H]⁺: 394.1367, found: 394.4. Spectral data for this compound is consistent with that previously reported. ^[S1b]

P(O)Ph₂


7-chloro-3-((diphenylphosphoryl)methyl)-1,3-dimethylindolin-2-one (3aq) Light yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.59 (dd, J = 11.3, 7.4 Hz, 2H), 7.47 – 7.39 (m, 4H), 7.33 (m, 4H), 7.06 (d, J = 7.8 Hz, 2H), 6.69 (m, 1H), 3.31 (s, 3H), 3.10 (dd, J = 15.2, 9.7 Hz, 1H), 2.80 (dd, J = 15.2, 11.6 Hz, 1H), 1.39 (d, J = 1.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 179.6 (d, J = 3.4 Hz), 138.8, 134.0 (d, J = 2.8 Hz), 133.5 (d, J = 99.5 Hz), 132.3 (d, J = 98.7 Hz), 131.5 (d, J = 2.7 Hz), 131.3 (d, J = 2.7 Hz), 130.7 (d, J = 9.5 Hz), 130.4 (d, J = 9.1 Hz), 130.2, 128.4 (d, J = 11.7 Hz), 128.1 (d, J = 11.8 Hz), 123.3, 122.8, 115.1, 45.1 (d, J = 3.8 Hz), 37.7 (d, J = 70.8 Hz), 29.6, 27.3 (d, J = 12.1 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 25.65. MS (ESI, m/z): calculated for C₂₃H₂₁ClNO₂P [M+H]⁺: 410.1071, found: 410.2. Spectral data for this compound is consistent with that previously reported. ^[S1b]

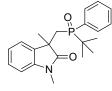
3-((diphenylphosphoryl)methyl)-1,3-dimethyl-1H-benzo[g]indol-2(3H)-one (3ar) Gray solid; ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, J = 8.1 Hz, 1H), 7.50 – 7.40 (m, 3H), 7.33 (m, 5H), 7.27 – 7.17 (m, 4H), 7.09 (td, J = 7.6, 2.7 Hz, 2H), 6.79 (d, J = 7.4 Hz, 1H), 3.83 (dd, J = 15.0, 9.9 Hz, 1H), 3.34 (s, 3H), 2.99 (dd, J = 15.0, 11.1 Hz, 1H), 1.74 (d, J = 2.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.2 (d, J = 2.2 Hz), 136.5, 135.3 (d, J = 2.4 Hz), 133.7 (d, J = 58.2 Hz), 133.0, 132.7 (d, J = 57.5 Hz), 131.0 (d, J = 2.6 Hz), 130.9 (d, J = 3.5 Hz), 130.8, 130.5 (d, J = 9.2 Hz), 128.0 (d, J = 11.8 Hz), 127.6 (d, J = 11.7 Hz), 126.3 (d, J = 4.2 Hz), 126.1, 124.1, 122.2, 119.1, 108.4, 45.2 (d, J = 3.5 Hz), 42.3 (d, J = 69.8 Hz), 34.8 (d, J = 13.6 Hz), 29.8. ³¹P NMR (162 MHz, CDCl₃) δ 27.30. MS (ESI, m/z): calculated for C₂₇H₂₄NO₂P [M+H]⁺: 426.1617, found: 426.4. Spectral data for this compound is consistent with that previously reported. [^{S1c]}


1-((diphenylphosphoryl)methyl)-1-methyl-5,6-dihydro-1H-pyrrolo[3,2,1-ij]quinolin-2(4H)-one (3as) Light yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.65 – 7.54 (m, 2H), 7.54 – 7.45 (m, 2H), 7.45 – 7.27 (m, 6H), 7.02 (d, *J* = 7.4 Hz, 1H), 6.89 (d, *J* = 7.7 Hz, 1H), 6.69 (t, *J* = 7.6 Hz, 1H), 3.68 – 3.52 (m, 1H), 3.34 (m, 1H), 3.07 (dd, *J* = 15.2, 10.1 Hz, 1H), 2.85 (dd, *J* = 15.2, 11.1 Hz, 1H), 2.65 (t, *J* = 7.4 Hz, 2H), 1.97 – 1.77 (m, 2H), 1.42 (d, *J* = 1.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 178.2 (d, *J* = 4.6 Hz), 138.6, 133.9 (d, *J* = 71.6 Hz), 132.9 (d, *J* = 70.9 Hz), 131.3 (d, *J* = 2.8 Hz), 131.2 (d, *J* = 2.6 Hz), 130.7 (d, *J* = 9.5 Hz), 130.5 (d, *J* = 9.1 Hz), 130.0 (d, *J* = 2.9 Hz), 128.3 (d, *J* = 11.7 Hz), 128.1 (d, *J* = 11.8 Hz), 126.6, 122.7, 121.6, 119.7, 46.6 (d, *J* = 3.8 Hz), 38.8, 37.4 (d, *J* = 71.5 Hz), 26.6 (d, *J* = 11.8 Hz), 24.4, 20.8. ³¹P NMR (162 MHz, CDCl₃) δ 26.11. MS (ESI, m/z): calculated for C₂₅H₂₄NO₂P [M+H]⁺: 402.1617, found: 402.4. Spectral data for this compound is consistent with that previously reported. ^[S1c]

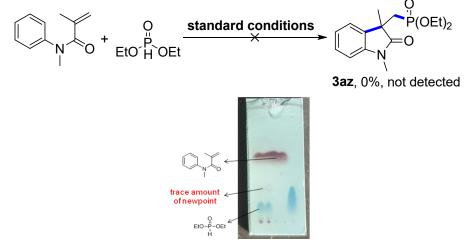
3-benzyl-3-((diphenylphosphoryl)methyl)-1-methylindolin-2-one (3at) Light yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.57 (m, 2H), 7.49 – 7.39 (m, 3H), 7.39 – 7.32 (m, 3H), 7.27 (m, 2H), 7.13 (d, *J* = 7.4 Hz, 1H), 7.10 – 7.04 (m, 1H), 7.04 – 6.92 (m, 3H), 6.78 (td, *J* = 7.6, 0.7 Hz, 1H), 6.76 – 6.66 (m, 2H), 6.36 (d, *J* = 7.8 Hz, 1H), 3.28 – 2.93 (m, 4H), 2.68 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 177.8 (d, *J* = 3.7 Hz), 143.4, 134.5 (d, *J* = 1.5 Hz), 133.8 (d, *J* = 99.4 Hz), 132.8 (d, *J* = 98.6 Hz), 131.2

(d, J = 2.7 Hz), 130.8 (d, J = 9.5 Hz), 130.5 (d, J = 9.1 Hz), 129.9, 128.4 (d, J = 4.6 Hz), 128.1 (d, J = 25.7 Hz), 127.9 (d, J = 4.4 Hz), 127.2, 126.5, 125.8, 121.6, 107.4, 50.9 (d, J = 3.7 Hz), 46.2 (d, J = 12.2 Hz), 36.5 (d, J = 71.2 Hz), 25.8. ³¹P NMR (162 MHz, CDCl₃) δ 25.94. MS (ESI, m/z): calculated for C₂₉H₂₆NO₂P [M+H]⁺: 452.1774, found: 452.3. Spectral data for this compound is consistent with that previously reported. ^[S1a]

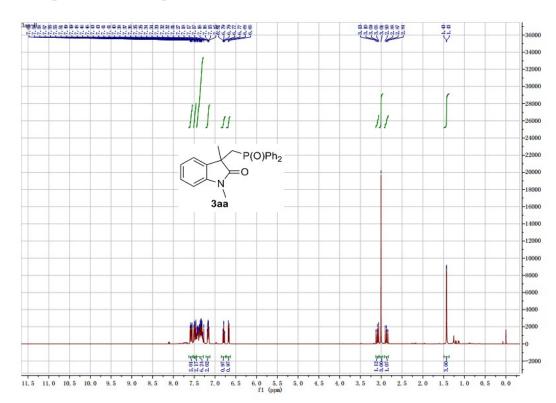
3-((diphenylphosphoryl)methyl)-1-methyl-3-phenylindolin-2-one (3au) Light yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.52 (m, 2H), 7.51 – 7.45 (m, 2H), 7.42 – 7.27 (m, 8H), 7.26 – 7.13 (m, 4H), 7.04 (d, J = 7.4 Hz, 1H), 6.81 – 6.65 (m, 2H), 3.71 (dd, J = 14.9, 10.9 Hz, 1H), 3.24 (dd, J = 14.9, 10.1 Hz, 1H), 3.02 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 177.5 (d, J = 2.2 Hz), 144.2, 140.6 (d, J = 12.3 Hz), 133.8 (d, J = 31.2 Hz), 132.9 (d, J = 30.1 Hz), 131.3 (d, J = 2.7 Hz), 131.0 (d, J = 2.7 Hz), 130.7 (d, J = 9.4 Hz), 130.4 (d, J = 9.1 Hz), 129.0 (d, J = 3.2 Hz), 128.5, 128.3 (d, J = 7.9 Hz), 128.2, 128.1 (d, J = 6.7 Hz), 127.1 (d, J = 54.9 Hz), 126.4, 121.8, 108.1, 52.6 (d, J = 3.0 Hz), 38.5 (d, J = 70.1 Hz), 26.6. ³¹P NMR (162 MHz, CDCl₃) δ 24.91. MS (ESI, m/z): calculated for C₂₈H₂₄NO₂P [M+H]⁺:438.1617, found: 438.5. Spectral data for this compound is consistent with that previously reported. ^[S1a]


