Supporting Information

A Transtion-Metal Free Three-Component Coupling Approach to
\section*{Quinap Derivates}
Xin-Wei Guo, ${ }^{b}$ Li-Xia Quan, ${ }^{*, a}$ Xian-Hong Zhu, ${ }^{a}$ Fa-Yun Chen, ${ }^{a}$ An-Xi Zhou, ${ }^{a}$ Liu-Liang Mao, ${ }^{*, a}$ JiePing Wan ${ }^{c}$ and Shang-Dong Yang ${ }^{b}$
${ }^{a}$ College of Chemistry and Environment Science, Shangrao Normal University, Shangrao, Jiangxi 334001, China
${ }^{b}$ State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
${ }^{c}$ College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China

Contents:

\qquad1. General information1
2. Preparation of starting material 1
3. Optimization of Reaction Condition 6
4. The General Procedures 8
5. Mechanism explaining the regioselectivity 9
6. Characterization of product 10
7. References 20
8. Copies of NMR spectra 20

1. General Information

Commercial reagents were purchased from commercial suppliers and used without further purification. All dry solvents were treated according to standard procedures prior to use unless otherwise noted. Thin-layer chromatography (TLC) was performed using 60 mesh silica gel plates visualized with short-wavelength UV light (254 nm). Column chromatography was performed using silica gel (200-300 mesh). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker instrument $400\left(400 \mathrm{MHz}\right.$ for ${ }^{1} \mathrm{H}, 100 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$ and 162 MHz for ${ }^{31} \mathrm{P}$) in CDCl_{3} or Bruker instrument 300 (300 MHz for ${ }^{1} \mathrm{H}, 75 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$ and and 121 MHz for ${ }^{31} \mathrm{P}$) using CDCl_{3} as the solvent and tetramethyl silane (TMS) as internal reference. TMS Chemical shifts (δ) were measured in ppm relative to TMS $\delta=0$ for ${ }^{1} \mathrm{H}$, or to chloroform $\delta=77.0$ for ${ }^{13} \mathrm{C}$ as internal standard. The following abbreviations (or combinations there of) were used to explain multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad signals. The ${ }^{1} \mathrm{H}$ NMR spectra are reported as follows: chemical shift δ in ppm relative to TMS ($\delta=0 \mathrm{ppm}$), multiplicity, coupling constant J, are reported in hertz, number of protons. ${ }^{13} \mathrm{C}$ NMR spectra are reported as follows: chemical shift δ in ppm relative to $\mathrm{CDCl}_{3}(\delta=77.0 \mathrm{ppm})$, multiplicity, coupling constant J, are reported in hertz. Mass spectroscopy data of the products were collected on a Bruker esquire 6000 instrument using ESI ionization.

2. Preparation of starting materials

Substituted aniline $\mathbf{1 a - 1 k}$, were purchased from commercial source, and used without further purification.

Synthesis of substituted Alkyne

Substituted alkyne 2a-2e and $\mathbf{2 i} \mathbf{i} \mathbf{2 m}$ were purchased from commercial source, and used without further purification. $\mathbf{2 f}{ }^{[1][2]}, \mathbf{2} \mathbf{g}^{[3]}$ was prepared according to corresponding literatures. Procedure to prepare $\mathbf{2 f}^{[1][2]}$:

To a solution of the veratraldehyde $(0.83 \mathrm{~g}, 5.0 \mathrm{mmol})$ in 10 ml dry DCM , carbon tetrabromide ($1.74 \mathrm{~g}, 5.25 \mathrm{mmol}$) was added. The mixture was cooled to $0^{\circ} \mathrm{C}$, and a solution of triphenylphosphine ($2.62 \mathrm{~g}, 10.0 \mathrm{mmol}$) in 10 mL dry DCM was added dropwise. The reaction mixture was allowed to gradually warm up to room temperature and stirred overnight at room temperature. The reaction mixture was quenched with water, and the organic layer was separated and washed with brine. The crude mixture concentrated under vacuum, and purified by flash column chromatography get the dibromoethane derivative S 1 , yellow oil ($1.45 \mathrm{~g}, 90 \%$).

To a stirred solution of dibromoethane derivative $\mathrm{S} 1(1.45 \mathrm{~g}, 4.5 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{3} \mathrm{CN}$ $(10 \mathrm{~mL})$ was added $\mathrm{DBU}(2.8 \mathrm{~mL}, 18.0 \mathrm{mmol})$ dropwise at $0^{\circ} \mathrm{C}$. The reaction mixture was warm to ambient temperature $\left(25-30^{\circ} \mathrm{C}\right)$ stir at for one day. After completion of reaction (monitored by TLC), reaction mixture quenched by dropwise addition of aqueous HCl then continued stirring for 5 mins. The reaction mixture was extracted three times with DCM; organic layers were washed with brine, solvent was evaporated under vacuum, and resulting residues were purified by flash
column chromatography to afford the $\mathbf{2 f}$ as a yellow solid $(0.47 \mathrm{~g}, 64 \%) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.11(\mathrm{dd}, J=8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}$, $3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.8,148.5,125.4,114.6$, 114.1, 110.8, 83.7, 75.7, 55.8. MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+}$162.1. Spectral data for this compound is consistent with that previously reported. ${ }^{[2]}$ Procedure to prepare $\mathbf{2 g}{ }^{[3]}$:

2g
To a solution of o-ethynyl aniline ($0.227 \mathrm{~mL}, 2.0 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.42 \mathrm{~mL}, 3.2 \mathrm{mmol})$ in THF $(4 \mathrm{~mL})$ was added acetyl chloride $(0.21 \mathrm{~mL}, 3.0 \mathrm{mmol})$ dropwise at $0^{\circ} \mathrm{C}$. After the addition was complete, the reaction mixture was stirred at room temperature. The reaction was monitored by TLC, after completion of the reaction, the reaction was quenched by water and the resulting mixture was extracted three times with DCM. The combined extracts were washed with brine and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel to afford N-acetyl-o-ethynyl aniline $\mathbf{2 g}$ as a white solid ($0.30 \mathrm{~g}, 95 \%$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{br}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.04(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~s}, 1 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.3,139.6$, 132.1, 130.2, 123.3, 119.2, 110.4, 84.3, 79.2, 24.9. MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+}$159.9. Spectral data for this compound is consistent with that previously reported. ${ }^{[3]}$

Synthesis of substituted aldehyde

General Procedure A to prepare 3a-3d,3h ${ }^{[4][5]}$:

To a solution of 2-bromobenzonitrile (1.0 equiv) in dry THF under Ar at $-78{ }^{\circ} \mathrm{C}$, n butyllithium (2.4 M in hexane, 1.0 equiv) was added dropwise, the mixture stirs at $-78{ }^{\circ} \mathrm{C}$ for 1 hours. Then the solution of $\mathrm{Ph}_{2} \mathrm{PCl}$ or $\mathrm{Cy}_{2} \mathrm{PCl}$ (1.0 equiv) in dry THF was added dropwise to the solution, the mixture was stirred for further 30 min at $-78^{\circ} \mathrm{C}$, and the reaction mixture allowed to warm to room temperature stir over night, and quenched by water. The resulting mixture was extracted three times with DCM. The combined extracts concentrated in vacuo, and the residue washed by methanol to give the rough product, use in next step without further purification.

A mixture of S 2 in concerned hydrochloric acid ($1 \mathrm{mmol} \mathrm{S} 2 \sim 2 \mathrm{~mL}$) was refluxed at $120{ }^{\circ} \mathrm{C}$ with vigorous stirring for overnight. During this period, after cooling down to room temperature, water was added and the mixture stirred for 30 min , and the resulting mixture was extracted three times with DCM. The combined extracts were washed with brine and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel to afford product.

2-(diphenylphosphoryl)benzaldehyde (3a)

2-bromobenzonitrile ($9.1 \mathrm{~g}, 50.0 \mathrm{mmol}$) was following the General Procedure A. The crude mixture was purified by column chromatography (petroleum ether /ethyl acetate $=1: 1$) to afford a white solid ($8.9 \mathrm{~g}, 60 \%$). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.75(\mathrm{~s}, 1 \mathrm{H}), 8.21-8.10(\mathrm{~m}, 1 \mathrm{H}), 7.74-$ $7.46(\mathrm{~m}, 12 \mathrm{H}), 7.23(\mathrm{dd}, J=13.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 191.2\left(\mathrm{~d}, J_{C-P}=\right.$
$5.6 \mathrm{~Hz}), 139.4\left(\mathrm{~d}, J_{C-P}=6.5 \mathrm{~Hz}\right), 135.1\left(\mathrm{~d}, J_{C-P}=95.4 \mathrm{~Hz}\right), 133.6\left(\mathrm{~d}, J_{C-P}=11.0 \mathrm{~Hz}\right), 132.8,132.7$, $132.3\left(\mathrm{~d}, J_{C-P}=2.8 \mathrm{~Hz}\right), 131.8\left(\mathrm{~d}, J_{C-P}=10.0 \mathrm{~Hz}\right), 131.6\left(\mathrm{~d}, J_{C-P}=12.8 \mathrm{~Hz}\right), 129.0\left(\mathrm{~d}, J_{C-P}=8.7\right.$ $\mathrm{Hz}), 128.8\left(\mathrm{~d}, J_{C-P}=12.3 \mathrm{~Hz}\right) ;{ }^{\mathbf{3 1}} \mathbf{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 31.05 . \mathbf{M S}$ (ESI): found $[\mathrm{M}+\mathrm{H}]^{+}$ 307.0. Spectral data for this compound is consistent with that previously reported. ${ }^{[5]}$

2-(diphenylphosphoryl)-6-methylbenzaldehyde (3b)

2-bromo-6-methylbenzonitrile ($3.6 \mathrm{~g}, 18.5 \mathrm{mmol}$) was following the General Procedure A. The crude mixture was purified by column chromatography (petroleum ether /ethyl acetate $=1: 1$) to afford a white solid ($2.87 \mathrm{~g}, 48 \%$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.84(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{dd}, J=$ $12.2,7.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.58(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.44(\mathrm{~m}, 5 \mathrm{H}), 7.37(\mathrm{td}, J=7.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.10$ $(\mathrm{dd}, J=14.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 193.4\left(\mathrm{~d}, J_{C-P}=6.7 \mathrm{~Hz}\right)$, $141.5\left(\mathrm{~d}, J_{C-P}=8.7 \mathrm{~Hz}\right), 137.9\left(\mathrm{~d}, J_{C-P}=6.4 \mathrm{~Hz}\right), 136.1\left(\mathrm{~d}, J_{C-P}=2.5 \mathrm{~Hz}\right), 136.0,135.1,133.0$, $132.2\left(\mathrm{~d}, J_{C-P}=2.8 \mathrm{~Hz}\right), 131.9\left(\mathrm{~d}, J_{C-P}=9.8 \mathrm{~Hz}\right), 131.1\left(\mathrm{~d}, J_{C-P}=13.2 \mathrm{~Hz}\right), 128.7\left(\mathrm{~d}, J_{C-P}=12.3\right.$ Hz), 21.7; ${ }^{31} \mathbf{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 32.38. MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+}$321.2. Spectral data for this compound is consistent with that previously reported. ${ }^{[5]}$

2-(diphenylphosphoryl)-4-methylbenzaldehyde (3c)

