Supplementary Information

Terpenoid-derived conjugated dienes with *exo*-methylene and a 6-membered ring: high cationic reactivity, regioselective living cationic polymerization, and random and block copolymerization with vinyl ethers

Takenori Nishida,[†] Kotaro Satoh,^{†,‡} Masazumi Tamura,^{*,§} Yingai Li,[∥] Keiichi Tomishige,[∥] Sylvain Caillol,[⊥] Vincent Ladmiral,[⊥] Marylène Vayer,[#] Frédéric Mahut,[#] Christophe Sinturel^{*,#} and Masami Kamigaito^{*,†}

[†]Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

[‡]Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H120 Ookayama, Meguro-ku, Tokyo 152-8550, Japan

[§]Research Center for Artificial Photosynthesis, Advanced Research Institute for Natural Science and Technology, Osaka City University, 3-3-138, Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan

^{II}Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07, Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan

LICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France

[#]Interfaces, Confinement, Matériaux et Nanostructures (ICMN), UMR 7374, CNRS-Université d'Orléans, CS 40059, F-45071 Orléans, France

 $e-mail:\ mtamura@osaka-cu.ac.jp,\ christophe.sinturel@univ-orleans.fr,\ kamigait@chembio.nagoya-u.ac.jp$

Contents:

Fig. S1
Fig. S2
Fig. S3
Fig. S4
Fig. S5
Fig. S6
Fig. S7
Fig. S8
Fig. S9 S9
Fig. S10
Fig. S11
Fig. S12
Fig. S13
Fig. S14
Fig. S15
Fig. S16
Fig. S17
Fig. S18
Fig. S19
Fig. S20
Fig. S21
Fig. S22
Table S1
Table S2 S19
Table S3

Fig. S1. SEC curves of the polymers obtained in conventional cationic polymerization of (–)-VnD, PtD, and (\pm)-HCvD: [M]₀/[Lewis acid]₀ = 100/5.0 mM in toluene/CH₂Cl₂ (50/50 vol%) at -78 °C.

Fig. S2. ¹H NMR spectra (in CDCl₃ at 55 °C) of (–)-VnD (A) and poly((–)-VnD) obtained in conventional cationic polymerization using EtAlCl₂ (B), TiCl₄ (C), BF₃OEt₂ (D), and SnCl₄ (E): $[(-)-VnD]_0/[Lewis acid]_0 = 100/5.0 \text{ mM}$ in toluene/CH₂Cl₂ (50/50 vol%) at –78 °C.

Fig. S3. SEC curves of poly(PtD) obtained in conventional cationic polymerization before heating (black) and after heating in THF at 60 °C (red): $[PtD]_0/[2]_0/[SnCl_4]_0/[nBu_4NCl]_0 = 100/1.0/5.0/4.0$ mM in toluene/CH₂Cl₂ (50/50 vol%) at -78 °C.

Fig. S5. ${}^{1}\text{H}{}^{-1}\text{H}$ COSY and HMQC spectra of poly((–)-CvD) in CDCl₃ at 55 °C: $[(-)-\text{VnD}]_{0}/[1]_{0}/[\text{SnCl}_{4}]_{0}/[n\text{Bu}_{4}\text{NCl}]_{0} = 100/4.0/5.0/4.0 \text{ mM in toluene/CH}_{2}\text{Cl}_{2} (50/50 \text{ vol }\%) \text{ at } -78 \text{ °C.}$

Fig. S7. ¹H-¹H COSY and HMQC spectra of poly(PtD) in CDCl₃ at 55 °C: $[PtD]_0/[1]_0/[SnCl_4]_0/[nBu_4NCl]_0 = 100/1.0/5.0/4.0 \text{ mM}$ in toluene/CH₂Cl₂ (50/50 vol %) at -78 °C.

Fig. S8. Time-conversion (A), M_n and M_w/M_n (B), and SEC curves (C) of poly((–)-VnD) obtained in living cationic polymerization: $[(-)-VnD]_0/[2]_0/[ZnCl_2]_0 = 500/10/10$ mM in toluene/Et₂O (19/1 vol%) at -78 °C.