3-((bis(4-methoxyphenyl)phosphoryl)methyl)-1,3-dimethylindolin-2-one (3av) White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.54 – 7.44 (m, 2H), 7.41 – 7.30 (m, 2H), 7.26 – 7.15 (m, 2H), 6.84 (dd, *J* = 25.2, 7.3 Hz, 5H), 6.67 (d, *J* = 7.6 Hz, 1H), 3.82 (s, 3H), 3.79 (s, 3H), 3.16 – 2.91 (m, 4H), 2.86 – 2.72 (m, 1H), 1.41 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 179.5, 161.8 (d, *J* = 2.9 Hz), 142.8, 132.6 (d, *J* = 10.9 Hz), 132.3 (d, *J* = 10.5 Hz), 131.6, 127.8, 124.8, 122.1, 113.9 (d, *J* = 12.7 Hz), 113.6 (d, *J* = 12.8 Hz), 107.7, 55.2, 45.5 (d, *J* = 3.7 Hz), 37.6 (d, *J* = 72.0 Hz), 27.0 (d, *J* = 12.3 Hz), 26.3. ³¹P NMR (162 MHz, CDCl₃) δ 26.42. MS (ESI, m/z): calculated for C₂₅H₂₆NO₄P [M+H]⁺:436.1672, found: 436.3. Spectral data for this compound is consistent with that previously reported.^[S1i]

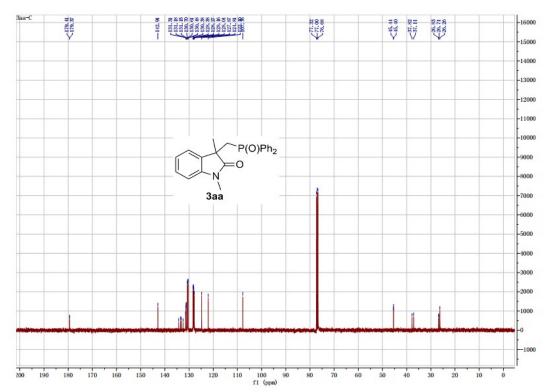
3-((bis(4-(trifluoromethyl)phenyl)phosphoryl)methyl)-1,3-dimethylindolin-2-one (3aw) White solid; M.p. = 181-183 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.65 (dd, J = 21.2, 9.8 Hz, 8H), 7.18 (t, J = 7.6 Hz, 1H), 7.02 (d, J = 7.3 Hz, 1H), 6.74 (t, J = 7.5 Hz, 1H), 6.68 (d, J = 7.8 Hz, 1H), 3.21 (dd, J = 15.1, 10.4 Hz, 1H), 3.03 (s, 3H), 2.90 (dd, J = 15.1, 10.8 Hz, 1H), 1.46 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 178.9 (d, J = 3.1 Hz), 142.9, 137.2 (d, J = 96.8 Hz), 136.8, 135.9, 133.6 (d, J = 18.2 Hz), 133.5 (d, J = 18.4 Hz), 133.3 (d, J = 18.4 Hz), 133.2 (d, J = 11.9 Hz), 125.3 (d, J = 11.9 Hz), 125.2 (d, J = 24.6 Hz), 125.1 (d, J = 11.9 Hz), 125.1 (d, J = 11.9 Hz), 124.7 (d, J = 5.4 Hz), 124.4, 122.1, 122.0 (d, J

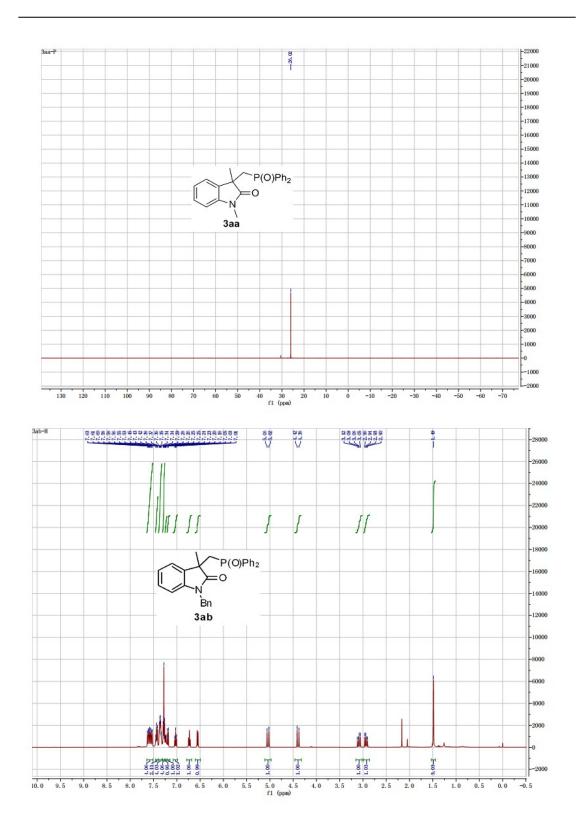

= 6.1 Hz), 108.0, 45.2 (d, J = 3.8 Hz), 37.5 (d, J = 72.2 Hz), 27.1 (d, J = 13.1 Hz), 26.3; ³¹P NMR (162 MHz, CDCl₃) δ 24.16, ¹⁹F NMR (376 MHz, CDCl₃) δ -63.26, -63.31. HRMS (ESI, m/z): calculated for C₂₅H₂₀F₆NO₂P (M+Na)⁺, 534.1028; found, 534.1030.

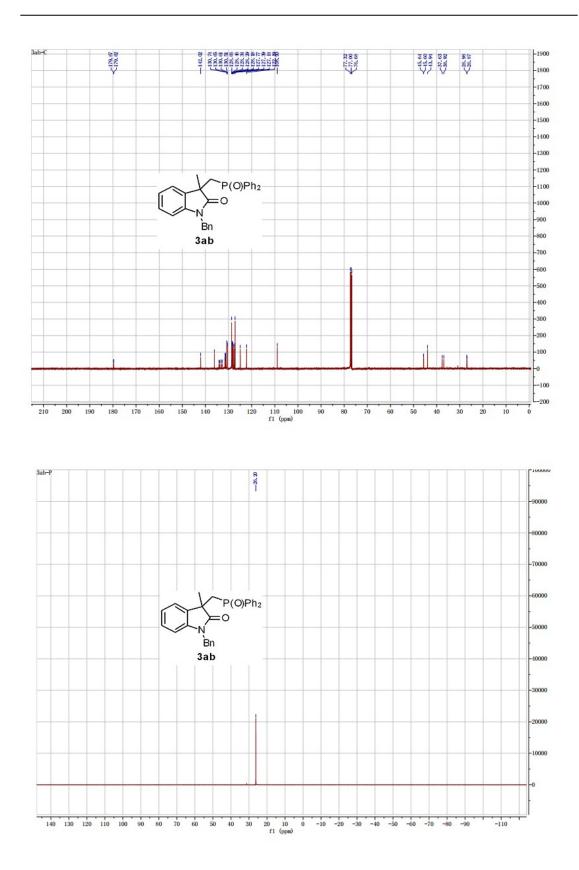
3-((bis(2-methoxyphenyl)phosphoryl)methyl)-1,3-dimethylindolin-2-one (3ax) White solid; M.p. = 151-152 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.29 (m, 3H), 7.23 (dd, *J* = 14.1, 6.9 Hz, 2H), 7.09 (t, *J* = 7.6 Hz, 1H), 6.90 – 6.77 (m, 4H), 6.73 – 6.61 (m, 2H), 3.76 (s, 3H), 3.66 (s, 3H), 3.30 – 3.14 (m, 2H), 3.08 (s, 3H), 1.44 (s, 3H), ¹³C NMR (101 MHz, CDCl₃) δ 179.9 (d, *J* = 6.3 Hz), 160.2 (d, *J* = 91.0 Hz), 142.9, 133.7 (d, *J* = 6.7 Hz), 133.5 (d, *J* = 7.4 Hz), 133.1 (d, *J* = 2.0 Hz), 132.9 (d, *J* = 1.9 Hz), 132.3 (d, *J* = 2.9 Hz), 127.4, 124.9, 122.0 (d, *J* = 92.6 Hz), 121.0 (d, *J* = 93.0 Hz), 121.7, 120.5 (d, *J* = 60.0 Hz), 120.4 (d, *J* = 60.3 Hz), 110.6 (d, *J* = 3.8 Hz), 110.5 (d, *J* = 3.9 Hz), 107.4, 55.3 (d, *J* = 8.0 Hz), 45.7 (d, *J* = 4.1 Hz), 36.0 (d, *J* = 75.1 Hz), 26.3, 26.2 (d, *J* = 11.6 Hz), ³¹P NMR (162 MHz, CDCl₃) δ 26.62. HRMS (ESI, m/z): calculated for C₂₅H₂₆NO₄P (M+Na)⁺, 458.1492; found, 458.1493.