2-bromo-4-methylbenzonitrile ($2.8 \mathrm{~g}, 14.4 \mathrm{mmol}$) was following the General Procedure A. The crude mixture was purified by column chromatography (petroleum ether/ethyl acetate $=1: 1$) to afford a white solid $(2.1 \mathrm{~g}, 46 \%) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.62(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{qt}, J=$ $4.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.62(\mathrm{~m}, 4 \mathrm{H}), 7.61-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.45(\mathrm{~m}, 5 \mathrm{H}), 7.08(\mathrm{~d}, J=14.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 190.9\left(\mathrm{~d}, J_{C-P}=5.3 \mathrm{~Hz}\right), 143.9\left(\mathrm{~d}, J_{C-P}=11.8\right.$ $\mathrm{Hz}), 137.1\left(\mathrm{~d}, J_{C-P}=6.6 \mathrm{~Hz}\right), 135.4,134.3\left(\mathrm{~d}, J_{C-P}=10.5 \mathrm{~Hz}\right), 133.0\left(\mathrm{~d}, J_{C-P}=2.3 \mathrm{~Hz}\right), 132.3\left(\mathrm{~d}, J_{C-}\right.$ $\left.{ }_{P}=2.7 \mathrm{~Hz}\right), 131.9\left(\mathrm{~d}, J_{C-P}=9.9 \mathrm{~Hz}\right), 131.8,129.4\left(\mathrm{~d}, J_{C-P}=9.3 \mathrm{~Hz}\right), 128.8\left(\mathrm{~d}, J_{C-P}=12.2 \mathrm{~Hz}\right)$, 21.9; ${ }^{31} \mathbf{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 30.86. MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+}$321.2. Spectral data for this compound is consistent with that previously reported. ${ }^{[5]}$

2-(diphenylphosphoryl)-1-naphthaldehyde (3d)

To obtain the substrate $\mathrm{S} 3, \mathrm{n}-\mathrm{BuLi}(2.4 \mathrm{M}$ in hexane, $23 \mathrm{~mL}, 1.2$ equiv.) was slowly added to the 2,2,6,6-tetramethylpiperidine in THF solution at $-5^{\circ} \mathrm{C}-0^{\circ} \mathrm{C}$. After the reaction for 1 h , the temperature was reduced to $-78{ }^{\circ} \mathrm{C}$, then add 1-naphthalenenitrile ($45.7 \mathrm{mmol}, 1.0$ equiv.) in THF slowly to the solution, continue the reaction for 1 h . Then add $\mathrm{I}_{2}(45.7 \mathrm{mmol}, 1.0$ equiv.) solution in THF into reaction systems, continue stir at $-78{ }^{\circ} \mathrm{C}$ for 2 h , slowly raise to room temperature and stir overnight, the reaction was quenched with water, the reaction solution was washed with NaHSO_{3} solution, and extracted three times with DCM. The organic phases were combined and the solvent was evaporated. 2-Iodo-1-naphthalenecarbonitrile was isolated by column chromatography.

1-iodo-2-naphthonitrile ($9.7 \mathrm{~g}, 34.8 \mathrm{mmol}$) was following the General Procedure A. The residue was purified by column chromatography (petroleum ether/ethyl acetate $=1: 2$) to provide a white solid 3d (4.3 g, 35%), ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.22(\mathrm{~s}, 1 \mathrm{H}), 8.91(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.96(\mathrm{dd}, J=8.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.90-7.87(\mathrm{~m}, 1 \mathrm{H}), 7.74-7.56(\mathrm{~m}, 8 \mathrm{H}), 7.50(\mathrm{td}, J=7.4,3.0$
$\mathrm{Hz}, 4 \mathrm{H}), 7.28(\mathrm{dd}, J=12.3,8.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.2\left(\mathrm{~d}, J_{C-P}=7.5 \mathrm{~Hz}\right)$, $135.1\left(\mathrm{~d}, J_{C-P}=2.2 \mathrm{~Hz}\right), 135.0,134.0,133.0,132.4\left(\mathrm{~d}, J_{C-P}=2.7 \mathrm{~Hz}\right), 132.3,132.0\left(\mathrm{~d}, J_{C-P}=10.0\right.$ $\mathrm{Hz}), 130.5\left(\mathrm{~d}, J_{C-P}=10.2 \mathrm{~Hz}\right), 129.4,128.7\left(\mathrm{~d}, J_{C-P}=12.3 \mathrm{~Hz}\right), 128.6,128.3,127.9\left(\mathrm{~d}, J_{C-P}=11.5\right.$ $\mathrm{Hz}), 126.6 ;{ }^{\mathbf{3 1}} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 32.49. MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+}$357.0. Spectral data for this compound is consistent with that previously reported. ${ }^{[5]}$

2-(dicyclohexylphosphoryl)benzaldehyde (3h)

2-bromobenzonitrile ($4.0 \mathrm{~g}, 21.9 \mathrm{mmol}$) was following the General Procedure A. The crude mixture was purified by column chromatography (petroleum ether /ethyl acetate $=1: 1$) to afford a white solid 3h ($2.5 \mathrm{~g}, 36$ \%), ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.88$ (br, 1H), 8.07 (s, 1H), 7.87$7.56(\mathrm{~m}, 3 \mathrm{H}), 2.34-2.04(\mathrm{~m}, 4 \mathrm{H}), 1.86(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.78-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.56-1.06(\mathrm{~m}$, 12H); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 193.9, 132.7, 132.6, 132.4, 131.6, 131.4, 131.4, $36.0\left(\mathrm{~d}, J_{C-}\right.$ $\left.{ }_{P}=66.6 \mathrm{~Hz}\right), 26.3\left(\mathrm{dd}, J_{C-P}=12.8,10.3 \mathrm{~Hz}\right), 25.7\left(\mathrm{~d}, J_{C-P}=2.7 \mathrm{~Hz}\right), 25.6\left(\mathrm{~d}, J_{C-P}=0.8 \mathrm{~Hz}\right), 25.1$ $\left(\mathrm{d}, J_{C-P}=1.6 \mathrm{~Hz}\right) ;{ }^{31} \mathbf{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 51.28$. MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+} 319.2$. Spectral data for this compound is consistent with that previously reported. ${ }^{[5]}$
Procedure for prepare $3 \mathrm{e}-3 \mathrm{~g}^{[5][6][7]}$:
General Procedure B to prepare Cyclic acetal
A solution of the aldehyde (1.0 equiv), Ethylene glycol (5.0 equiv), and p-Toluenesulfonic acid $(5.0 \mathrm{~mol} \%)$ in toluene $(10 \mathrm{~mL} / \mathrm{g})$ was heated at reflux for 24 h . After cooling to room temperature, the reaction was quenched by the addition of saturated aqueous NaHCO_{3}. The mixture was extracted with DCM and the combined organic was washed with water and brine, filtered and concentrated in vacuo, the crude residue was then purified by column chromatography.

General Procedure C to prepare Cycloacetal phosphoxide

For the Synthesis of 1,3-dioxolanes diphenyl phosphine oxide, to a solution of cyclic acetal (1.0 eq) in anhydrous THF ($10 \mathrm{~mL} / \mathrm{g}$), kept in an oven-dried Schlenk flask under an atmosphere of dry argon, was added dropwise a solution of $\mathrm{n}-\mathrm{BuLi}$ in hexane $(1.0 \mathrm{eq})$ at $-78^{\circ} \mathrm{C}$. After stirring at $78{ }^{\circ} \mathrm{C}$ for $1 \mathrm{~h}, \mathrm{Ph}_{2} \mathrm{PCl}(1.0 \mathrm{eq})$ in anhydrous THF was added dropwise. Then the solution was stirred for 1 h at $-78{ }^{\circ} \mathrm{C}$, allowed to warm to room temperature and stirred for overnight. The reaction was quenched with a solution of $\mathrm{NH}_{4} \mathrm{Cl}$ (aq.) and the product was extracted with DCM. The combined organic layer was washed with water and brine. Filtered and the residue was purified by column chromatography to afford the product.

General Procedure D to prepare Aldehyde phosphoxide ${ }^{[7]}$

p-Toluenesulfonic acid ($5 \mathrm{~mol} \%$) was added to a solution of 1,3-dioxolanes diphenyl phosphine oxide (1.0 eq) in a mixture of acetone/water. The mixture was refluxed until completion. After the completion of the reaction, the mixture was cooled to room temperature, and the acetone was removed under vacuum. The residue was dissolved in DCM, washed with saturated aqueous NaHCO_{3}, water and brine, and concentrated under vacuum. The crude product was purified by silica gel column chromatography to afford the product.
Procedure for synthesis of $3 e^{[7]}$:

2-(3-bromophenyl)-1,3-dioxolane (S5)

3-bromobenzaldehyde ($3.7 \mathrm{~g}, 20 \mathrm{mmol}$) was following the General Procedure B. The residue was purified by column chromatography (petroleum ether/ethyl acetate $=50: 1$) to afford a Colorless oily compound ($3.04 \mathrm{~g}, 67 \%$).

(3-(1,3-dioxolan-2-yl)phenyl)diphenylphosphine oxide (S6)

2-(3-bromophenyl)-1,3-dioxolane ($3.04 \mathrm{~g}, 13.3 \mathrm{mmol}$) was following the General Procedure C. The residue was purified by column chromatography (petroleum ether /ethyl acetate $=1: 3$) to afford a white solid ($1.42 \mathrm{~g}, 31 \%$).

3-(diphenylphosphoryl) benzaldehyde (3e)

(3-(1,3-dioxolan-2-yl)phenyl)diphenylphosphine oxide ($1.42 \mathrm{~g}, 4.1 \mathrm{mmol}$) was following the General Procedure D. The residue was purified by column chromatography (petroleum ether /ethyl acetate $=1: 2)$ to provide a white viscous substance $\mathbf{3 e}(1.07 \mathrm{~g}, 85 \%) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 10.03(\mathrm{~s}, 1 \mathrm{H}), 8.21-8.15(\mathrm{~m}, 1 \mathrm{H}), 8.11-8.05(\mathrm{~m}, 1 \mathrm{H}), 8.02-7.94(\mathrm{~m}, 1 \mathrm{H}), 7.73-7.64(\mathrm{~m}$, $5 \mathrm{H}), 7.63-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.46(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 191.4,137.5\left(\mathrm{~d}, J_{C-P}=\right.$ $9.9 \mathrm{~Hz}), 136.2\left(\mathrm{~d}, J_{C-P}=10.9 \mathrm{~Hz}\right), 134.3\left(\mathrm{~d}, J_{C-P}=101.5 \mathrm{~Hz}\right), 133.6\left(\mathrm{~d}, J_{C-P}=10.1 \mathrm{~Hz}\right), 132.3(\mathrm{~d}$, $\left.J_{C-P}=2.8 \mathrm{~Hz}\right), 132.2\left(\mathrm{~d}, J_{C-P}=2.5 \mathrm{~Hz}\right), 132.0\left(\mathrm{~d}, J_{C-P}=10.0 \mathrm{~Hz}\right), 131.0,129.4\left(\mathrm{~d}, J_{C-P}=11.5 \mathrm{~Hz}\right)$, $128.7\left(\mathrm{~d}, J_{C-P}=12.2 \mathrm{~Hz}\right) ;{ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 28.28$. MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+} 307.0$. Spectral data for this compound is consistent with that previously reported. ${ }^{[7]}$

Procedure for synthesis of $\mathbf{3 f} \mathbf{- 3 g}{ }^{[5]}$:

5-bromo-6-(1,3-dioxolan-2-yl)benzo[d][1,3]dioxole (S7a)

6-bromobenzo[d][1,3]dioxole-5-carbaldehyde ($3.43 \mathrm{~g}, 14.9 \mathrm{mmol}$) was following the General Procedure B. The residue was purified by column chromatography (petroleum ether /ethyl acetate $=30: 1$) to afford a white solid ($3.63 \mathrm{~g}, 89 \%$).

(6-(1,3-dioxolan-2-yl)benzo[d][1,3]dioxol-5-yl)diphenylphosphine oxide (S8a)

5-bromo-6-(1,3-dioxolan-2-yl)benzo[d][1,3]dioxole ($3.5 \mathrm{~g}, 12.9 \mathrm{mmol}$) was following the General Procedure C. The residue was purified by column chromatography (petroleum ether /ethyl acetate $=1: 3$) to afford a white solid ($4.0 \mathrm{~g}, 79 \%$).

