Supporting Information

Photocontrolled Bromine-Iodine Transformation Reversible-Deactivation Radical Polymerization: Facile Synthesis of Star

Copolymers and Unimolecular Micelles

Haihui Li, Haitao Zhao, Lan Yao, Lifen Zhang,* Zhenping Cheng,* Xiulin Zhu

Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China. E-mail: chengzhenping@suda.edu.cn (Z. P. Cheng), zhanglifen@suda.edu.cn (L. F. Zhang)

Scheme S1. The structure types of the initiator precursor which are suitable for BIT-RDRP.

Scheme S2. The chemical structures of monomers used in this work.

Entry	Wavelength (nm)	t (h)	Solvent	R	^b Conv. (%)	M _{n,th} (g/mol)	^c M _{n,GPC} (g/mol)	${}^c \! \! D$
1	660	24	CH ₂ Cl ₂	400/1/8/2	88.7	36800	48700	1.33
2	460	24	CH_2Cl_2	400/1/8/2	92.3	38300	55300	1.21
3	660	24	DMF	200/1/8/2	90.8	19700	29800	1.11
4	660	24	DMF	200/1/8/0	65.5	14600	20200	1.08
5	660	24	DMF	50/1/8/2	89.7	6000	9200	1.59
6	660	24	DMF	400/1/8/2	84.3	35200	51400	1.47
7	460	14	DMF	100/1/8/2	44.7	5900	8300	1.14
8	460	14	DMF	200/1/8/2	49.4	11400	21900	1.18
9	460	14	DMF	400/1/8/2	54.4	23300	37800	1.14
10	460	24	DMSO	400/1/8/2	80.8	33800	54400	1.70
11	460	24	toluene	400/1/8/2	49.1	21100	25200	1.22
12	460	24	toluene	400/1/8/4	21.5	10100	32300	1.47
13	460	14	DMF	100/1/12/2	64.0	7900	5100	1.16
14	460	14	DMF	200/1/12/2	78.5	14200	21900	1.19
15	460	14	DMF	400/1/12/2	69.3	29200	33400	1.20

Table S1. ^aPolymerization of MMA.

^{*a*}Polymerization conditions: $R = [MMA]_0/[THPP-4Br]_0/[NaI]_0/[TEA]_0$, $V_{MMA} = 0.3 \text{ mL}$, $V_{Solvent} = 0.6 \text{ mL}$, under irradiation with red LED light ($\lambda_{max} = 660 \text{ nm}$, 32.8 mW/cm²) or blue LED light ($\lambda_{max} = 460 \text{ nm}$, 15 mW/cm²) at 25 °C. ^{*b*}Determined by gravimetry. ^{*c*}Determined by GPC using linear PMMA as the standard in THF.

Entry	t (h)	Solvent	R	^b Conv. (%)	M _{n,th} (g/mol)	^c M _{n,GPC} (g/mol)	c Đ
1	12	Methanol	20/1/12/2	45.8	6000	15800	1.31
2	8	DMF	80/1/12/2	24.8	11400	71200	1.75
3	8	DMSO	80/1/12/2	39.2	17100	80800	1.30
4	12	Anisole	80/1/12/2	21.6	10100	22700	1.16
5	12	Acetone	80/1/12/2	52.5	22500	59300	1.55
6	12	Dioxane	80/1/12/2	27.4	12400	33000	1.27
7	12	Ethanol	20/1/12/2	88.7	10300	12200	1.31
8	12	Ethanol	40/1/12/2	72.4	15900	17300	1.24
9	12	Ethanol	80/1/12/2	75.6	31700	34100	1.27

Table S2. ^aPolymerization of PEGMA₅₀₀.

^{*a*}Polymerization conditions: $R = [PEGMA]_0/[THPP-4Br]_0/[NaI]_0/[TEA]_0, V_{PEGMA} = 0.3 mL, V_{Solvent} = 0.6 mL, under irradiation with blue LED light (<math>\lambda_{max} = 460 \text{ nm}, 15 \text{ mW/cm}^2$) at 25 °C. ^{*b*}Determined by gravimetry. ^{*c*}Determined by GPC using linear PMMA as the standard in THF.

Table S3 ^aPolymerization of PEGMA₅₀₀ by using linear PMMA as the macroinitiator.