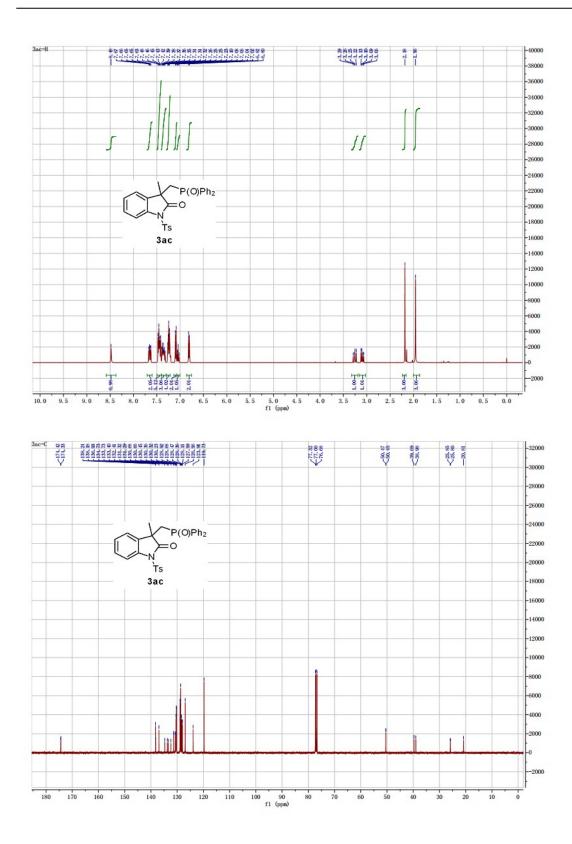


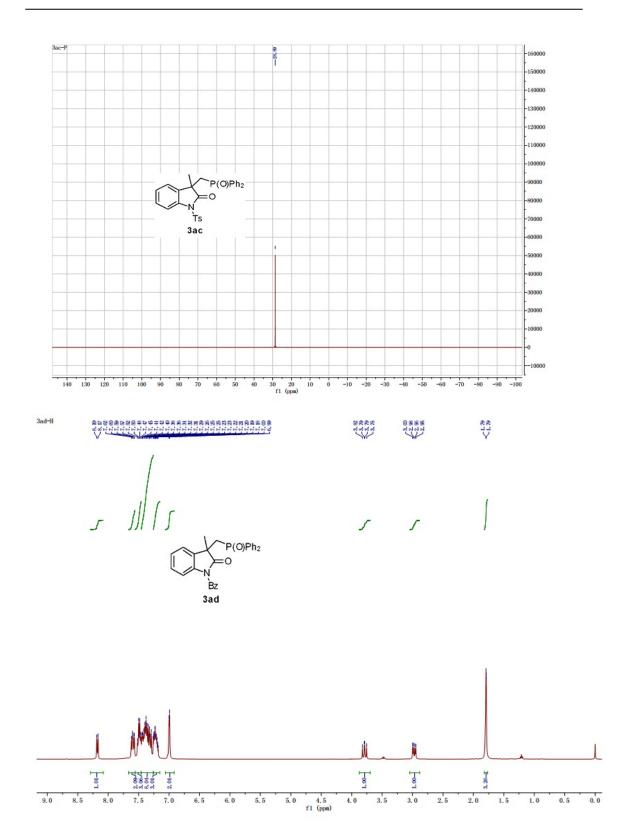
3-((tert-butyl(phenyl)phosphoryl)methyl)-1,3-dimethylindolin-2-one (3ay) Thick solid; M.p. = 184-185 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.41 (dd, J = 7.5, 0.7 Hz, 1H), 7.38 – 7.32 (m, 3H), 7.28 – 7.22 (m, 2H), 7.06 (td, J = 7.7, 1.2 Hz, 1H), 6.82 (td, J = 7.6, 0.9 Hz, 1H), 6.46 (d, J = 7.7 Hz, 1H), 2.85 (s, 3H), 2.66 – 2.58 (m, 2H), 1.54 (d, J = 0.6 Hz, 3H), 1.08 (d, J = 14.5 Hz, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 179.8 (d, J = 6.1 Hz), 142.0, 131.8, 131.7, 131.1 (d, J = 3.2 Hz), 130.8 (d, J = 2.7 Hz), 129.3 (d, J = 86.9 Hz), 127.6, 127.4, 127.3, 126.0, 121.9, 107.2, 45.3 (d, J = 4.6 Hz), 33.3 (d, J = 69.7 Hz), 30.3 (d, J = 62.3 Hz), 26.4 (d, J = 7.8 Hz), 25.9, 24.1. ³¹P NMR (162 MHz, CDCl₃) δ 43.90. HRMS (ESI, m/z): calculated for C₂₁H₂₆NO₂P (M+Na)⁺, 378.1593; found, 378.1590.

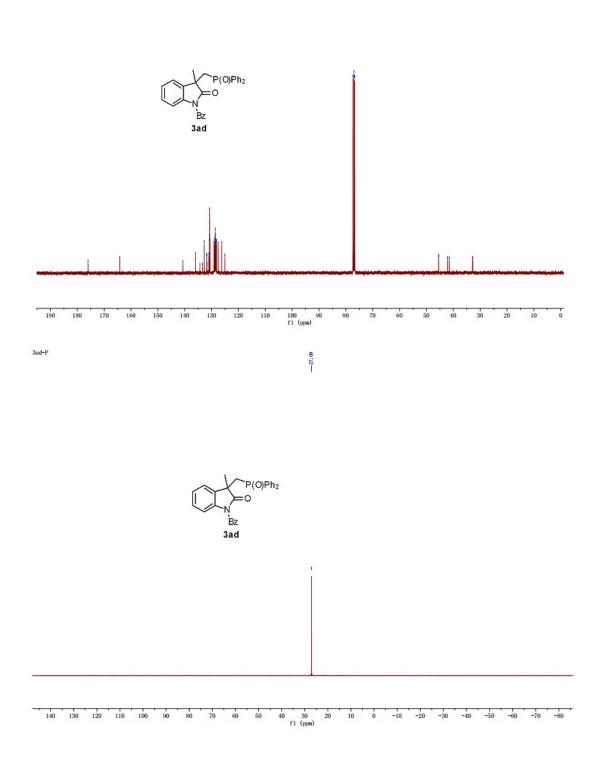


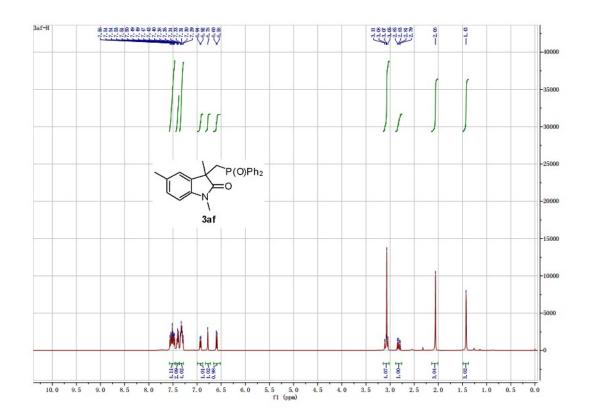

Diethyl phosphate instead of diphenylphosphine oxide under the optimal conditions, and the expected product **3az** was not detected. trace amount of newpoint can be observed which could not separated by

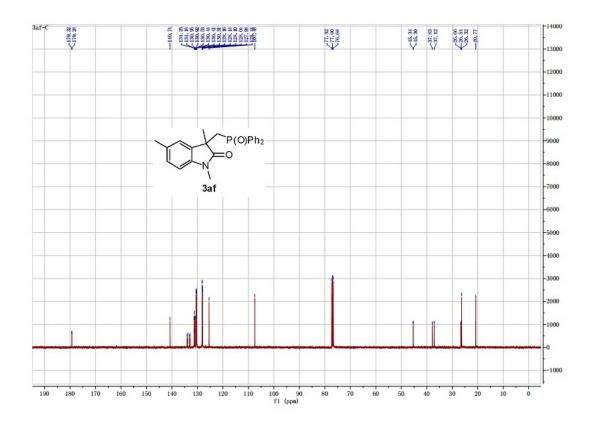

column chromatography. It may be that diethyl phosphite has stronger nucleophilicity and is difficult to form stable intermediate phosphorus radicals through a HAT process.