6-(diphenylphosphoryl)benzo[d][1,3]dioxole-5-carbaldehyde (3f)

(6-(1,3-dioxolan-2-yl)benzo[d][1,3]dioxol-5-yl)diphenylphosphine oxide ($2.0 \mathrm{~g}, 5.07 \mathrm{mmol}$) was following the General Procedure D. The residue was purified by column chromatography (petroleum ether /ethyl acetate $=1: 2$) to provide a white solid $\mathbf{3 f}(1.6 \mathrm{~g}, 90 \%),{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.63(\mathrm{~s}, 1 \mathrm{H}), 7.77-7.56(\mathrm{~m}, 7 \mathrm{H}), 7.50(\mathrm{td}, J=7.4,3.1 \mathrm{~Hz}, 4 \mathrm{H}), 6.59(\mathrm{~d}, J=13.2$
$\mathrm{Hz}, 1 \mathrm{H}), 6.11(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 189.5\left(\mathrm{~d}, J_{C-P}=6.1 \mathrm{~Hz}\right), 151.2\left(\mathrm{~d}, J_{C-P}=\right.$ $17.8 \mathrm{~Hz}), 151.0\left(\mathrm{~d}, J_{C-P}=2.5 \mathrm{~Hz}\right), 136.1\left(\mathrm{~d}, J_{C-P}=7.1 \mathrm{~Hz}\right), 132.8,132.4\left(\mathrm{~d}, J_{C-P}=2.7 \mathrm{~Hz}\right), 131.8$ $\left(\mathrm{d}, J_{C-P}=10.0 \mathrm{~Hz}\right), 130.8,128.9\left(\mathrm{~d}, J_{C-P}=12.3 \mathrm{~Hz}\right), 113.1\left(\mathrm{~d}, J_{C-P}=13.7 \mathrm{~Hz}\right), 108.7\left(\mathrm{~d}, J_{C-P}=\right.$ $11.2 \mathrm{~Hz}), 102.6 ;{ }^{31} \mathbf{P}$ NMR (162 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 31.01. MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+}$351.0. Spectral data for this compound is consistent with that previously reported. ${ }^{[5]}$

2-(2-bromo-5-fluorophenyl)-1,3-dioxolane (S7b)

2-bromo-5-fluorobenzaldehyde ($3.0 \mathrm{~g}, 14.8 \mathrm{mmol}$) was following the General Procedure B. The residue was purified by column chromatography (petroleum ether /ethyl acetate $=30: 1$) to afford a Colorless oily compound ($3.4 \mathrm{~g}, 93 \%$).

(2-(1,3-dioxolan-2-yl)-4-fluorophenyl)diphenylphosphine oxide (S8b)

2-(2-bromo-5-fluorophenyl)-1,3-dioxolane ($3.4 \mathrm{~g}, 13.8 \mathrm{mmol}$) was following the General Procedure C. The residue was purified by column chromatography (petroleum ether /ethyl acetate $=1: 4)$ to afford a white solid ($3.2 \mathrm{~g}, 78 \%$).

2-(diphenylphosphoryl)-5-fluorobenzaldehyde (3g)

(2-(1,3-dioxolan-2-yl)-4-fluorophenyl) diphenylphosphine oxide ($1.1 \mathrm{~g}, 2.99 \mathrm{mmol}$) was following the General Procedure D. The residue was purified by column chromatography (petroleum ether /ethyl acetate $=1: 4$) to provide a white solid $\mathbf{3 g}(0.86 \mathrm{~g}, 89 \%),{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.73(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.88-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.70-7.58(\mathrm{~m}, 6 \mathrm{H}), 7.55-7.48(\mathrm{~m}, 4$ H), 7.26-7.17 (m, 2 H); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 189.8\left(\mathrm{dd}, J_{C-F}=1.0 \mathrm{~Hz}, J_{C-P}=5.2 \mathrm{~Hz}\right.$), $166.2\left(\mathrm{~d}, J_{C-P}=2.9 \mathrm{~Hz}\right), 163.7\left(\mathrm{~d}, J_{C-P}=2.8 \mathrm{~Hz}\right), 142.4\left(\mathrm{t}, J_{C-P}=7.2 \mathrm{~Hz}\right), 136.2\left(\mathrm{dd}, J_{C-F}=8.0 \mathrm{~Hz}\right.$, $\left.\mathrm{J}_{C-P}=12.4 \mathrm{~Hz}\right), 132.6\left(\mathrm{~d}, J_{C-P}=2.8 \mathrm{~Hz}\right), 132.5,131.8\left(\mathrm{~d}, J_{C-P}=10.0 \mathrm{~Hz}\right), 131.4,128.9\left(\mathrm{~d}, J_{C-P}=\right.$ $12.3 \mathrm{~Hz}), 119.5\left(\mathrm{dd}, J_{C-F}=13.0 \mathrm{~Hz}, J_{C-P}=21.2 \mathrm{~Hz}\right), 115.9\left(\mathrm{dd}, J_{C-F}=9.8 \mathrm{~Hz}, J_{C-P}=22.4 \mathrm{~Hz}\right) ;{ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 30.11. MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+}$325.1. Spectral data for this compound is consistent with that previously reported. ${ }^{[5]}$

3. Optimization of Reaction Condition

 under Air condition for 24 h. ${ }^{\text {b }}$ Isolated yield

${ }^{\text {a }}$ Reaction Conditions: LA catalyst (20 mol \%), 1a (0.22 mmol), 2a (0.30 mmol), 3a(0.20 mmol$), \mathrm{HOAc}(2.0 \mathrm{~mL}), 120^{\circ} \mathrm{C}$ under Air condition for $24 \mathrm{~h} .{ }^{\mathrm{b}}$ Isolated yield. ${ }^{\mathrm{c}} 0.40 \mathrm{mmol}$ of 2a were used

Table S3. Screening of different temperature ${ }^{[a]}$.

${ }^{\text {a }}$ Reaction Conditions: $\mathrm{Al}(\mathrm{OTf})_{3}(0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%), 1 \mathrm{a}(0.22 \mathrm{mmol}), \mathbf{2 a}(0.30 \mathrm{mmol}), 3 \mathrm{a}(0.20 \mathrm{mmol}), \mathrm{HOAc}(2.0 \mathrm{~mL}), \mathrm{t}^{\circ} \mathrm{C} \mathrm{under}$ Air condition for $24 \mathrm{~h} .{ }^{\text {b }}$ Isolated yield

Entry	$\mathrm{Al}(\mathrm{OTf})_{3}(\mathrm{~mol} \%)$	${\text { Yield }[\%]^{\mathrm{b}}}^{2}$
1	20	69
2	10	55
3	5	50
4	0	34

${ }^{\text {a }}$ Reaction Conditions: $\mathrm{Al}(\mathrm{OTf})_{3}(x \mathrm{~mol} \%), \mathbf{1 a}(0.22 \mathrm{mmol}), \mathbf{2 a}(0.30 \mathrm{mmol}), \mathbf{3 a}(0.20 \mathrm{mmol}), \mathrm{HOAc}(2.0 \mathrm{~mL}), 120^{\circ} \mathrm{C}$ under Air
condition for $24 \mathrm{~h} .{ }^{\mathrm{b}}$ Isolated yield. ${ }^{\mathrm{c}} 0.40 \mathrm{mmol}$ of $\mathbf{2 a}$ were used.
Table S5. Screening of different oxidant ${ }^{[a]}$.

${ }^{\text {a }}$ Reaction Conditions: $\mathrm{Al}(\mathrm{OTf})_{3}(0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%), \mathbf{1 a}(0.22 \mathrm{mmol}), \mathbf{2 a}(0.30 \mathrm{mmol}), 3 \mathrm{a}(0.20 \mathrm{mmol}), \mathrm{HOAc}(2.0 \mathrm{~mL})$, oxidant (0.30 $\mathrm{mmol}), 120^{\circ} \mathrm{C}$ under Ar condition for 24 h . ${ }^{\text {b }}$ Isolated yield.

4. The General Procedures

General procedure for reaction:

The mixture of amine $\mathbf{1 a - 1 k}$ (1.1 equiv, 0.22 mmol), alkyne $\mathbf{2 a - 2 l}$ (1.5 equiv, 0.30 mmol), aldehyde 3a-3h (1.0 equiv, 0.20 mmol) and aluminium trifluromethanesulfonate ($20 \mathrm{~mol} \%, 0.04$ $\mathrm{mmol})$ was dissolved in acetic acid (2 mL). The reaction mixture was stirred at $120{ }^{\circ} \mathrm{C}$ in an oil bath for 24 hours under air atmosphere. After the starting material was consumed as indicated by TLC, acetic acid was evaporated concentrated. The crude product was extracted with dichloromethane, washed with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and the organic solvent was evaporated concentrated in vacuo, purified by silica gel column chromatography (eluent: Petroleum ether: $\mathrm{EtOAc}=1: 1-1: 3$) affording the desired product.
General procedure for gram-scale reaction:

The mixture of amine $\mathbf{1 a}$ (1.1 equiv, 5.5 mmol), alkyne $\mathbf{2 a}$ (1.5 equiv, 7.5 mmol), aldehyde $\mathbf{3 b}$ or

3d (1.0 equiv, 5.0 mmol) and aluminium trifluromethanesulfonate ($20 \mathrm{~mol} \%, 1.0 \mathrm{mmol}$) was dissolved in acetic acid $(50 \mathrm{~mL})$ in a 100 mL flask. The reaction mixture was stirred at $120^{\circ} \mathrm{C}$ in an oil bath for 24 hours under air atmosphere.After the starting material was consumed as indicated by TLC, acetic acid was evaporated concentrated. The crude product was extracted with dichloromethane, washed with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and the organic solvent was evaporated concentrated in vacuo, purified by silica gel column chromatography ($\mathrm{DCM}: \mathrm{EtOAc}=10: 1-2: 1$) affording the desired product.

General procedure for reduction 4 to 5:

In a 25 mL of reaction tube under Ar atmosphere, 4 (1.0 equiv, 0.6 mmol) was added to dry toluene (6 mL), trichlorosilane (5.0 equiv, 3.0 mmol)was add to solutions dropwise, then triethylamine (3.3 mmol , 5.5 equiv) was added dropwise to the solution and refluxed at $100{ }^{\circ} \mathrm{C}$ overnight, after which the reaction mixture was cooled, carefully quenching the reaction with saturated aqueous NaHCO_{3} solution, and then extracting the solution three times with DCM, The organic phase are combined, and removed solvent, and then the flash column chromatography(eluent: Petroleum ether : EtOAc $=20: 1-5: 1$) method is used to obtain the phosphorus-containing quinoline compound 5.

5. Mechanism explaining the regioselectivity

As show in the following figure, a tentative mechanism was proposed. Initially, Intermediate B was formed by coordination of imine A , which was generated in situ, and alkyne to $\mathrm{Al}^{(\mathrm{III})}$, and then addition of alkyne to imine A forms the propargylamine intermediate C , which then undergoes an intramolecular hydroarylation of alkyne to give dihydroquinoline intermediate D. Subsequently, a oxidation of D by O_{2} in air affords the quinoline product 4 a .
For unsymmetrical aniline derivatives as substrate, the regioselectivity of the reaction mainly depends on the electronic and steric effects of the ortho position of amino on the propargylamine intermediate C . The greater the steric hindrance effect of the ortho position of amino on the propargylamine intermediate C , the worse the regioselectivity, and the higher the electron cloud density of the ortho position of amino on the propargylamine intermediate C , the better the regioselectivity.

electronic effect (electronic cloud density): 1 slightly denser than 2

Scheme S1 Mechanism explaining the regioselectivity

6. Characterization of product

4a
4a, Light yellow solid, 69 \% yield, ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77-7.44(\mathrm{~m}, 16 \mathrm{H}), 7.40$ (dd, $J=8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.15(\mathrm{~m}, 6 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.0$ $\left(\mathrm{d}, J_{C-P}=3.8 \mathrm{~Hz}\right), 146.5\left(\mathrm{~d}, J_{C-P}=41.8 \mathrm{~Hz}\right), 145.8\left(\mathrm{~d}, J_{C-P}=8.1 \mathrm{~Hz}\right), 138.1,136.3,134.7\left(\mathrm{~d}, J_{C-P}=\right.$
$10.9 \mathrm{~Hz}), 133.2\left(\mathrm{~d}, J_{C-P}=105.1 \mathrm{~Hz}\right), 132.3,132.0\left(\mathrm{~d}, J_{C-P}=2.4 \mathrm{~Hz}\right), 131.7\left(\mathrm{~d}, J_{C-P}=9.7 \mathrm{~Hz}\right)$, $131.3,131.3,131.0,130.9\left(\mathrm{~d}, J_{C-P}=2.5 \mathrm{~Hz}\right), 129.6,129.2,128.4,128.1,127.9\left(\mathrm{~d}, J_{C-P}=11.9 \mathrm{~Hz}\right)$, $127.7\left(\mathrm{~d}, J_{C-P}=12.2 \mathrm{~Hz}\right), 124.9,124.0,123.0,21.8 ;{ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 29.79$; HRMS (ESI, \mathbf{m} / \mathbf{z}): calculated for $\mathrm{C}_{34} \mathrm{H}_{27} \mathrm{NOP}^{+}$: 496.1825, found :496.1827 [M+H] ${ }^{+}$.