Fig. S9. ¹H NMR spectra (in CDCl₃ at 55 °C) of poly((–)-VnD) obtained in living cationic polymerization: $[(-)-VnD]_0/[2]_0/[ZnCl_2]_0 = 500/10/10 \text{ mM}$ in toluene/Et₂O (19/1 vol%) at -78 °C.

Fig. S10. ¹H NMR spectra (A: in C₂D₂Cl₄ at 100 °C; B and C: in CDCl₃ at 55 °C) of poly((–)-HCvD) (A), hydrogenated poly((–)-HCvD) (B), and hydrogenated poly((±)-HCvD) (C), and SEC curve of hydrogenated poly((–)-HCvD) (D) obtained in living cationic polymerization: $[HCvD]_0/[1]_0/[SnCl_4]_0/[nBu_4NCl]_0 = 100/1.0/5.0/4.0$ mM in toluene/CH₂Cl₂ (50/50 vol%) at – 78 °C.

Fig. S11. ¹³C NMR spectra (A: in C₂D₂Cl₄ at 100 °C; B and C: in CDCl₃ at 55 °C) of poly((–)-HCvD) (A), hydrogenated poly((–)-HCvD) (B), and hydrogenated poly((±)-HCvD) (C) obtained in living cationic polymerization: $[HCvD]_0/[1]_0/[SnCl_4]_0/[nBu_4NCl]_0 = 100/1.0/5.0/4.0$ mM in toluene/CH₂Cl₂ (50/50 vol%) at -78 °C.

Fig. S12. ¹H NMR spectra (in CDCl₃ at 55 °C) of poly(PtD) (A) and hydrogenated poly(PtD) (B), and SEC curve of poly(PtD) and hydrogenated poly(PtD) (C) obtained in living cationic polymerization: $[PtD]_0/[1]_0/[SnCl_4]_0/[nBu_4NCl]_0 = 100/1.0/5.0/4.0$ mM in toluene/CH₂Cl₂ (50/50 vol%) at -78 °C.

Fig. S13. ¹³C NMR spectra (in CDCl₃ at 55 °C) of poly(PtD) (A) and hydrogenated poly(PtD) (B) obtained in living cationic polymerization: $[PtD]_0/[1]_0/[SnCl_4]_0/[nBu_4NCl]_0 = 100/1.0/5.0/4.0 \text{ mM}$ in toluene/CH₂Cl₂ (50/50 vol%) at -78 °C.

Fig. S14. Time-Conversion curves obtained in cationic copolymerization of *exo*-methylene conjugated dienes and vinyl ethers: $[diene]_0/[VE]_0/[2]_0/[SnCl_4]_0/[nBu_4NCl]_0 = 100/100/1.0/5.0/4.0$ mM in toluene/CH₂Cl₂ (50/50 vol%) at -78 °C.

Fig. S15. M_n and M_w/M_n (A) and SEC curves (B) of copolymers obtained in living cationic copolymerization of (±)-HCvD and various VEs: $[(\pm)-HCvD]_0/[VE]_0/[2]_0/[SnCl_4]_0/[nBu_4NCl]_0 = 100/100/1.0/5.0/4.0$ mM in toluene/CH₂Cl₂ (50/50 vol%) at -78 °C.

Fig. S16. M_n and M_w/M_n (A) and SEC curves (B) of copolymers obtained in living cationic copolymerization PtD and various VEs: $[PtD]_0/[VE]_0/[2]_0/[SnCl_4]_0/[nBu_4NCl]_0 = 100/100/1.0/5.0/4.0 \text{ mM}$ in toluene/CH₂Cl₂ (50/50 vol%) at -78 °C.

Fig. S17. M_n and M_w/M_n (A) and SEC curves (B) of copolymers obtained in living cationic copolymerization of (–)-VnD and various VEs obtained: $[(-)-VnD]_0/[VE]_0/[2]_0/[SnCl_4]_0/[nBu_4NCl]_0 = 100/100/1.0/5.0/4.0$ mM in toluene/CH₂Cl₂ (50/50 vol%) at -78 °C.