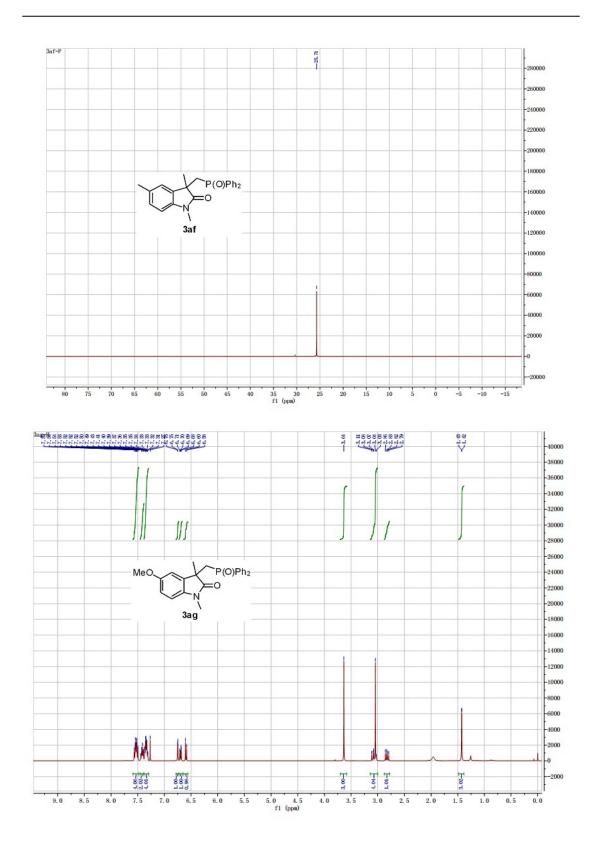


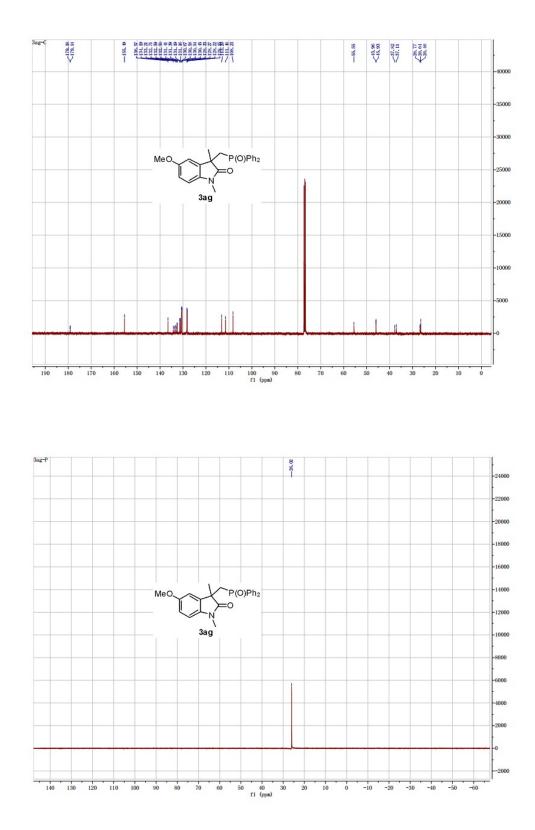

7. Copies of NMR spectra

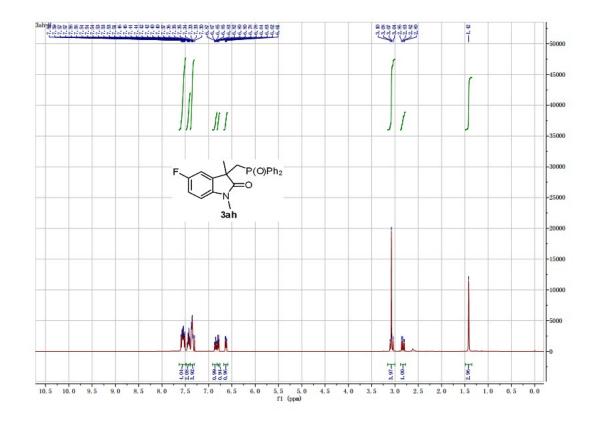


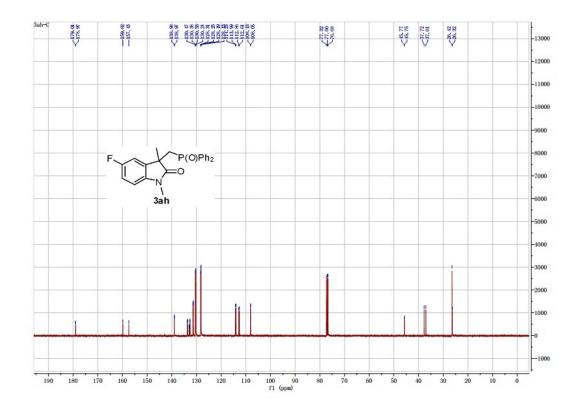


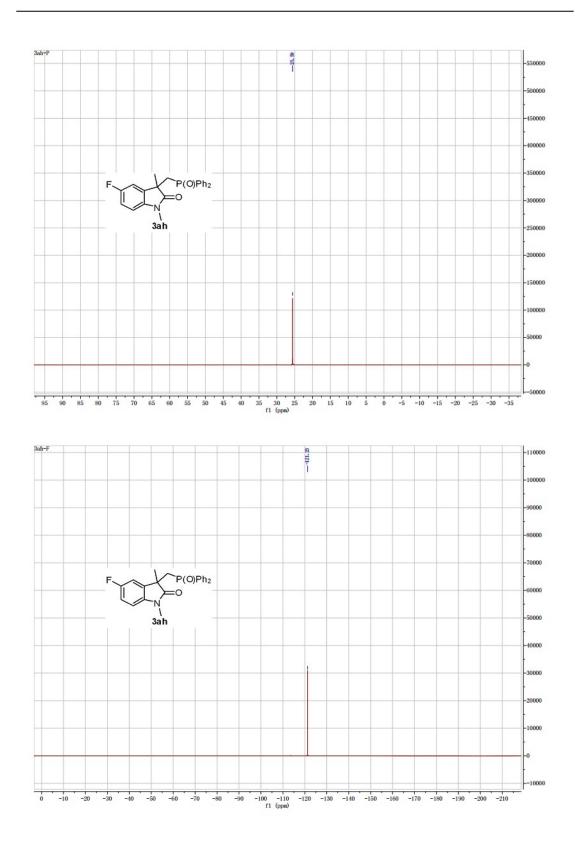


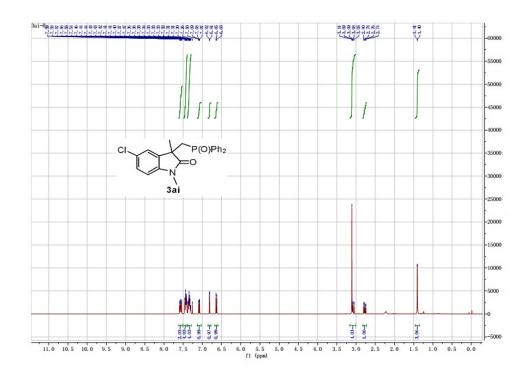


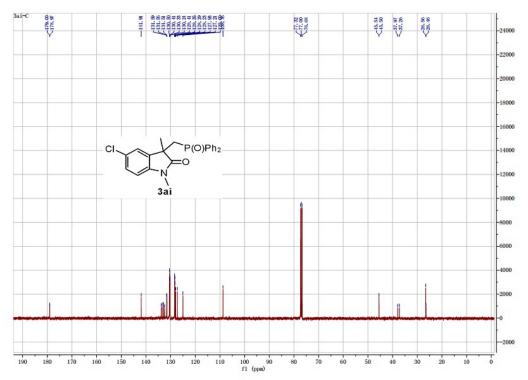


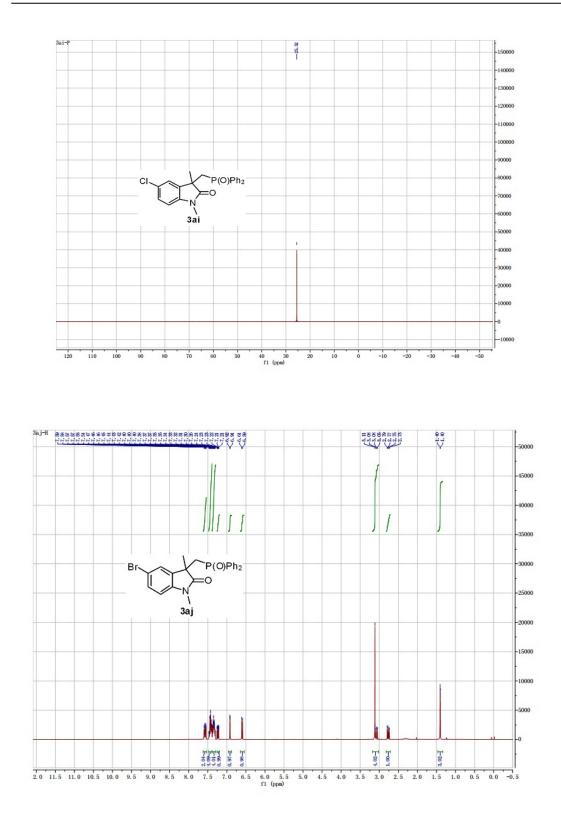


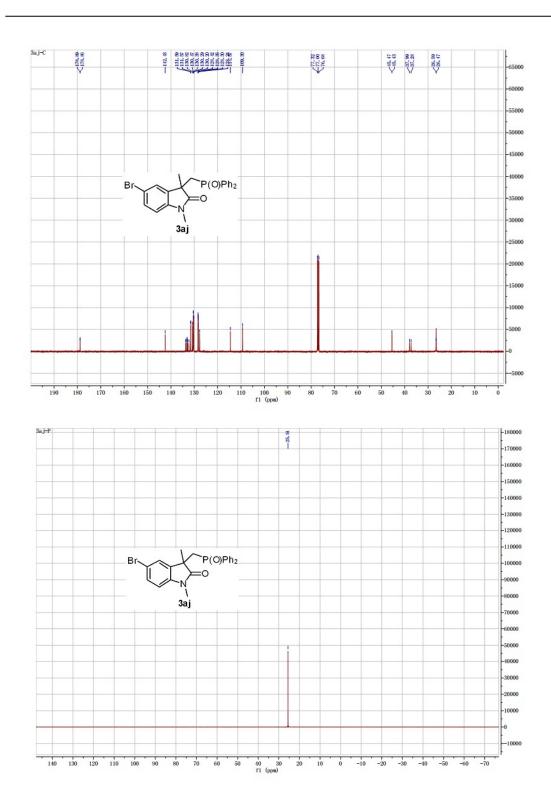


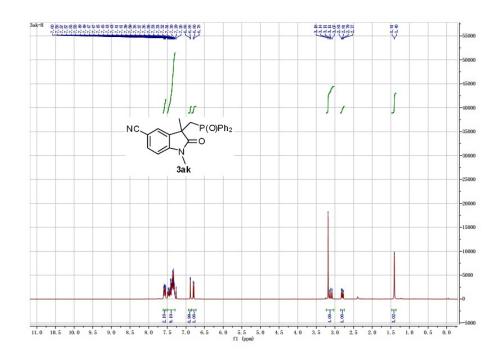