Entry	t (h)	M _{n,PMMA} (g/mol)	R	^b M _{n,GPC} (g/mol)	^c M _{n,NMR} (g/mol)	${}^{b} \! {oldsymbol{\mathcal{B}}}$	^d BR
1	72	11500	400/1/3/0.5	40400	43300	1.23	PMMA ₁₁₂ - <i>b</i> -PPEGMA ₆₄
2	72	15000	400/1/3/0.5	30500	32800	1.29	PMMA ₁₄₇ - <i>b</i> -PPEGMA ₃₆
3	72	18000	400/1/3/0.5	42400	44100	1.32	PMMA ₁₇₇ - <i>b</i> -PPEGMA ₅₂

^{*a*}Polymerization conditions: $R = [PEGMA]_0/[PMMA]_0/[NaI]_0/[TEA]_0, V_{PEGMA_{500}} = 0.5 mL, V_{C_2H_5OH} = 1.0 mL$, under irradiation with blue LED light ($\lambda_{max} = 460 \text{ nm}$, 15 mW/cm²) at 25 °C. ^{*b*}Determined by GPC using linear PMMA as the standard in THF. ^{*c*}Calculated by ¹H NMR results. ^{*d*}Block ratio of amphiphilic linear block copolymers calculated from ¹H NMR results.

Entry	BR	^{a}Rc (nm)	^b Ro (nm)	$^{c}R_{\rm S}({\rm nm})$
1	THPP-4PMMA ₉₃ - <i>b</i> -4PPEGMA ₆₆	1.3	8.3	7.0
2	THPP-4PMMA ₁₁₅ - <i>b</i> -4PPEGMA ₆₃	1.4	9.1	7.7
3	THPP-4PMMA ₁₆₇ -b-4PPEGMA ₆₂	1.4	10.6	9.2
4	THPP-4PMMA ₁₀₅ - <i>b</i> -4PPEGMA ₅₂	1.4	8.6	7.2
8	THPP-4PMMA ₁₃₁ - <i>b</i> -4PPEGMA ₆₆	1.4	9.6	8.2
10	THPP-4PMMA ₁₅₈ - <i>b</i> -4PPEGMA ₅₀	1.4	10.2	8.8
11	THPP-4PMMA ₁₅₈ - <i>b</i> -4PPEGMA ₇₁	1.4	10.4	9.0
13	THPP-4PMMA ₁₇₁ - <i>b</i> -4PPEGMA ₅₆	1.4	10.6	9.2
14	THPP-4PMMA ₁₇₁ -b-4PPEGMA ₆₆	1.4	10.7	9.3

Table S4 Estimation of the hydrodynamic radius of UIM.

^{*a*}The hydrodynamic radius of the core, $R_{\rm C} = N_{\rm B}^{0.065}$. ^{*b*}The hydrodynamic radius of the overall micelle, $R_{\rm O} = N_{\rm B}^{0.408}N_{\rm A}^{0.065}$. ^{*c*}The hydrodynamic radius of the shell, $R_{\rm S} = R_{\rm O} - R_{\rm C}$. $N_{\rm B}$ and $N_{\rm A}$ are respectively the polymerization degree of the hydrophobic and hydrophilic segments of the star block copolymer.

Figure S1. ¹H NMR spectrum of THPP-4Br in CDCl₃.

Figure S2. ¹³C NMR spectrum of THPP-4Br in CDCl₃.

Figure S3. MALDI-TOF MS spectrum of THPP-4Br in CHCl₃.

Figure S4. FT-IR spectra of THPP and THPP-4Br.

Figure S5. UV-vis absorption spectrum of THPP-4Br.

Figure S6. ¹H NMR spectrum of THPP-4PMMA ($M_{n,GPC} = 14600 \text{ g/mol}, D = 1.22$) in CDCl₃.

Figure S7. UV-vis absorption spectrum of THPP-4PMMA ($M_{n,NMR} = 14600 \text{ g/mol}, D = 1.22$).

Figure S8. Size distributions from DLS of star copolymer THPP-4PMMA-b-4PPEGMA micelles.

Figure S9. Size distributions from DLS of amphiphilic linear block copolymer PMMA-*b*-PPEGMA micelles.

Figure S10. TEM image of the amphiphilic linear block copolymer PMMA-*b*-PPEGMA micelles. Sample: PMMA₁₁₂-*b*-PPEGMA₆₄, $M_{n,GPC}$ = 40400 g/mol, $M_{n,NMR}$ = 43300 g/mol, D = 1.23.

Figure S11. ¹H NMR spectra of THPP-4PMMA ($M_{n,GPC} = 14600 \text{ g/mol}, D = 1.22$) and linear PMMA ($M_{n,GPC} = 4100 \text{ g/mol}, D = 1.09$) in CDCl₃.

Figure S12. FT-IR Spectra of THPP-4PMMA ($M_{n,GPC} = 14600 \text{ g/mol}$, D = 1.22) and linear PMMA ($M_{n,GPC} = 4100 \text{ g/mol}$, D = 1.09).

Figure S13. $\lg R_O / \lg N_A$ as a function of $\lg N_B / \lg N_A$.