Fig. S18. ¹H NMR spectra of poly((\pm)-HCvD-*co*-IPVE) (A), poly((\pm)-HCvD-*co*-IBVE) (B), and poly((\pm)-HCvD-*co*-CEVE) (C) in CDCl₃ at 55 °C: [(\pm)-HCvD]₀/[VE]₀/[**2**]₀/[SnCl₄]₀/[*n*Bu₄NCl]₀ = 100/100/1.0/5.0/4.0 mM in toluene/CH₂Cl₂ (50/50 vol%) at -78 °C.

Fig. S19. ¹H NMR spectra of poly(PtD-*co*-IPVE) (A), poly(PtD-*co*-IBVE) (B), and poly(PtD-*co*-CEVE) (C) in CDCl₃ at 55 °C: $[PtD]_0/[VE]_0/[\mathbf{2}]_0/[SnCl_4]_0/[nBu_4NCl]_0 = 100/100/1.0/5.0/4.0 \text{ mM}$ in toluene/CH₂Cl₂ (50/50 vol%) at -78 °C.

Fig. S20. ¹H NMR spectra of poly((–)-VnD-*co*-IPVE) (A), poly((–)-VnD-*co*-IBVE) (B), and poly((–)-VnD-*co*-CEVE) (C) in CDCl₃ at 55 °C: $[(-)-VnD]_0/[VE]_0/[2]_0/[SnCl_4]_0/[nBu_4NCl]_0 = 100/100/1.0/5.0/4.0 \text{ mM}$ in toluene/CH₂Cl₂ (50/50 vol%) at -78 °C.

Fig. S21. ¹H NMR spectra of poly(IBVE-*b*-HCvD) (A), poly(HCvD-*b*-IBVE) (B), and poly(HCvD-*b*-CEVE) (C) in CDCl₃ at 55 °C: $[M_1]_0/[M_2]_{add}/[initiator]_0/[SnCl_4]_0/[nBu_4NCl]_0 = 100/100/1.0/5.0/4.0$ mM in toluene/CH₂Cl₂ (50/50 vol%) at -78 °C: $M_1/M_2/initiator = IBVE/HCvD/2$ (A), IBVE/HCvD/2 (B), HCvD/CEVE/1 (C).

Entry	Monomer	Initiating System (molar ratio)	Time	$\begin{array}{c} \text{Conv.} \\ (\%)^b \end{array}$	$M_{\rm n}$ (SEC) ^c	$M_{\rm n}$ (Calcd) ^d	$M_{\rm w}/M_{\rm n}^{\ c}$
1	(–) - VnD	/nD 1/SnCl ₄ / <i>n</i> Bu ₄ NCl ^e (1/5/4)		90	16800	13500	1.19
2		$2/SnCl_4/nBu_4NCl^e$ (1/5/4)	1 sec	89	14000	13300	1.12
3		$2/SnCl_4/nBu_4NCl^e$ (1/5/7)	2 h	84	10900	12600	1.74
4		$1/SnCl_4/EtOAc^{f}(1/5/3)$	7 min	82	11500	12300	2.63
5		$1/SnCl_4/EtOAc^{f}(1/5/7)$	48 h	74	10600	11000	4.73
6		$2/ZnCl_{2}^{g}(1/1)$	10 min	93	7700	7000	1.16
7		$2/ZnCl_{2}^{h}(1/1)$	90 min	79	6000	6000	1.25
8		$2/ZnCl_{2}^{i}(1/1)$	10 min	85	6500	6400	1.16
9	PtD	$1/SnCl_4/nBu_4NCl^e$ (1/5/4)	1 sec	94	19600	14300	1.50
10		$2/SnCl_4/nBu_4NCl^e$ (1/5/4)	10 sec	>99	19200	15200	1.37
11		$1/SnCl_4/nBu_4NCl^e$ (1/5/7)	2 h	70	12000	10700	4.79
12		$1/SnCl_4/EtOAc^{f}(1/5/3)$	10 sec	89	15200	13500	1.57
13		$2/ZnCl_{2}^{g}(1/1)$	15 h	54	4300	4200	1.49
14	(±)-HCvD	$1/SnCl_4/nBu_4NCl^e$ (1/5/4)	2 sec	56	15500	8600	1.15
15		$1/SnCl_4/nBu_4NCl^e$ (1/5/7)	40 h	59	12000	9000	1.20
16		$1/SnCl_4/EtOAc^f(1/5/3)$	6 min	91	27900	13800	2.15
17		$2/ZnCl_{2}^{g}(1/1)$	24 h	15	530	1300	1.20