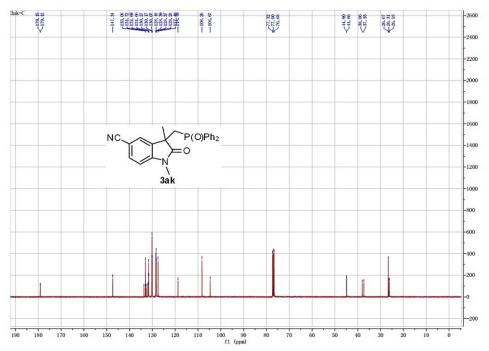


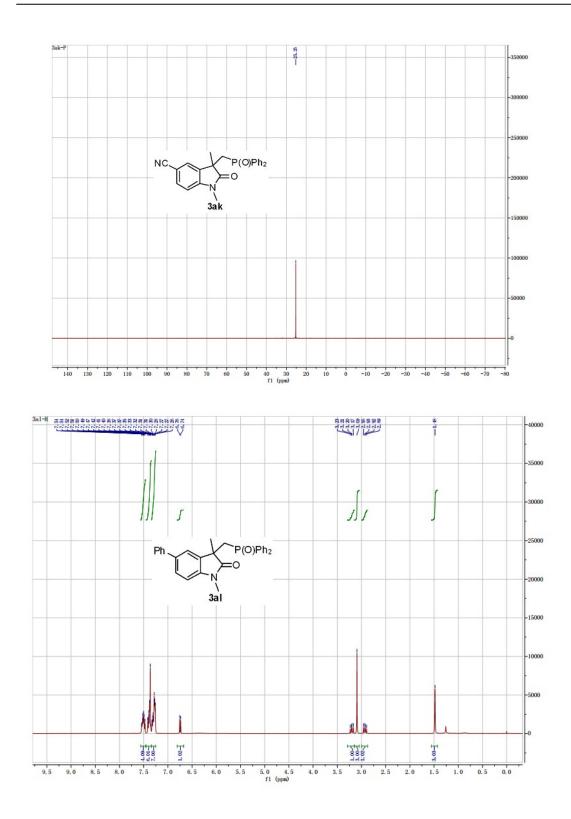


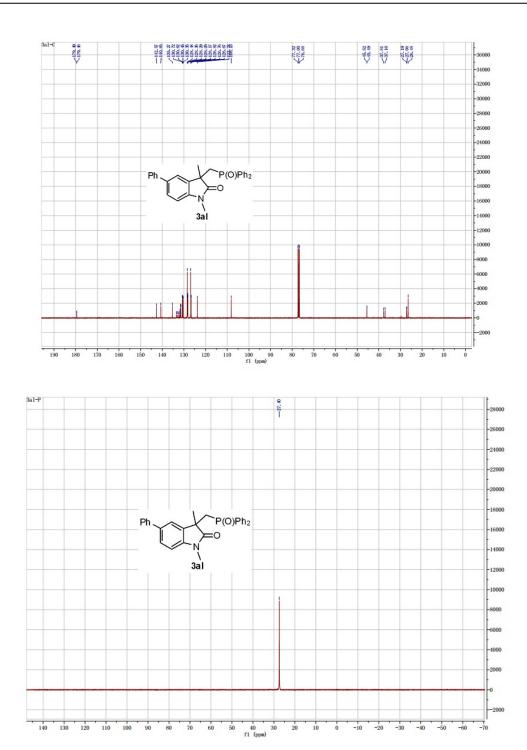


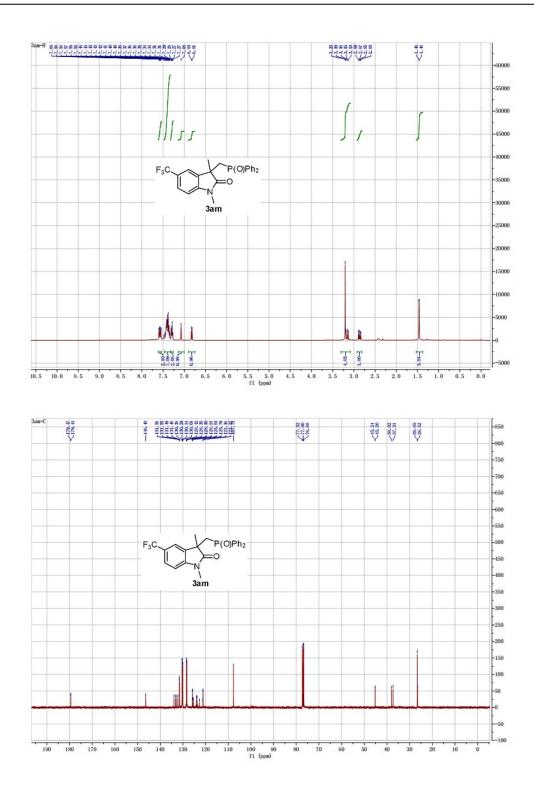


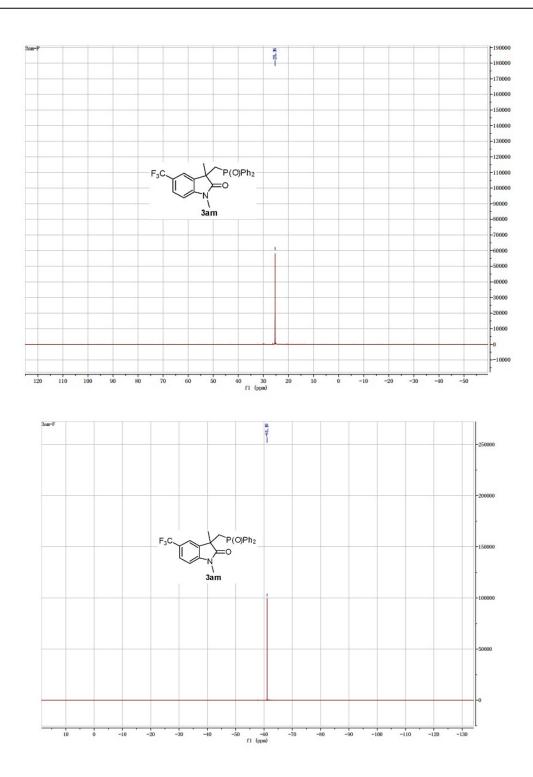


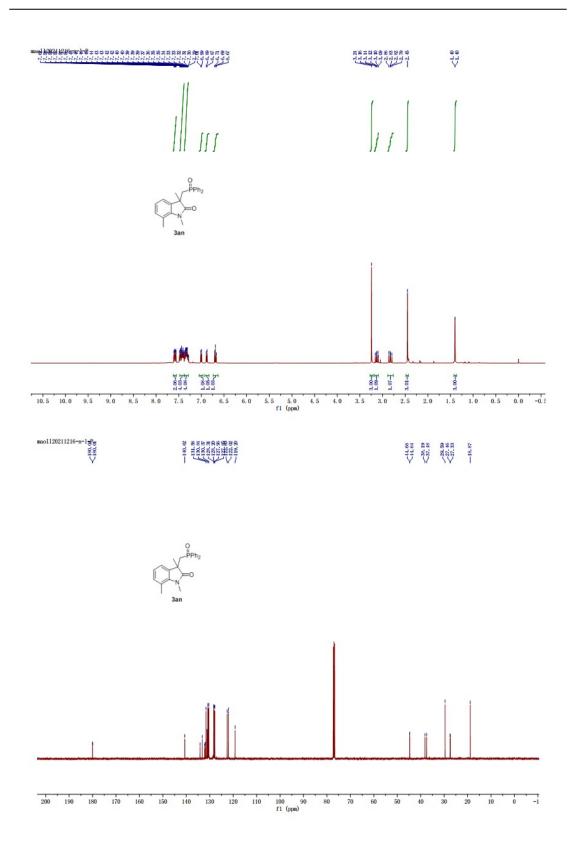


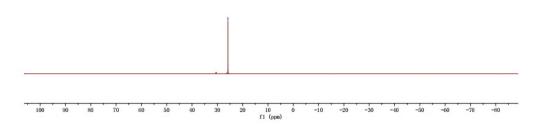


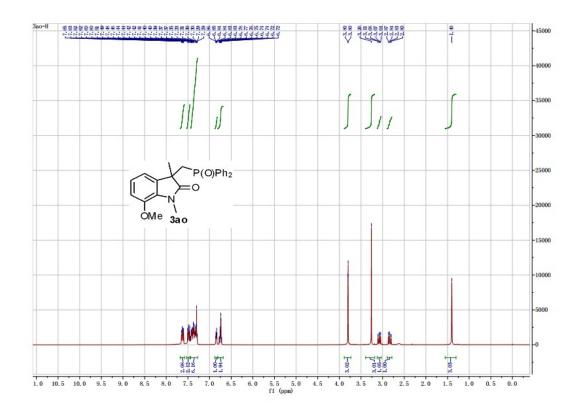


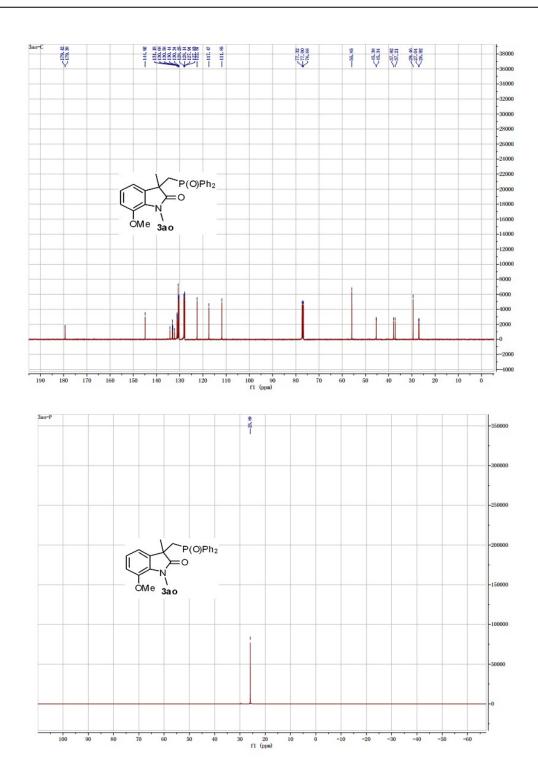


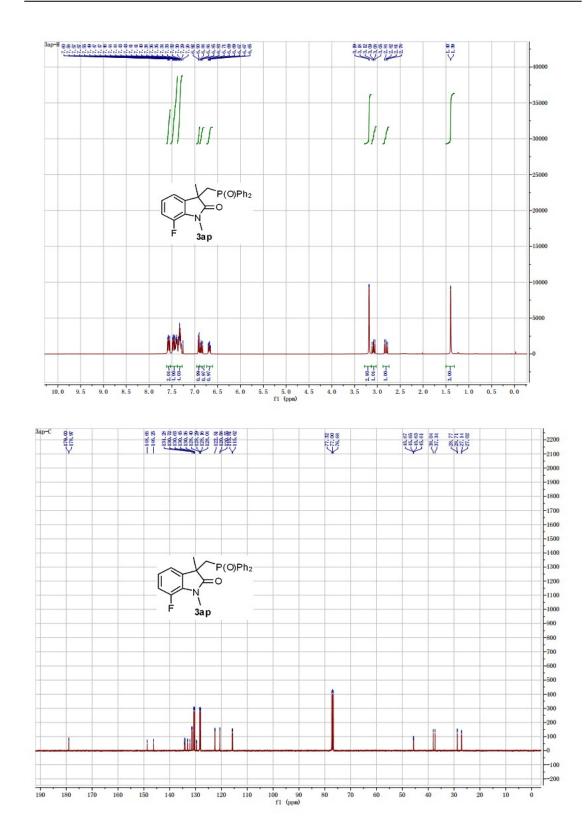