4b
4b, Light yellow solid, 63 \% yield, ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.74-7.42(\mathrm{~m}, 15 \mathrm{H}), 7.28-$ $7.16(\mathrm{~m}, 7 \mathrm{H}), 7.10(\mathrm{~d}, J=2.8 \mathrm{~Hz} .1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.8,155.5$ $\left(\mathrm{d}, J_{C-P}=3.8 \mathrm{~Hz}\right), 146.0,145.8\left(\mathrm{~d}, J_{C-P}=8.1 \mathrm{~Hz}\right), 143.8,138.1,134.6\left(\mathrm{~d}, J_{C-P}=10.9 \mathrm{~Hz}\right), 133.2$ $\left(\mathrm{d}, J_{C-P}=105.0 \mathrm{~Hz}\right), 132.3,132.0\left(\mathrm{~d}, J_{C-P}=2.5 \mathrm{~Hz}\right), 131.6\left(\mathrm{~d}, J_{C-P}=9.6 \mathrm{~Hz}\right), 131.3,130.9\left(\mathrm{~d}, J_{C-P}\right.$ $=3.0 \mathrm{~Hz}), 130.8\left(\mathrm{~d}, J_{C-P}=2.6 \mathrm{~Hz}\right), 128.9\left(\mathrm{~d}, J_{C-P}=79.1 \mathrm{~Hz}\right), 128.2,127.8\left(\mathrm{~d}, J_{C-P}=12.1 \mathrm{~Hz}\right)$, $127.7\left(\mathrm{~d}, J_{C-P}=12.2 \mathrm{~Hz}\right), 127.7\left(\mathrm{~d}, J_{C-P}=3.0 \mathrm{~Hz}\right), 125.9,123.3,121.4,103.2,55.3 ;{ }^{31} \mathbf{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 29.72$; HRMS (ESI, \mathbf{m} / \mathbf{z}): calculated for $\mathrm{C}_{34} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{P}^{+}$: 512.1774 , found: $512.1775[\mathrm{M}+\mathrm{H}]^{+}$.

4c
4c, Light yellow solid, 47 \% yield, ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.59(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $8.18(\mathrm{dd}, J=8.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.59(\mathrm{~m}, 9 \mathrm{H}), 7.57-7.47(\mathrm{~m}, 6 \mathrm{H}), 7.27-7.16(\mathrm{~m}, 6 \mathrm{H}), 3.92(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.8,160.1\left(\mathrm{~d}, J_{C-P}=3.9 \mathrm{~Hz}\right), 149.3\left(\mathrm{~d}, J_{C-P}=81.3 \mathrm{~Hz}\right)$, $145.3\left(\mathrm{~d}, J_{C-P}=7.7 \mathrm{~Hz}\right), 137.2,134.7\left(\mathrm{~d}, J_{C-P}=11.0 \mathrm{~Hz}\right), 133.6,132.5,132.5,132.1\left(\mathrm{~d}, J_{C-P}=2.4\right.$ $\mathrm{Hz}), 131.7\left(\mathrm{~d}, J_{C-P}=9.6 \mathrm{~Hz}\right), 131.5,131.1\left(\mathrm{~d}, J_{C-P}=2.7 \mathrm{~Hz}\right), 130.9\left(\mathrm{~d}, J_{C-P}=9.2 \mathrm{~Hz}\right), 129.8$, $129.7,128.8,128.7\left(\mathrm{~d}, J_{C-P}=0.8 \mathrm{~Hz}\right), 128.6,128.3\left(\mathrm{~d}, J_{C-P}=12.1 \mathrm{~Hz}\right), 127.9,127.8,124.3,123.9$, 52.3; ${ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 29.53$; HRMS (ESI, \mathbf{m} / \mathbf{z}): calculated for $\mathrm{C}_{35} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{P}^{+}$: 540.1723, found: $540.1722[\mathrm{M}+\mathrm{H}]^{+}$.

4d, Light yellow solid, 61 \% yield, ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.76-7.57 (m, 9H), 7.57-7.44 (m, 7H), 7.32-7.18 (m, 6H); ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.3(\mathrm{~d}$, $\left.J_{C-P}=3.8 \mathrm{~Hz}\right), 146.6,146.3,145.3\left(\mathrm{~d}, J_{C-P}=7.8 \mathrm{~Hz}\right), 137.1,134.7\left(\mathrm{~d}, J_{C-P}=11.0 \mathrm{~Hz}\right), 133.6$, $132.5,132.5,132.0\left(\mathrm{~d}, J_{C-P}=2.4 \mathrm{~Hz}\right), 132.4,131.6\left(\mathrm{~d}, J_{C-P}=9.6 \mathrm{~Hz}\right), 131.4,131.2,131.0\left(\mathrm{~d}, J_{C-P}\right.$ $=2.6 \mathrm{~Hz}), 130.8\left(\mathrm{~d}, J_{C-P}=9.3 \mathrm{~Hz}\right), 129.1\left(\mathrm{~d}, J_{C-P}=79.2 \mathrm{~Hz}\right), 128.6,128.2\left(\mathrm{~d}, J_{C-P}=12.1 \mathrm{~Hz}\right)$, $127.8\left(\mathrm{~d}, J_{C-P}=12.2 \mathrm{~Hz}\right), 127.5,126.2,123.7,120.5 ;{ }^{31} \mathbf{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 29.62$; HRMS (ESI, m/z): calculated for $\mathrm{C}_{33} \mathrm{H}_{23} \mathrm{BrNOPNa}^{+}$: 582.0593 , found: $582.0591[\mathrm{M}+\mathrm{Na}]^{+}$.

4e1, 4e2, Light yellow solid, 67 \% yield (1:1.04), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.77-7.57 $(\mathrm{m}, 14 \mathrm{H}), 7.55-7.34(\mathrm{~m}, 16 \mathrm{H}), 7.31-7.14(\mathrm{~m}, 14 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.8\left(\mathrm{~d}, J_{C-P}=3.7 \mathrm{~Hz}\right), 155.7\left(\mathrm{~d}, J_{C-P}=3.8 \mathrm{~Hz}\right), 147.6$, 147.2, 146.9, 146.5, $146.0\left(\mathrm{~d}, J_{C-P}=8.0 \mathrm{~Hz}\right), 145.4\left(\mathrm{~d}, J_{C-P}=8.1 \mathrm{~Hz}\right), 142.8,139.2,138.2,136.3$, $135.9,134.7\left(\mathrm{~d}, J_{C-P}=10.9 \mathrm{~Hz}\right), 133.8\left(\mathrm{~d}, J_{C-P}=7.5 \mathrm{~Hz}\right), 132.8\left(\mathrm{~d}, J_{C-P}=7.4 \mathrm{~Hz}\right), 132.3\left(\mathrm{~d}, J_{C-P}=\right.$ $4.4 \mathrm{~Hz}), 132.0,132.0,131.9\left(\mathrm{~d}, J_{C-P}=7.1 \mathrm{~Hz}\right), 131.9\left(\mathrm{~d}, J_{C-P}=2.0 \mathrm{~Hz}\right), 131.7\left(\mathrm{~d}, J_{C-P}=3.7 \mathrm{~Hz}\right)$, $131.6\left(\mathrm{~d}, J_{C-P}=3.8 \mathrm{~Hz}\right), 131.3\left(\mathrm{~d}, J_{C-P}=4.6 \mathrm{~Hz}\right), 130.9,130.8,130.8,130.8,130.8,130.7,129.5$, $128.9,128.5\left(\mathrm{~d}, J_{C-P}=17.9 \mathrm{~Hz}\right), 128.1,128.0,128.0,127.9 .127 .7\left(\mathrm{~d}, J_{C-P}=1.6 \mathrm{~Hz}\right), 127.6\left(\mathrm{~d}, J_{C-P}\right.$ $=1.5 \mathrm{~Hz}), 127.4,127.2,125.2,125.0,124.4,123.5,122.1,21.0,20.2,20.2,20.2 ;{ }^{31} \mathbf{P}$ NMR (162 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 29.90,29.77$; HRMS (ESI, \mathbf{m} / \mathbf{z}): calculated for $\mathrm{C}_{35} \mathrm{H}_{28} \mathrm{NOPNa}^{+}$: 532.1801, found: $532.1802[\mathrm{M}+\mathrm{Na}]^{+}$.

4f
4f, Light yellow solid, 63 \% yield, ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79(d, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.73-7.57 (m, 9H), 7.56-7.45 (m, 7H), 7.31-7.17 (m, 6H); ${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.2(\mathrm{~d}$, $\left.J_{C-P}=3.9 \mathrm{~Hz}\right), 146.7,146.1,145.4\left(\mathrm{~d}, J_{C-P}=7.8 \mathrm{~Hz}\right), 137.2,134.7\left(\mathrm{~d}, J_{C-P}=11.0 \mathrm{~Hz}\right), 133.6$, $132.5,132.4,132.3,132.1\left(\mathrm{~d}, J_{C-P}=2.3 \mathrm{~Hz}\right), 131.6\left(\mathrm{~d}, J_{C-P}=9.6 \mathrm{~Hz}\right), 131.4,131.1,131.0\left(\mathrm{~d}, J_{C-P}\right.$ $=2.6 \mathrm{~Hz}), 130.8\left(\mathrm{~d}, J_{C-P}=9.3 \mathrm{~Hz}\right), 130.0,129.1\left(\mathrm{~d}, J_{C-P}=79.3 \mathrm{~Hz}\right), 128.6,128.2\left(\mathrm{~d}, J_{C-P}=12.0\right.$ $\mathrm{Hz}), 127.8\left(\mathrm{~d}, J_{C-P}=12.1 \mathrm{~Hz}\right), 125.7,124.2,123.8 ;{ }^{31} \mathbf{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 29.62 ;$ HRMS (ESI, \mathbf{m} / \mathbf{z}): calculated for $\mathrm{C}_{33} \mathrm{H}_{23} \mathrm{ClNOPNa}^{+}$: 538.1098 , found: $538.1099[\mathrm{M}+\mathrm{Na}]^{+}$.