Table S1. Living cationic polymerization of (-)-VnD, PtD, and (\pm) -HCvD^a

^{*a*}Polymerization temperature: -78 °C. ^{*b*}Determined by ¹H NMR. ^{*c*}Determined by SEC. ^{*d*} M_n (Calcd) = MW(monomer) × ([M]₀/[initiator]₀) × conv + MW(initiator). ^{*e*}[M]₀/[initiator]₀ = 100/1.0 mM in toluene/CH₂Cl₂ (1/1). ^{*f*}[M]₀/[initiator]₀ = 100/1.0 mM in toluene. ^{*g*}[M]₀/[**2**]₀ = 500/10 mM in toluene/Et₂O (19/1). ^{*h*}[M]₀/[**2**]₀ = 500/10 mM in toluene/Et₂O (9/1). ^{*i*}[M]₀/[**2**]₀ = 500/10 mM in toluene/CH₂Cl₂/Et₂O (7/2/1).

Entry	Sample	$[\alpha]_D$		
1	(–) - VnD	-44°		
2	Poly((–)-VnD)	+110°		
3	PtD	+16°		
4	Poly(PtD)	-11°		
5	H-Poly(PtD)	+0.3°		
6	(–)-HCvD	-143°		
7	Poly((–)-HCvD)	n.d. ^b		
8	H-Poly((–)-HCvD)	-14°		
9	(±)-HCvD	-1.9°		
10	Poly((±)-HCvD)	+0.7°		
11	H-Poly((±)-HCvD)	-0.2°		

Table S2. Optical rotation of monomers and polymers^{*a*}

^{*a*} Measured in THF at 25 °C. ^{*b*} Insoluble in THF.

Entry	Polymer	Polymer	Catalyst	Catalyst	H ₂	Temp.	Time	Conv. (%)	<i>M</i> _n (SEC)	Collecting
		(mg)		(g)	pressure (MPa) at r.t.	(°C)	(h)			solvent
1	Poly((-)-HCvD)		_						n.d.	
2		300	Pd/Al_2O_3	0.15	5	120	3	99	10600	CDCl ₃
3	Poly(PtD)		_						23200	
4		100	Pd/Al_2O_3	0.01	5	120	3	98	7300	Hexane
5		100	Pd/C	0.01	5	100	3	74	3000	Hexane
6		100	Pd/SiO_2	0.05	5	100	3	60	14500	Hexane
7		100	Pd/CeO_2	0.05	5	100	3	56	17800	Hexane
8		100	Pt/Al ₂ O ₃	0.05	5	100	3	29	18900	Hexane
9		100	Pt/CeO ₂	0.05	5	100	3	18	22700	Hexane
10	Poly((-)-VnD)		_						17400	
11		100	Pd/C	0.01	5	30	3	<1	8600	Hexane
12		100	Pd/C	0.01	5	60	3	32	1200	Hexane
13		100	Pd/C	0.01	5	90	3	>99	460	Hexane
14		100	Pd/C	0.01	1^b	90	3	3	17500	Hexane
15		100	none	_	5	90	3	0	17100	Hexane
16		100	Pd/Al_2O_3	0.01	5	120	3	>99	620	Hexane
17		100	Pd/SiO_2	0.05	5	60	3	23	3000	Hexane
18		100	Pt/Al ₂ O ₃	0.01	5	100	3	78	1200	Hexane

Table S3. Hydrogenation of polymers^{*a*}

^{*a*} Reaction conditions: polymer 100 or 300 mg, catalyst 0.01–0.15 g, hexane 2 g, H₂ 5 MPa or Ar 1 MPa (at r.t.), 30-120 °C. ^{*b*} Ar was used in place of H₂.