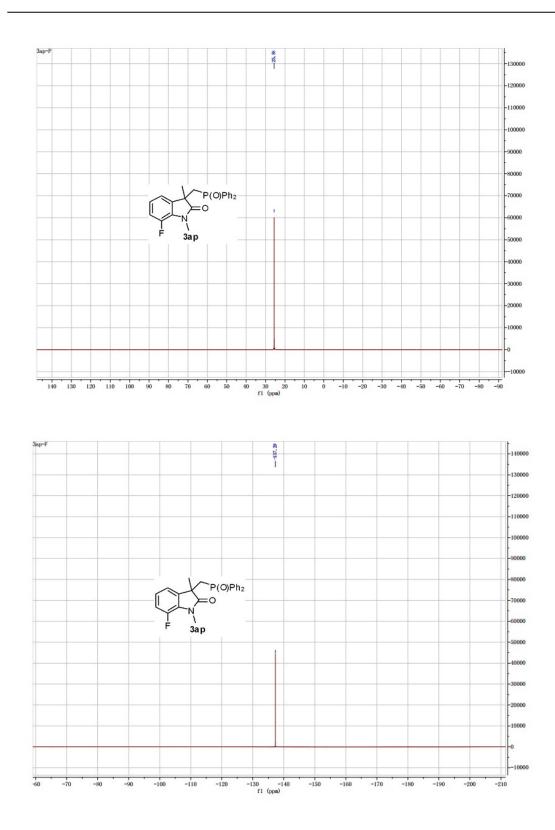


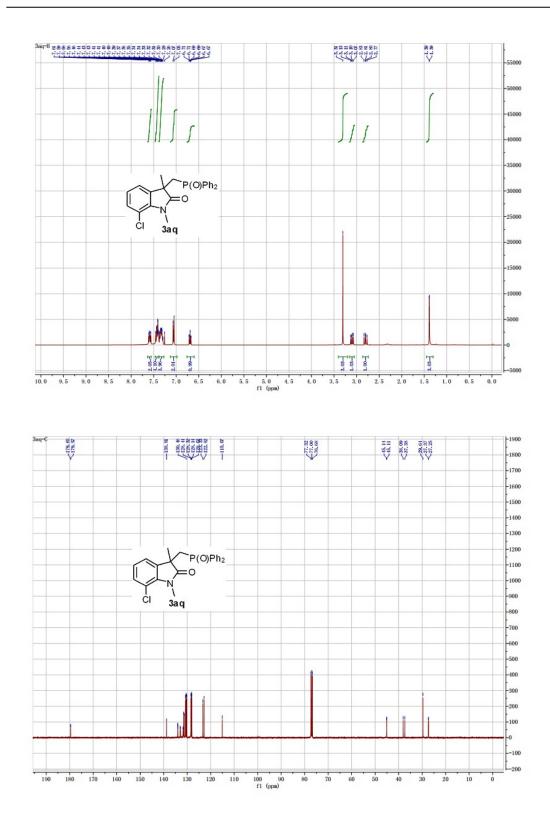


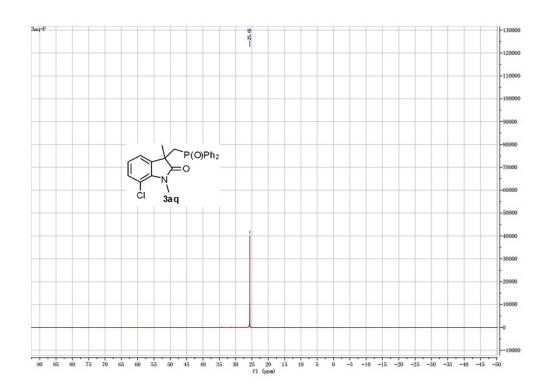


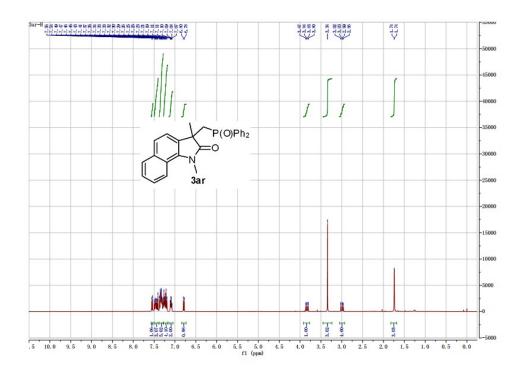


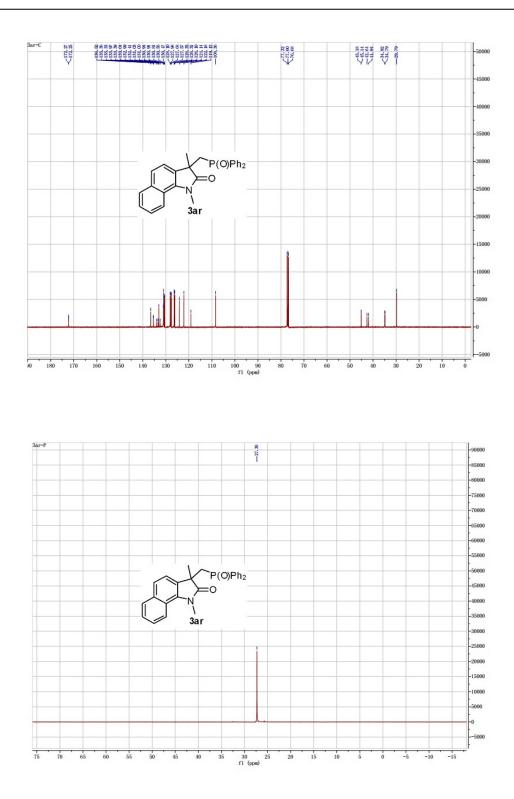


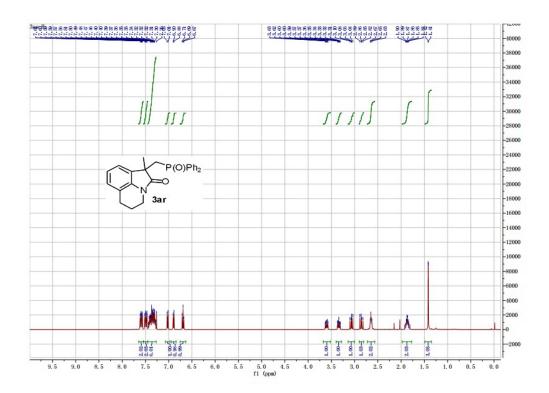


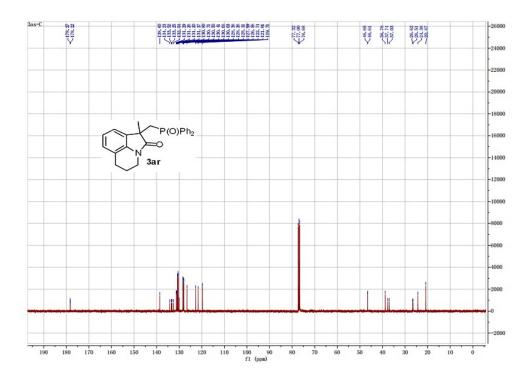


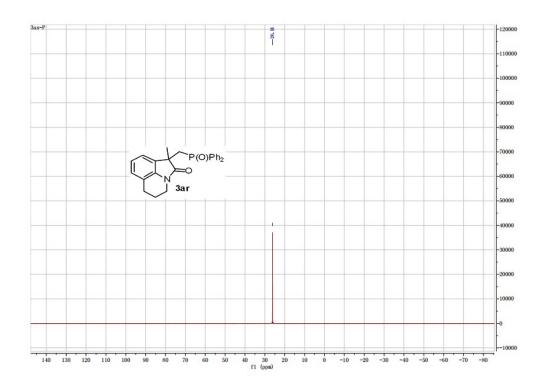


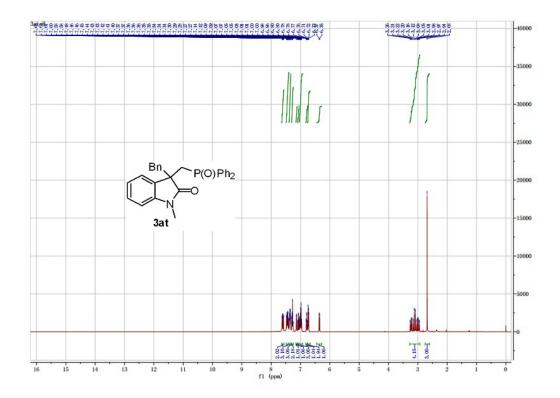


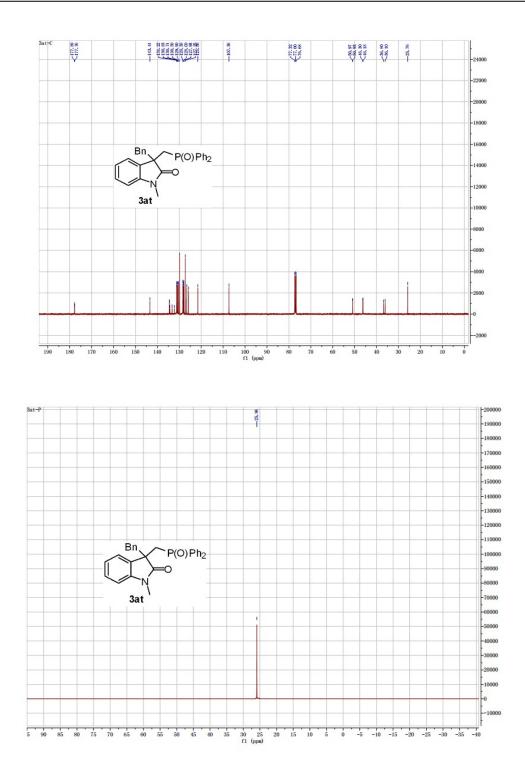


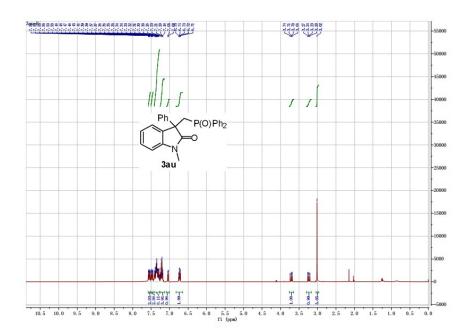