4 g
$\mathbf{4 g}$, Light yellow solid, 44% yield, ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80(\mathrm{dd}, J=13.6,7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.68-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.54(\mathrm{~m}, 4 \mathrm{H}), 7.53-7.41(\mathrm{~m}, 6 \mathrm{H}), 7.37(\mathrm{~s}, 1 \mathrm{H}) 7.26-7.09(\mathrm{~m}, 7 \mathrm{H})$, $6.91(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.2,154.7$ $\left(\mathrm{d}, J_{C-P}=3.8 \mathrm{~Hz}\right), 146.3\left(\mathrm{~d}, J_{C-P}=8.7 \mathrm{~Hz}\right), 146.1,143.3,139.6,138.6,134.6\left(\mathrm{~d}, J_{C-P}=10.6 \mathrm{~Hz}\right)$, 133.7, 132.7, $131.9\left(\mathrm{~d}, J_{C-P}=2.5 \mathrm{~Hz}\right), 131.6\left(\mathrm{~d}, J_{C-P}=9.7 \mathrm{~Hz}\right), 131.1\left(\mathrm{~d}, J_{C-P}=9.6 \mathrm{~Hz}\right), 131.1$, $130.7\left(\mathrm{~d}, J_{C-P}=2.7 \mathrm{~Hz}\right), 129.4,128.5,128.0,127.7\left(\mathrm{~d}, J_{C-P}=11.8 \mathrm{~Hz}\right), 127.7\left(\mathrm{~d}, J_{C-P}=12.1 \mathrm{~Hz}\right)$,
 calculated for $\mathrm{C}_{35} \mathrm{H}_{29} \mathrm{NO}_{2} \mathrm{P}^{+}$: 526.1930 , found: $526.1930[\mathrm{M}+\mathrm{H}]^{+}$.

4h
4h, yellow solid, 25% yield, ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-$ $7.55(\mathrm{~m}, 10 \mathrm{H}), 7.53-7.37(\mathrm{~m}, 7 \mathrm{H}), 7.25-7.15(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.9\left(\mathrm{~d}, J_{C-}\right.$ $\left.{ }_{P}=4.2 \mathrm{~Hz}\right), 147.6\left(\mathrm{~d}, J_{C-P}=29.4 \mathrm{~Hz}\right), 137.8,134.7\left(\mathrm{~d}, J_{C-P}=11.0 \mathrm{~Hz}\right), 133.6,132.5,132.1\left(\mathrm{~d}, J_{C-P}\right.$ $=2.5 \mathrm{~Hz}), 131.9\left(\mathrm{~d}, J_{C-P}=100.9 \mathrm{~Hz}\right), 131.7\left(\mathrm{~d}, J_{C-P}=9.6 \mathrm{~Hz}\right), 131.4,130.9,130.9,130.8,129.7$, $129.3\left(\mathrm{~d}, J_{C-P}=43.4 \mathrm{~Hz}\right), 128.5,128.3,128.1\left(\mathrm{~d}, J_{C-P}=11.9 \mathrm{~Hz}\right), 127.7\left(\mathrm{~d}, J_{C-P}=12.2 \mathrm{~Hz}\right), 126.4$, 125.4, $125.0,123.1 ;{ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 29.69$; HRMS (ESI, m/z): calculated for $\mathrm{C}_{33} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}^{+}$: 527.1519 , found: $527.1516[\mathrm{M}+\mathrm{H}]^{+}$.

$4 i$
4i, Light yellow solid, 12 \% yield, ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.81(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $8.35(\mathrm{dd}, J=9.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.78-7.41(\mathrm{~m}, 16 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.20(\mathrm{~m}$, $3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.5\left(\mathrm{~d}, J_{C-P}=3.8 \mathrm{~Hz}\right), 149.7\left(\mathrm{~d}, J_{C-P}=23.0 \mathrm{~Hz}\right), 145.4$, $144.9\left(\mathrm{~d}, J_{C-P}=7.5 \mathrm{~Hz}\right), 136.4,134.8\left(\mathrm{~d}, J_{C-P}=11.3 \mathrm{~Hz}\right), 133.5,132.6,132.5,132.2\left(\mathrm{~d}, J_{C-P}=2.4\right.$ $\mathrm{Hz}), 131.6\left(\mathrm{~d}, J_{C-P}=9.6 \mathrm{~Hz}\right), 131.2,131.2,130.9\left(\mathrm{~d}, J_{C-P}=9.2 \mathrm{~Hz}\right), 129.3\left(\mathrm{~d}, J_{C-P}=55.1 \mathrm{~Hz}\right)$, $129.2,128.7,128.6\left(\mathrm{~d}, J_{C-P}=12.1 \mathrm{~Hz}\right), 128.4,128.0\left(\mathrm{~d}, J_{C-P}=12.2 \mathrm{~Hz}\right), 124.7,124.1,122.6\left(\mathrm{~d}, J_{C-}\right.$ ${ }_{P}=18.7 \mathrm{~Hz}$); ${ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 29.74$; HRMS (ESI, m/z): calculated for $\mathrm{C}_{33} \mathrm{H}_{25} \mathrm{NOPH}^{+}: 482.1668$, found: $482.1666[\mathrm{M}+\mathrm{H}]^{+}$.

4j
$\mathbf{4 j}$, Light yellow solid, 67 \% yield, ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.74-7.56(\mathrm{~m}, 9 \mathrm{H}), 7.55-$ $7.41(\mathrm{~m}, 7 \mathrm{H}), 7.39-7.32(\mathrm{td}, J=9.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.18(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 161.9,159.4,157.4\left(\mathrm{t}, J_{C-P}=3.3 \mathrm{~Hz}\right), 147.0\left(\mathrm{~d}, J_{C-P}=5.5 \mathrm{~Hz}\right), 145.5\left(\mathrm{~d}, J_{C-P}=8.0 \mathrm{~Hz}\right), 144.8$, $137.4,134.7\left(\mathrm{~d}, J_{C-P}=11.0 \mathrm{~Hz}\right), 133.2\left(\mathrm{~d}, J_{C-F}=104.9 \mathrm{~Hz}\right), 132.1\left(\mathrm{~d}, J_{C-P}=2.5 \mathrm{~Hz}\right), 132.0\left(\mathrm{~d}, J_{C-P}\right.$ $=9.1 \mathrm{~Hz}), 131.9\left(\mathrm{~d}, J_{C-P}=100.7 \mathrm{~Hz}\right), 131.7\left(\mathrm{~d}, J_{C-P}=9.6 \mathrm{~Hz}\right), 131.0\left(\mathrm{~d}, J_{C-P}=2.8 \mathrm{~Hz}\right), 130.9(\mathrm{~d}$, $\left.J_{C-P}=9.4 \mathrm{~Hz}\right), 129.1\left(\mathrm{~d}, J_{C-F}=73.3 \mathrm{~Hz}\right), 128.5,128.1\left(\mathrm{~d}, J_{C-F}=12.0 \mathrm{~Hz}\right), 127.8\left(\mathrm{~d}, J_{C-F}=12.1\right.$ $\mathrm{Hz}), 125.9\left(\mathrm{~d}, J_{C-P}=9.6 \mathrm{~Hz}\right), 123.6,119.3\left(\mathrm{~d}, J_{C-F}=25.5 \mathrm{~Hz}\right), 108.8\left(\mathrm{~d}, J_{C-P}=23.0 \mathrm{~Hz}\right) ;{ }^{31} \mathbf{P}$ NMR (162 MHz, CDCl_{3}) $\delta 29.59$; ${ }^{\mathbf{1 9}} \mathbf{F}$ NMR ($\mathbf{3 7 6} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) $\delta-112.66$. HRMS (ESI, m/z): calculated for $\mathrm{C}_{33} \mathrm{H}_{23} \mathrm{FNOPNa}^{+}$: 522.1394 , found: $522.1395[\mathrm{M}+\mathrm{Na}]^{+}$.

4k
$\mathbf{4 k}$, Light yellow solid, 48 \% yield, ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89-7.76(\mathrm{~m}, 3 \mathrm{H})$, 7.75$7.57(\mathrm{~m}, 8 \mathrm{H}), 7.55(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.37(\mathrm{~m}, 7 \mathrm{H}), 7.23-7.04(\mathrm{~m}, 7 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.4\left(\mathrm{~d}, J_{C-P}=3.8 \mathrm{~Hz}\right), 148.6,147.4,145.2\left(\mathrm{~d}, J_{C-P}=8.1 \mathrm{~Hz}\right), 142.2,134.7\left(\mathrm{~d}, J_{C-}\right.$ $\left.{ }_{P}=11.0 \mathrm{~Hz}\right), 133.6,132.8,132.6,132.5,132.1\left(\mathrm{~d}, J_{C-P}=2.3 \mathrm{~Hz}\right), 131.7,131.6,131.5,131.1$, $131.0\left(\mathrm{~d}, J_{C-P}=9.4 \mathrm{~Hz}\right), 130.9\left(\mathrm{~d}, J_{C-P}=2.8 \mathrm{~Hz}\right), 129.4,129.1,128.4,128.2\left(\mathrm{~d}, J_{C-P}=12.5 \mathrm{~Hz}\right)$, $128.1\left(\mathrm{~d}, J_{C-P}=12.6 \mathrm{~Hz}\right), 127.8\left(\mathrm{~d}, J_{C-P}=12.2 \mathrm{~Hz}\right), 126.4,125.7,125.2,122.3 ;{ }^{31} \mathbf{P} \mathbf{N M R}(162$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 29.67$; HRMS (ESI, \mathbf{m} / \mathbf{z}): calculated for $\mathrm{C}_{37} \mathrm{H}_{26} \mathrm{NOPNa}^{+}$: 554.1644, found: $554.1646[\mathrm{M}+\mathrm{Na}]^{+}$.

41
41, Light yellow solid, 69 \% yield, ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93(\mathrm{t}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.81 (dd, $J=13.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.69(\mathrm{~m}, 3 \mathrm{H}), 7.67-7.44(\mathrm{~m}, 8 \mathrm{H}), 7.42-7.26(\mathrm{~m}, 7 \mathrm{H}), 7.23-$ $7.15(\mathrm{~m}, 3 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.8\left(\mathrm{~d}, J_{C-P}=3.4 \mathrm{~Hz}\right)$, $145.9\left(\mathrm{~d}, J_{C-P}=38.3 \mathrm{~Hz}\right), 145.5\left(\mathrm{~d}, J_{C-P}=7.6 \mathrm{~Hz}\right), 136.0\left(\mathrm{~d}, J_{C-P}=53.9 \mathrm{~Hz}\right), 135.1\left(\mathrm{~d}, J_{C-P}=10.8\right.$ $\mathrm{Hz}), 134.2\left(\mathrm{~d}, J_{C-P}=3.5 \mathrm{~Hz}\right), 133.3,133.2\left(\mathrm{~d}, J_{C-P}=3.8 \mathrm{~Hz}\right), 132.1,131.9,131.9,131.8\left(\mathrm{~d}, J_{C-P}=\right.$ $12.7 \mathrm{~Hz}), 131.7,131.6\left(\mathrm{~d}, J_{C-P}=5.8 \mathrm{~Hz}\right), 131.1,131.0,131.0\left(\mathrm{~d}, J_{C-P}=2.6 \mathrm{~Hz}\right), 130.7\left(\mathrm{~d}, J_{C-P}=\right.$ $2.6 \mathrm{~Hz}), 128.8\left(\mathrm{~d}, J_{C-P}=58.8 \mathrm{~Hz}\right), 128.1,128.0,127.9,127.7\left(\mathrm{~d}, J_{C-P}=6.0 \mathrm{~Hz}\right), 127.4\left(\mathrm{~d}, J_{C-P}=\right.$ $30.6 \mathrm{~Hz}), 126.3,126.1\left(\mathrm{~d}, J_{C-P}=10.3 \mathrm{~Hz}\right), 125.6\left(\mathrm{~d}, J_{C-P}=69.4 \mathrm{~Hz}\right), 124.5,123.3,21.6 ;{ }^{31} \mathbf{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 30.53$; HRMS (ESI, \mathbf{m} / \mathbf{z}): calculated for $\mathrm{C}_{38} \mathrm{H}_{29} \mathrm{NOP}^{+}$: 546.1981, found: $546.1918[\mathrm{M}+\mathrm{H}]^{+}$.

4m
4m, Light yellow solid, 64 \% yield, ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73-7.57(\mathrm{~m}, 11 \mathrm{H})$, $7.51-$ $7.38(\mathrm{~m}, 5 \mathrm{H}), 7.27-7.15(\mathrm{~m}, 6 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.9\left(\mathrm{~d}, J_{C-P}=3.8\right.$ $\mathrm{Hz}), 145.8\left(\mathrm{~d}, J_{C-P}=100.1 \mathrm{~Hz}\right), 145.7\left(\mathrm{~d}, J_{C-P}=8.0 \mathrm{~Hz}\right), 136.9,136.5,134.6\left(\mathrm{~d}, J_{C-P}=11.1 \mathrm{~Hz}\right)$, $133.0\left(\mathrm{~d}, J_{C-P}=104.8 \mathrm{~Hz}\right), 132.2,132.1\left(\mathrm{~d}, J_{C-P}=2.4 \mathrm{~Hz}\right), 131.6,131.6,131.5,131.4,131.2$, $130.9\left(\mathrm{~d}, J_{C-P}=9.2 \mathrm{~Hz}\right), 130.9\left(\mathrm{~d}, J_{C-P}=2.6 \mathrm{~Hz}\right), 129.3,128.0\left(\mathrm{~d}, J_{C-P}=12.0 \mathrm{~Hz}\right), 127.7\left(\mathrm{~d}, J_{C-P}=\right.$ 12.1 Hz), 124.6, $123.6,123.1,122.5,21.8 ;{ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 29.74$; HRMS (ESI, \mathbf{m} / \mathbf{z}): calculated for $\mathrm{C}_{34} \mathrm{H}_{25} \mathrm{BrNOPNa}^{+}$: 596.0749, found: $596.0750[\mathrm{M}+\mathrm{Na}]^{+}$.

4n

4n, Light yellow solid, 42 \% yield, ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.51-8.28(\mathrm{~m}, 2 \mathrm{H}), 7.84-$ $7.37(\mathrm{~m}, 15 \mathrm{H}), 7.31-7.20(\mathrm{~m}, 5 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.9\left(\mathrm{~d}, J_{C-P}=\right.$ $4.0 \mathrm{~Hz}), 147.6,146.4,145.5\left(\mathrm{~d}, J_{C-P}=8.0 \mathrm{~Hz}\right), 144.3\left(\mathrm{~d}, J_{C-P}=97.8 \mathrm{~Hz}\right), 137.1,134.5\left(\mathrm{~d}, J_{C-P}=\right.$ $11.4 \mathrm{~Hz}), 133.3,132.2\left(\mathrm{~d}, J_{C-P}=4.3 \mathrm{~Hz}\right), 132.2\left(\mathrm{~d}, J_{C-P}=2.3 \mathrm{~Hz}\right), 131.7,131.5\left(\mathrm{~d}, J_{C-P}=9.6 \mathrm{~Hz}\right)$, $131.2,131.1,131.1,131.0,130.6,129.5,128.1\left(\mathrm{~d}, J_{C-P}=12.1 \mathrm{~Hz}\right), 127.8\left(\mathrm{~d}, J_{C-P}=12.1 \mathrm{~Hz}\right)$, 124.1, 123.7, $123.3\left(\mathrm{~d}, J_{C-P}=31.3 \mathrm{~Hz}\right), 21.8 ;{ }^{31} \mathbf{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 29.75$; HRMS (ESI, \mathbf{m} / \mathbf{z}): calculated for $\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}^{+}: 541.1676$, found: $541.1674[\mathrm{M}+\mathrm{H}]^{+}$.

40
4o, Light yellow solid, 65 \% yield, ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.75-7.53(\mathrm{~m}, 10 \mathrm{H})$, 7.51$7.44(\mathrm{~m}, 3 \mathrm{H}), 7.40(\mathrm{dd}, J=8.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.14(\mathrm{~m}, 6 \mathrm{H}), 7.05(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{~s}$, $3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.6,156.9\left(\mathrm{~d}, J_{C-P}=4.0 \mathrm{~Hz}\right), 146.4\left(\mathrm{~d}, J_{C-P}=\right.$ $2.8 \mathrm{~Hz}), 145.9\left(\mathrm{~d}, J_{C-P}=8.2 \mathrm{~Hz}\right), 136.1,134.6\left(\mathrm{~d}, J_{C-P}=10.9 \mathrm{~Hz}\right), 133.1\left(\mathrm{~d}, J_{C-P}=105.1 \mathrm{~Hz}\right)$, $132.3,132.3,132.0\left(\mathrm{~d}, J_{C-P}=2.3 \mathrm{~Hz}\right), 131.6\left(\mathrm{~d}, J_{C-P}=9.6 \mathrm{~Hz}\right), 131.3,131.2,130.9,130.9,130.8$ $\left(\mathrm{d}, J_{C-P}=2.9 \mathrm{~Hz}\right), 130.3,129.2,127.9\left(\mathrm{~d}, J_{C-P}=12.0 \mathrm{~Hz}\right), 127.7\left(\mathrm{~d}, J_{C-P}=12.1 \mathrm{~Hz}\right), 125.1,123.5$ $\left(\mathrm{d}, J_{C-P}=110.9 \mathrm{~Hz}\right), 113.9,55.3,21.8 ;{ }^{31} \mathbf{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 29.73$; HRMS (ESI, m/z): calculated for $\mathrm{C}_{35} \mathrm{H}_{29} \mathrm{NO}_{2} \mathrm{P}^{+}$: 526.1930 , found: $526.1930[\mathrm{M}+\mathrm{H}]^{+}$.

4 p
4p, Light yellow solid, 50 \% yield, ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.74-7.53(\mathrm{~m}, 10 \mathrm{H})$, 7.51$7.45(\mathrm{~m}, 1 \mathrm{H}), 7.41(\mathrm{dd}, J=8.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.15(\mathrm{~m}, 6 \mathrm{H}), 7.12-7.00(\mathrm{~m}, 3 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H})$, $3.96(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.0\left(\mathrm{~d}, J_{C-P}=3.9 \mathrm{~Hz}\right), 148.9\left(\mathrm{~d}, J_{C-P}=\right.$ $25.1 \mathrm{~Hz}), 146.5\left(\mathrm{~d}, J_{C-P}=11.8 \mathrm{~Hz}\right), 145.8\left(\mathrm{~d}, J_{C-P}=8.1 \mathrm{~Hz}\right), 136.1,134.7\left(\mathrm{~d}, J_{C-P}=10.9 \mathrm{~Hz}\right)$, $133.2\left(\mathrm{~d}, J_{C-P}=105.0 \mathrm{~Hz}\right), 132.3,132.0\left(\mathrm{~d}, J_{C-P}=2.3 \mathrm{~Hz}\right), 131.6\left(\mathrm{~d}, J_{C-P}=9.7 \mathrm{~Hz}\right), 131.3,131.2$, $130.9,130.8,130.8,130.6,129.2,127.9\left(\mathrm{~d}, J_{C-P}=11.9 \mathrm{~Hz}\right), 127.7\left(\mathrm{~d}, J_{C-P}=12.1 \mathrm{~Hz}\right), 125.1$, 124.1, 122.9, 122.2, 112.9, 111.0, 56.0, 55.9, 21.8; ${ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 29.71$; HRMS (ESI, \mathbf{m} / \mathbf{z}): calculated for $\mathrm{C}_{36} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{P}^{+}$: 556.2036, found: $556.2037[\mathrm{M}+\mathrm{H}]^{+}$.

$4 q$
$\mathbf{4 q}$, Light yellow solid, 58% yield, ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.98(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{~d}$,
$J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{dd}, J=7.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.64(\mathrm{~m}, 3 \mathrm{H}), 7.61(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-$ $7.22(\mathrm{~m}, 14 \mathrm{H}), 7.21-7.13(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $170.3,156.5\left(\mathrm{~d}, J_{C-P}=4.1 \mathrm{~Hz}\right), 146.6\left(\mathrm{~d}, J_{C-P}=7.3 \mathrm{~Hz}\right), 146.1,142.3,136.5\left(\mathrm{~d}, J_{C-P}=49.3 \mathrm{~Hz}\right)$, $133.4\left(\mathrm{~d}, J_{C-P}=2.2 \mathrm{~Hz}\right), 133.3,132.6\left(\mathrm{~d}, J_{C-P}=41.2 \mathrm{~Hz}\right), 132.2\left(\mathrm{~d}, J_{C-P}=2.4 \mathrm{~Hz}\right), 131.9,131.8$, $131.7,131.6,131.5\left(\mathrm{~d}, J_{C-P}=2.8 \mathrm{~Hz}\right), 131.3\left(\mathrm{~d}, J_{C-P}=10.0 \mathrm{~Hz}\right), 130.9\left(\mathrm{~d}, J_{C-P}=9.4 \mathrm{~Hz}\right), 130.0$, $129.1,128.9\left(\mathrm{~d}, J_{C-P}=46.1 \mathrm{~Hz}\right), 128.5\left(\mathrm{~d}, J_{C-P}=12.0 \mathrm{~Hz}\right), 128.1\left(\mathrm{~d}, J_{C-P}=12.3 \mathrm{~Hz}\right), 127.6\left(\mathrm{~d}, J_{C-P}\right.$ $=12.5 \mathrm{~Hz}), 125.9,124.9\left(\mathrm{~d}, J_{C-P}=93.8 \mathrm{~Hz}\right), 123.9\left(\mathrm{~d}, J_{C-P}=49.3 \mathrm{~Hz}\right), 24.0,21.6 ;{ }^{31} \mathbf{P} \mathbf{N M R}(162$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 30.87; HRMS (ESI, \mathbf{m} / \mathbf{z}): calculated for $\mathrm{C}_{36} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{PNa}^{+}$: 575.1859, found: $575.1860[\mathrm{M}+\mathrm{Na}]^{+}$.

$4 r$
4r, Light yellow solid, 69 \% yield, ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.95-7.89 (m, 3H), 7.81-7.69 (m, 2H), 7.69-7.39 (m, 13H), 7.30-7.17 (m, 6H), $2.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.0\left(\mathrm{~d}, J_{C-P}=3.8 \mathrm{~Hz}\right), 146.5\left(\mathrm{~d}, J_{C-P}=47.3 \mathrm{~Hz}\right), 145.7\left(\mathrm{~d}, J_{C-P}=8.1\right.$ $\mathrm{Hz}), 136.4,135.5,134.7\left(\mathrm{~d}, J_{C-P}=10.8 \mathrm{~Hz}\right), 133.8,133.1,132.8\left(\mathrm{~d}, \mathrm{~J}_{C-P}=12.1 \mathrm{~Hz}\right), 132.3,132.0$ $\left(\mathrm{d}, \mathrm{J}_{C-P}=2.3 \mathrm{~Hz}\right), 131.7\left(\mathrm{~d}, \mathrm{~J}_{C-P}=9.7 \mathrm{~Hz}\right), 131.4,131.3,130.9,130.9\left(\mathrm{~d}, J_{C-P}=2.7 \mathrm{~Hz}\right), 129.2$, 128.7, 128.2, 128.0, 127.9, 127.8, 127.7, 127.6, 127.4, 126.4 (d, $J_{C-P}=6.6 \mathrm{~Hz}$), 125.1, 124.1, 123.1, $21.8 ;{ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 29.93; HRMS (ESI, \mathbf{m} / \mathbf{z}): calculated for $\mathrm{C}_{38} \mathrm{H}_{29} \mathrm{NOP}$ ${ }^{+}$: 546.1981 , found: $546.1981[\mathrm{M}+\mathrm{H}]^{+}$.