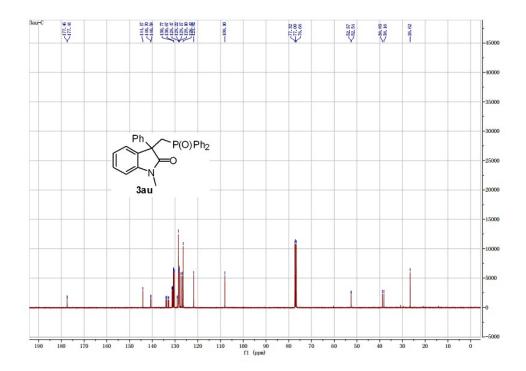


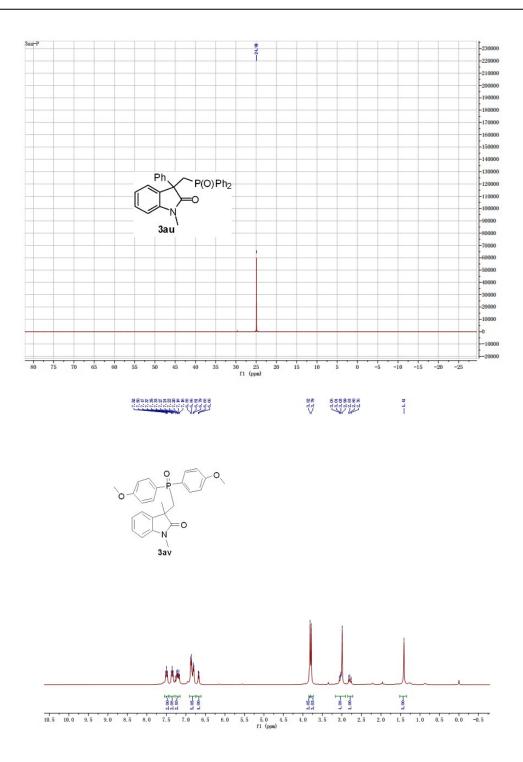


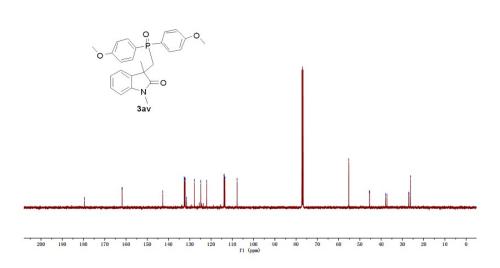


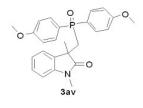


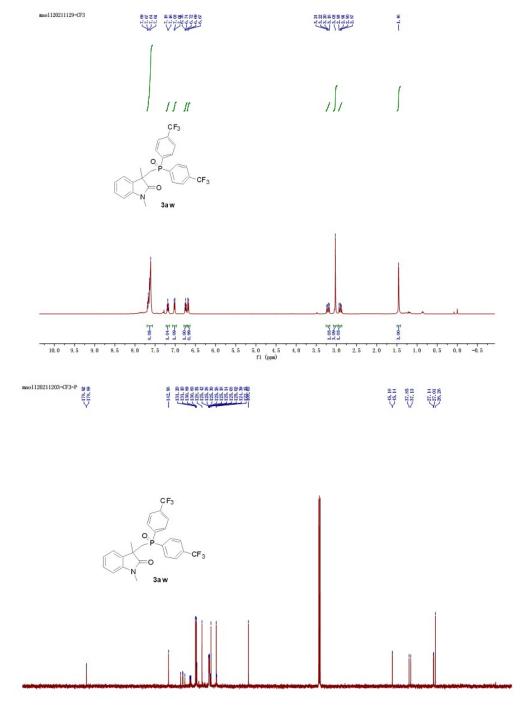




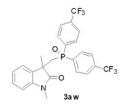


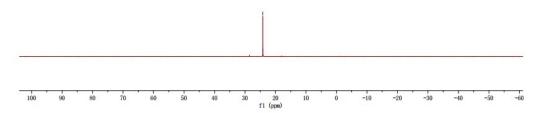




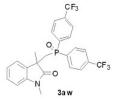


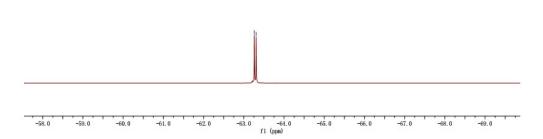
-26.42

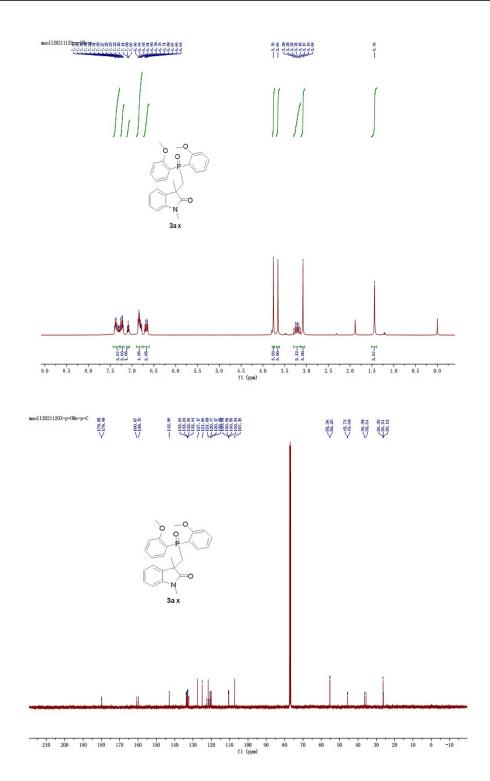