4s
4s, Light yellow solid, 37 \% yield, ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77-7.59(\mathrm{~m}, 7 \mathrm{H})$, 7.58 $7.43(\mathrm{~m}, 9 \mathrm{H}), 7.41(\mathrm{dd}, J=8.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.16(\mathrm{~m}, 5 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.0\left(\mathrm{~d}, J_{C-P}=3.8 \mathrm{~Hz}\right), 146.5\left(\mathrm{~d}, J_{C-P}=41.5 \mathrm{~Hz}\right), 145.8\left(\mathrm{~d}, J_{C-P}=8.1 \mathrm{~Hz}\right), 138.1$, $136.3,134.7\left(\mathrm{~d}, J_{C-P}=11.0 \mathrm{~Hz}\right), 133.7,132.7,132.3,132.0\left(\mathrm{~d}, J_{C-P}=2.5 \mathrm{~Hz}\right), 131.7\left(\mathrm{~d}, J_{C-P}=9.7\right.$ $\mathrm{Hz}), 131.1\left(\mathrm{~d}, J_{C-P}=42.0 \mathrm{~Hz}\right), 131.0,130.9,129.6,129.2,128.4,128.1,127.9\left(\mathrm{~d}, J_{C-P}=12.0 \mathrm{~Hz}\right)$, $127.7\left(\mathrm{~d}, J_{C-P}=12.2 \mathrm{~Hz}\right), 124.9,124.1,123.0,21.8 ;{ }^{31} \mathbf{P}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 29.80$; HRMS (ESI, \mathbf{m} / \mathbf{z}): calculated for $\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{BNO}_{3} \mathrm{P}^{+}: 540.1894$, found: $540.1897[\mathrm{M}+\mathrm{H}]^{+}$.

$4 t$

4t, Light yellow solid, 68 \% yield, ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78(\mathrm{dd}, J=13.9,7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.74-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.62-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.27(\mathrm{~m}, 7 \mathrm{H}), 7.27-7.22(\mathrm{~m}$, $1 \mathrm{H}), 7.20-7.11(\mathrm{~m}, 3 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $156.8\left(\mathrm{~d}, J_{C-P}=3.5 \mathrm{~Hz}\right), 146.5\left(\mathrm{~d}, J_{C-P}=157.3 \mathrm{~Hz}\right), 145.6\left(\mathrm{~d}, J_{C-P}=7.5 \mathrm{~Hz}\right), 137.6,136.2\left(\mathrm{~d}, J_{C-P}\right.$ $=29.8 \mathrm{~Hz}), 135.0\left(\mathrm{~d}, J_{C-P}=10.8 \mathrm{~Hz}\right), 134.2\left(\mathrm{~d}, J_{C-P}=7.7 \mathrm{~Hz}\right), 133.1\left(\mathrm{~d}, J_{C-P}=7.7 \mathrm{~Hz}\right), 131.9(\mathrm{~d}$, $\left.J_{C-P}=9.6 \mathrm{~Hz}\right), 131.9\left(\mathrm{~d}, J_{C-P}=2.5 \mathrm{~Hz}\right), 131.6\left(\mathrm{~d}, J_{C-P}=110.0 \mathrm{~Hz}\right), 131.6\left(\mathrm{~d}, J_{C-P}=9.7 \mathrm{~Hz}\right), 131.4$, $131.1\left(\mathrm{~d}, J_{C-P}=13.6 \mathrm{~Hz}\right), 131.0\left(\mathrm{~d}, J_{C-P}=0.9 \mathrm{~Hz}\right), 130.8\left(\mathrm{~d}, J_{C-P}=2.7 \mathrm{~Hz}\right), 129.7\left(\mathrm{~d}, J_{C-P}=48.1\right.$ $\mathrm{Hz}), 128.6\left(\mathrm{~d}, J_{C-P}=100.4 \mathrm{~Hz}\right), 128.0,127.9,127.7\left(\mathrm{~d}, J_{C-P}=3.8 \mathrm{~Hz}\right), 127.6,125.6,124.9\left(\mathrm{~d}, J_{C-P}\right.$ $=133.9 \mathrm{~Hz}$), 124.2, 21.7, 20.1; ${ }^{\mathbf{3 1}} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 30.51$; HRMS (ESI, \mathbf{m} / \mathbf{z}): calculated for $\mathrm{C}_{35} \mathrm{H}_{29} \mathrm{NOP}^{+}$: 510.1981 , found: $510.1982[\mathrm{M}+\mathrm{H}]^{+}$

4u
4u, Light yellow solid, 68 \% yield, ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.77(\mathrm{dd}, J=13.5,8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.70-7.57(\mathrm{~m}, 6 \mathrm{H}), 7.56-7.46(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 5 \mathrm{H}), 7.22-7.15(\mathrm{~m}$, $4 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.0\left(\mathrm{~d}, J_{C-P}=3.8 \mathrm{~Hz}\right), 146.6(\mathrm{~d}$, $\left.J_{C-P}=79.4 \mathrm{~Hz}\right), 145.7\left(\mathrm{~d}, J_{C-P}=8.2 \mathrm{~Hz}\right), 138.1,138.0,136.2,134.7\left(\mathrm{~d}, J_{C-P}=10.7 \mathrm{~Hz}\right), 133.8$, $132.8,132.3,132.0\left(\mathrm{~d}, J_{C-P}=2.3 \mathrm{~Hz}\right), 131.7\left(\mathrm{~d}, J_{C-P}=9.7 \mathrm{~Hz}\right), 131.3,131.1\left(\mathrm{~d}, J_{C-P}=42.2 \mathrm{~Hz}\right)$, $130.9,130.8,130.1,129.0\left(\mathrm{~d}, J_{C-P}=27.6 \mathrm{~Hz}\right), 128.3,127.9\left(\mathrm{~d}, J_{C-P}=12.0 \mathrm{~Hz}\right), 127.7\left(\mathrm{~d}, J_{C-P}=\right.$ 12.2 Hz), 126.7, $125.0,124.1,122.7,21.8,21.5 ;{ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 29.88$; HRMS (ESI, \mathbf{m} / \mathbf{z}): calculated for $\mathrm{C}_{35} \mathrm{H}_{29} \mathrm{NOP}^{+}: 510.1981$, found: $510.1982[\mathrm{M}+\mathrm{H}]^{+}$.

4v, Light yellow solid, 69 \% yield, ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75(\mathrm{dd}, J=13.7,7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.70-7.53$ (m, 8H), 7.52-7.45 (m, 2H), 7.41-7.36 (m, 3H), 7.32 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.27-7.14 $(\mathrm{m}, 6 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.9\left(\mathrm{~d}, J_{C-P}=3.8 \mathrm{~Hz}\right), 146.8$, $146.3,145.8\left(\mathrm{~d}, J_{C-P}=8.1 \mathrm{~Hz}\right), 138.0,135.6\left(\mathrm{~d}, J_{C-P}=102.5 \mathrm{~Hz}\right), 134.7\left(\mathrm{~d}, J_{C-P}=10.7 \mathrm{~Hz}\right), 133.7$, 132.7, 132.3, $132.0\left(\mathrm{~d}, J_{C-P}=2.4 \mathrm{~Hz}\right), 131.7\left(\mathrm{~d}, J_{C-P}=9.6 \mathrm{~Hz}\right), 131.3,131.2,130.9,130.8,130.8$, $129.3\left(\mathrm{~d}, J_{C-P}=35.3 \mathrm{~Hz}\right), 129.2,127.9\left(\mathrm{~d}, J_{C-P}=11.9 \mathrm{~Hz}\right), 127.6\left(\mathrm{~d}, J_{C-P}=12.1 \mathrm{~Hz}\right), 125.0,123.5$ $\left(\mathrm{d}, J_{C-P}=126.2 \mathrm{~Hz}\right), 21.8,21.2 ;{ }^{31} \mathbf{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 29.78$; HRMS (ESI, m/z): calculated for $\mathrm{C}_{35} \mathrm{H}_{29} \mathrm{NOP}^{+}: 510.1981$, found: $510.1982[\mathrm{M}+\mathrm{H}]^{+}$.

4w
4w, Light yellow solid, 53 \% yield, ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93-7.27(\mathrm{~m}, 18 \mathrm{H}), 7.25-$
$6.84(\mathrm{br}, 4 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.1\left(\mathrm{~d}, J_{C-P}=4.8 \mathrm{~Hz}\right.$), $146.2\left(\mathrm{~d}, J_{C-P}=3.1 \mathrm{~Hz}\right), 144.5\left(\mathrm{~d}, J_{C-P}=8.9 \mathrm{~Hz}\right), 137.9,137.8\left(\mathrm{~d}, J_{C-P}=9.7 \mathrm{~Hz}\right), 136.3,134.4(\mathrm{~d}$, $\left.J_{C-P}=2.5 \mathrm{~Hz}\right), 133.1,132.5,132.1,131.8\left(\mathrm{~d}, J_{C-P}=9.8 \mathrm{~Hz}\right), 131.5\left(\mathrm{~d}, J_{C-P}=11.3 \mathrm{~Hz}\right), 131.5$, $130.9,129.8,129.2,128.4,128.1,127.8,127.7,124.8,124.5,124.0,21.8,20.4 ;{ }^{31} \mathbf{P}$ NMR (162 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 28.91$; HRMS (ESI, \mathbf{m} / \mathbf{z}): calculated for $\mathrm{C}_{35} \mathrm{H}_{29} \mathrm{NOP}^{+}: 510.1981$, found: 510.1982 $[\mathrm{M}+\mathrm{H}]^{+}$.

4 x
4x, Light yellow solid, 65% yield, ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.67-7.59(\mathrm{~m}, 4 \mathrm{H}), 7.56(\mathrm{dd}, J=7.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.36(\mathrm{~m}, 10 \mathrm{H}), 7.27-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.20-$ $7.12(\mathrm{~m}, 4 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.1\left(\mathrm{~d}, J_{C-P}=3.6 \mathrm{~Hz}\right)$, $146.5\left(\mathrm{~d}, J_{C-P}=8.2 \mathrm{~Hz}\right), 142.7\left(\mathrm{~d}, J_{C-P}=8.2 \mathrm{~Hz}\right), 138.0,137.9,136.1,135.2\left(\mathrm{~d}, J_{C-P}=10.2 \mathrm{~Hz}\right)$, $133.8,132.8,132.6\left(\mathrm{~d}, J_{C-P}=2.5 \mathrm{~Hz}\right), 132.0,131.8\left(\mathrm{~d}, J_{C-P}=9.8 \mathrm{~Hz}\right), 131.3,131.0,130.8,130.8$, $130.7,129.0\left(\mathrm{~d}, J_{C-P}=110.8 \mathrm{~Hz}\right), 128.6\left(\mathrm{~d}, J_{C-P}=97.4 \mathrm{~Hz}\right), 127.6\left(\mathrm{~d}, J_{C-P}=12.2 \mathrm{~Hz}\right), 124.8$, 124.0, 122.8, 21.8, 21.3; ${ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 30.48$; HRMS (ESI, \mathbf{m} / \mathbf{z}): calculated for $\mathrm{C}_{35} \mathrm{H}_{29} \mathrm{NOP}^{+}: 510.1981$, found: $510.1982[\mathrm{M}+\mathrm{H}]^{+}$.

${ }^{4 y}$
4y, Light brown solid, 50% yield, ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01-7.86(\mathrm{~m}, 4 \mathrm{H})$, $7.81(\mathrm{dd}, J=11.7,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.49(\mathrm{~m}, 6 \mathrm{H}), 7.49-7.31(\mathrm{~m}, 9 \mathrm{H}), 7.02-$ $6.74(\mathrm{~m}, 3 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.3\left(\mathrm{~d}, J_{C-P}=5.5 \mathrm{~Hz}\right), 146.2\left(\mathrm{~d}, J_{C-P}\right.$ $=16.5 \mathrm{~Hz}), 144.3\left(\mathrm{~d}, J_{C-P}=8.9 \mathrm{~Hz}\right), 137.8,136.6,135.0\left(\mathrm{~d}, J_{C-P}=2.1 \mathrm{~Hz}\right), 132.3,132.2,131.4$, $131.2,131.1\left(\mathrm{~d}, J_{C-P}=8.6 \mathrm{~Hz}\right), 130.4,129.8,129.4,128.8,128.4,128.3\left(\mathrm{~d}, J_{C-P}=5.7 \mathrm{~Hz}\right), 128.2$, $128.1,128.1,128.0,127.9,127.2\left(\mathrm{~d}, J_{C-P}=12.8 \mathrm{~Hz}\right), 127.0\left(\mathrm{~d}, J_{C-P}=3.9 \mathrm{~Hz}\right), 125.3,125.1,124.1$, 21.8; ${ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 29.26; HRMS (ESI, \mathbf{m} / \mathbf{z}): calculated for $\mathrm{C}_{38} \mathrm{H}_{28} \mathrm{NOP} \mathrm{Na}^{+}$: 568.1801 , found: $568.1801[\mathrm{M}+\mathrm{Na}]^{+}$.