56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 -2 f1 (ppa)

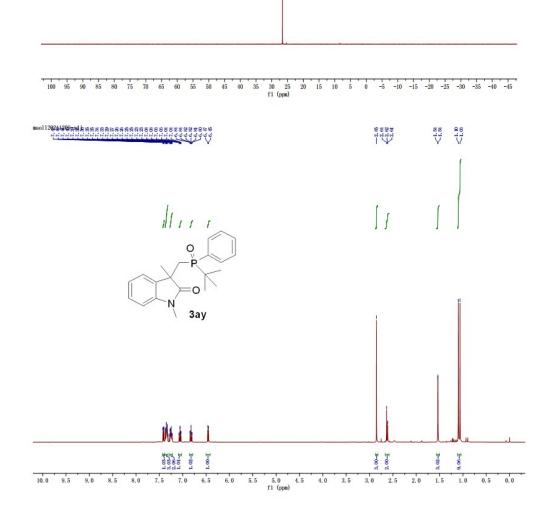
200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

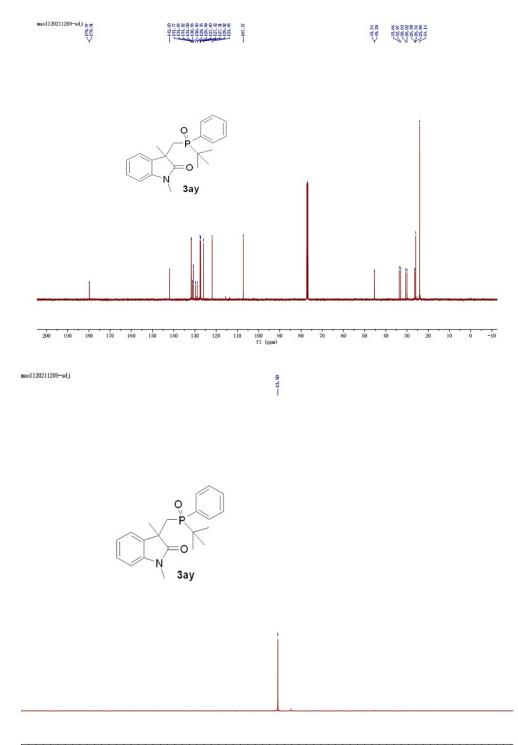

mao1120211129-CF3



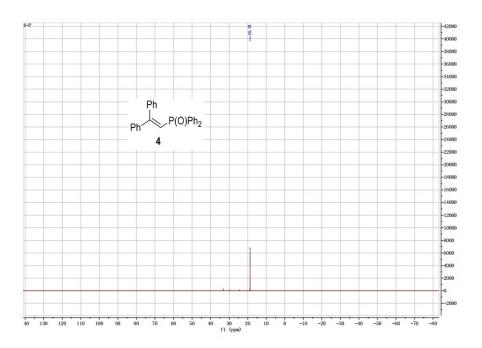


mao1120211129-CF3


C61.35






mao1120211129-o-OMe-p

78 76 74 72 70 68 66 64 62 60 58 56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 f1 (ppm)