$4 z$
4z, Light yellow solid, 63% yield, ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.61(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H})$, $8.51-8.42(\mathrm{~m}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.68(\mathrm{~m}, 5 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.62-7.57(\mathrm{~m}, 2 \mathrm{H})$, 7.56-7.43 (m, 12H), $2.45(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.6,148.7,147.2,140.2(\mathrm{~d}$, $\left.J_{C-P}=11.7 \mathrm{~Hz}\right), 138.2,136.6,133.4,132.9,132.5,132.1\left(\mathrm{~d}, J_{C-P}=49.7 \mathrm{~Hz}\right), 132.1\left(\mathrm{~d}, J_{C-P}=9.9\right.$ $\mathrm{Hz}), 131.9\left(\mathrm{~d}, J_{C-P}=2.7 \mathrm{~Hz}\right), 131.8,131.0\left(\mathrm{~d}, J_{C-P}=2.6 \mathrm{~Hz}\right), 130.9\left(\mathrm{~d}, J_{C-P}=9.8 \mathrm{~Hz}\right), 129.8,129.0$ $\left(\mathrm{d}, J_{C-P}=89.7 \mathrm{~Hz}\right), 128.8\left(\mathrm{~d}, J_{C-P}=12.5 \mathrm{~Hz}\right), 128.4\left(\mathrm{~d}, J_{C-P}=6.7 \mathrm{~Hz}\right), 128.3,125.8,124.3$, 119.2,
21.8; ${ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 29.46; HRMS (ESI, \mathbf{m} / \mathbf{z}): calculated for $\mathrm{C}_{34} \mathrm{H}_{27} \mathrm{NOP}^{+}$: 496.1825, found: $496.1827[\mathrm{M}+\mathrm{H}]^{+}$.

4aa
4aa, Light yellow solid, 58 \% yield, ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66-7.55(\mathrm{~m}, 5 \mathrm{H})$, 7.55$7.42(\mathrm{~m}, 7 \mathrm{H}), 7.40(\mathrm{dd}, J=8.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.09(\mathrm{~m}, 8 \mathrm{H}), 6.05(\mathrm{~s}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.5\left(\mathrm{~d}, J_{C-P}=4.1 \mathrm{~Hz}\right), 150.4\left(\mathrm{~d}, J_{C-P}=2.6 \mathrm{~Hz}\right), 147.4\left(\mathrm{~d}, J_{C-P}=17.7\right.$ $\mathrm{Hz}), 146.5\left(\mathrm{~d}, J_{C-P}=38.2 \mathrm{~Hz}\right), 141.7\left(\mathrm{~d}, J_{C-P}=9.0 \mathrm{~Hz}\right), 138.0,136.2,133.2\left(\mathrm{~d}, J_{C-P}=105.8 \mathrm{~Hz}\right)$, $131.6\left(\mathrm{~d}, J_{C-P}=9.6 \mathrm{~Hz}\right), 131.3,130.8\left(\mathrm{~d}, J_{C-P}=2.7 \mathrm{~Hz}\right), 129.6,129.1,128.4,128.1,127.7\left(\mathrm{~d}, J_{C-P}\right.$ $=12.2 \mathrm{~Hz}), 125.7,124.9,124.7,124.0,123.1,114.0\left(\mathrm{~d}, J_{C-P}=13.3 \mathrm{~Hz}\right), 111.5\left(\mathrm{~d}, J_{C-P}=12.1 \mathrm{~Hz}\right)$, 101.9, 21.7; ${ }^{31} \mathbf{P}$ NMR (162 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 29.45; HRMS (ESI, \mathbf{m} / \mathbf{z}): calculated for $\mathrm{C}_{35} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{P}$ ${ }^{+}$: 540.1723 , found: $540.1726[\mathrm{M}+\mathrm{H}]^{+}$.

4ab, light yellow solid, 63% yield, ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78-7.68(\mathrm{~m}, 1 \mathrm{H})$, $7.66-$ $7.37(\mathrm{~m}, 14 \mathrm{H}), 7.29-7.14(\mathrm{~m}, 7 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.8\left(\mathrm{~d}, J_{C-P}=\right.$ $2.8 \mathrm{~Hz}), 163.3\left(\mathrm{~d}, J_{C-P}=3.0 \mathrm{~Hz}\right), 155.6\left(\mathrm{dd}, J_{C-F}=1.7 \mathrm{~Hz}, \mathrm{~J}_{C-P}=3.4 \mathrm{~Hz}\right), 148.6\left(\mathrm{dd}, J_{C-F}=7.9 \mathrm{~Hz}\right.$, $\left.\mathrm{J}_{C-P}=9.6 \mathrm{~Hz}\right), 146.9,146.2,137.8,137.3\left(\mathrm{dd}, J_{C-F}=8.9 \mathrm{~Hz}, \mathrm{~J}_{C-P}=12.3 \mathrm{~Hz}\right), 136.6,133.3,132.2$, 131.6, 131.5, $131.0\left(\mathrm{~d}, J_{C-P}=2.6 \mathrm{~Hz}\right), 129.0\left(\mathrm{~d}, J_{C-P}=105.9 \mathrm{~Hz}\right), 128.7\left(\mathrm{~d}, J_{C-P}=89.1 \mathrm{~Hz}\right), 127.8$ $\left(\mathrm{d}, J_{C-P}=12.2 \mathrm{~Hz}\right), 127.4\left(\mathrm{~d}, J_{C-P}=3.3 \mathrm{~Hz}\right), 125.0,124.0,122.7,118.3\left(\mathrm{dd}, J_{C-F}=10.6 \mathrm{~Hz}, \mathrm{~J}_{C-P}=\right.$ $21.9 \mathrm{~Hz}), 115.0\left(\mathrm{dd}, J_{C-F}=13.0 \mathrm{~Hz}, \mathrm{~J}_{C-P}=20.4 \mathrm{~Hz}\right), 21.8 ;{ }^{31} \mathbf{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 28.92$; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta-106.54$; HRMS (ESI, m/z): calculated for $\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{FNOP}^{+}$: 514.1731, found: $514.1731[\mathrm{M}+\mathrm{H}]^{+}$.

4ac
4ac, yellow solid, 37% yield, ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.31$ (ddd, $J=10.7,5.6,3.5 \mathrm{~Hz}$, $1 \mathrm{H}), 8.06(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{dd}, J=8.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.50(\mathrm{~m}, 8 \mathrm{H})$, $7.47(\mathrm{~s}, 1 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 1.89-1.53(\mathrm{~m}, 13 \mathrm{H}), 1.35-1.23(\mathrm{~m}, 3 \mathrm{H}), 1.19-1.09(\mathrm{~m}, 2 \mathrm{H}), 0.99-0.90(\mathrm{~m}$, 4H); ${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.5\left(\mathrm{~d}, J_{C-P}=2.0 \mathrm{~Hz}\right), 148.6,146.1,142.8\left(\mathrm{~d}, J_{C-P}=8.0\right.$ $\mathrm{Hz}), 137.9,137.0,132.4,131.4,130.7\left(\mathrm{~d}, J_{C-P}=2.3 \mathrm{~Hz}\right), 130.6,130.2\left(\mathrm{~d}, J_{C-P}=8.8 \mathrm{~Hz}\right), 129.4$, $129.0,128.6,128.5,128.2\left(\mathrm{~d}, J_{C-P}=9.4 \mathrm{~Hz}\right), 125.3,124.7,122.4,38.7,38.0,26.7\left(\mathrm{dd}, J_{C-P}=12.9\right.$, $9.3 \mathrm{~Hz}), 26.4\left(\mathrm{dd}, J_{C-P}=11.7,3.5 \mathrm{~Hz}\right), 25.7,21.9 ;{ }^{31} \mathbf{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 50.17$; HRMS (ESI, m/z): calculated for $\mathrm{C}_{34} \mathrm{H}_{39} \mathrm{NOP}^{+}: 508.2764$, found: $508.2763[\mathrm{M}+\mathrm{H}]^{+}$.

5w
5w, White solid, 73 \% yield, ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.61 (s, $1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.08(\mathrm{~m}, 14 \mathrm{H}), 6.92-6.83(\mathrm{~m}, 2 \mathrm{H}), 2.38$ ($\mathrm{s}, 3 \mathrm{H}$), $2.10(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.3\left(\mathrm{~d}, J_{C-P}=5.4 \mathrm{~Hz}\right.$), 146.9, 146.6, 146.4, $146.0,138.1,137.7,137.5,136.5,136.4,136.3,134.1,133.8,131.5\left(\mathrm{~d}, J_{C-P}=5.5 \mathrm{~Hz}\right), 131.0$, 129.7, 129.6, 128.3, 128.2, 128.0, 125.1, 124.2, $123.9\left(\mathrm{~d}, J_{C-P}=5.5 \mathrm{~Hz}\right), 21.8,20.4 ;{ }^{31} \mathbf{P}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-12.15$; HRMS (ESI, \mathbf{m} / \mathbf{z}): calculated for $\mathrm{C}_{35} \mathrm{H}_{29} \mathrm{NP}^{+}$: 494.2032, found: $494.2032[\mathrm{M}+\mathrm{H}]^{+}$.

5y
5y, Light yellow solid, 80 \% yield, ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98-7.92(\mathrm{~m}, 1 \mathrm{H}), 7.73$ $(\mathrm{dd}, J=16.2,7.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.49(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.10(\mathrm{~m}, 19 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.5\left(\mathrm{~d}, J_{C-P}=7.5 \mathrm{~Hz}\right), 147.0,146.7,145.6,145.2,138.1,136.6,133.9$, 133.7, 133.6, 132.2, 132.1, 131.6, 129.9, 129.8, 129.6, 128.4, 128.3, 128.1, 127.9, 126.6, 126.5 , 126.5, 126.5, 125.3, 124.8, 124.8, 21.8; ${ }^{31} \mathbf{P}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-11.92$; HRMS (ESI, \mathbf{m} / \mathbf{z}): calculated for $\mathrm{C}_{38} \mathrm{H}_{29} \mathrm{NP}^{+}: 530.2032$, found: $530.2031[\mathrm{M}+\mathrm{H}]^{+}$.

7. References

[1] M. L. Abrams, F. Foarta and C. R. Landis, J. Am. Chem. Soc., 2014, 136, 14583.
[2] A. K. Morri, Y. Thummala and V. R. Doddi, Org. Lett., 2015, 17, 4640.
[3] X. Qi, H. Zhang, Z. Pan, R.-B. Liang, C. Zhu, J. Li, Q. Tong, X. Gao, L. Wu and J. Zhong, Chem. Comтип., 2019, 55, 10848.
[4] V. Ravindar, H. Hemling, H. Schumann and J. Blum, Synth. Commun., 1992, 22 ,1453.
[5] W. Ren, Q.-M. Zuo and S.-D. Yang, Synlett, 2019, 30, 1719.
[6] G. London, M. Von, W. Rakowski, O. Dumile, W. B. Schweizer, J.-P. Gisselbrecht, C. Boudon and F. Diederich, Chem. Sci., 2014, 5, 965.
[7] F. Puls, N. Richter, O. Kataeva and H. J. Knolker, Chem. Eur. J., 2017, 23, 17576.

7. Copies of NMR spectra

(

\% 5\%

4h

[^0]

40

$\begin{array}{lllllllllllllllll}130 & 110 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & & -30 & & -50 \\ & & & (\mathrm{ppm})\end{array}$

$\stackrel{\otimes}{\stackrel{\circ}{1}}$

4s

꺼․

$\stackrel{\otimes}{\stackrel{\otimes}{1}}$

(10)

5w

$5 y$

$$
\stackrel{\circ}{=}
$$

$5 y$

[^0]:

