In Situ Cross-linking Polymerization-Induced Self-Assembly: Not Only Generates Cross-linked Structures But Also Promotes Morphology Transition by the Cross-linker

Jamshid Kadirkhanov[#], Cheng-Lin Yang[#], Zi-Xuan Chang, Ren-Man Zhu, Cai-Yuan Pan, Ye-Zi You, Wen-Jian Zhang* and Chun-Yan Hong*

CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, P.R. China.

Email: zwj85@ustc.edu.cn

Email: hongcy@ustc.edu.cn

Fig. S1 (A) ¹H NMR spectrum and (B) GPC curve of PEG₉₀-CPADB macro RAFT agent.

Fig. S2 ¹H NMR spectrum of the cross-linker cystaminebismethacrylamide (CBMA) in CDCl₃.

Table S1. Summary of results obtained by PEG₉₀-CPADB mediated RAFT dispersion copolymerization of DIPEMA and CBMA (DIPEMA/PEG₉₀-CPADB = 150, CBMA/DIPEMA = 5%) at different polymerization time, monomer conversion, M_n and M_w/M_n of the resultant polymers.

Polymerization time	^{<i>a</i>} Conversion of DIPEMA (%)	^{<i>a</i>} Conversion of CBMA (%)	^{<i>a</i>} Statistical DIPEMA units	^a Statistical CBMA units	${}^{\mathrm{b}}M_{\mathrm{n,GPC}}$ (kg/mol)	${}^{\mathrm{b}}M_{w}/M_{n}$
0.5 h	8.6	3.8	12.8	0.28	14.2	1.06
1 h	16.7	7.6	25.1	0.57	17.9	1.18
2 h	46.8	15.1	70.3	1.13	28.7	1.41
3 h	54.4	20.8	81.6	1.56		
4 h	72.7	26.4	109.1	1.98		
6 h	85.7	34.0	128.6	2.55		
9 h	90.2	54.7	135.3	4.10		
12 h	91.0	62.3	136.6	4.67		
24 h	92.5	71.7	138.7	5.38		

^aThe conversion of DIPEMA and CBMA, the statistical DIPEMA units and CBMA units in the resultant PEG_{90} -*b*-P(DIPEMA_x-*co*-CBMA_y) were calculated according to the ¹H NMR spectra of the reaction media as shown in Figure S3. ^bThe M_n and M_w/M_n of the resultant PEG_{90} -*b*-P(DIPEMA_x-*co*-CBMA_y) were determined by GPC.

Fig. S3 ¹H NMR spectra of the reaction mixture of PEG_{90} -CPADB-mediated RAFT dispersion copolymerization of DIPEMA and CBMA (DIPEMA/PEG₉₀-CPADB = 150, CBMA/DIPEMA = 5%) at different polymerization times. 2,2'-Bipyridine was used as an internal standard to calculate the conversion of the monomer (DIPEMA) and cross-linker (CBMA). 50 µL of the reaction mixture was taken out for ¹H-NMR (DMSO-d₆) at specific time of polymerization. The calculation formula is as follows:

Conversion (%)_{DIPEMA} = $(1 - a_t/a_0) \times 100\%$

Conversion (%)_{CBMA} = $(1 - b_t/b_0) \times 100\%$

The integral values of vinyl protons of DIPEMA (a) and CBMA (b) at 0 h of polymerization are denoted as a_0 and b_0 , respectively. The integral values of vinyl protons of DIPEMA (a) and CBMA (b) at t h of polymerization are denoted as a_t and b_t , respectively. **PS:** In order to simplify the calculation, we assumed that the peak b was only contributed by the unreacted CBMA monomer in the solution and ignored the contribution of the CBMA units that were not completely reacted in the polymer. The peaks at 5.73 ppm were due to residual dichloromethane in the NMR tubes (The NMR tubes were washed with dichloromethane).

Polymerization time	^{<i>a</i>} Conversion of DIPEMA (%)	^a DP _{PDIPEMA}	${}^{b}M_{n,NMR}$ (kg/mol)	$^{c}M_{n,GPC}$ (kg/mol)	${}^{c}M_{w}/M_{n}$
1 h	14.7	22	10.3	13.4	1.14
2 h	35.2	53	17.0	15.3	1.11
3 h	52.5	79	22.6	19.7	1.09
4 h	62.2	93	24.2	23.1	1.08
6 h	81.1	122	29.6	28.7	1.15
9 h	91.4	137	30.9	31.1	1.16
12 h	92.2	138	31.8	32.2	1.17
24 h	92.4	139	32.5	32.6	1.17

Table S2. Summary of results obtained by PEG₉₀-CPADB mediated RAFT dispersion polymerization of DIPEMA at different polymerization

time, monomer conversion, M_n and M_w/M_n of the resultant polymers.

^aThe conversion of DIPEMA and DP_{PDIPEMA} were calculated according to the ¹H NMR spectra of the reaction media as shown in Fig. S2. ^{*b*} $M_{n,NMR}$ of the block copolymer PEG₉₀-*b*-PDIPEMA_x were calculated based on the ¹H NMR spectra as shown in Fig. S4. ^cThe M_n and M_w/M_n of the block copolymer PEG₉₀-*b*-PDIPEMA_x were determined by GPC.

Fig. S4 ¹H NMR spectra of the reaction mixture (RAFT dispersion polymerization of DIPEMA targeted to PEG₉₀-*b*-PDIPEMA₁₅₀) at different polymerization times. 2,2'-Bipyridine was used as an internal standard to calculate the conversion of the monomer (DIPEMA). 50 μ L of the reaction mixture was taken out for ¹H NMR (DMSO-d₆) at specific time of polymerization. The calculation formula is as follows: Conversion (%)_{DIPEMA} = (1 - a_t/a₀) × 100%

The integral value of vinyl protons of DIPEMA (a) at 0 h and t h of polymerization is denoted as a_0 and a_t , respectively.

Fig. S5 (A) Monomer conversion at different polymerization time of the PEG₉₀-CPADB-mediated RAFT dispersion polymerization of DIPEMA (DIPEMA/PEG₉₀-CPADB = 150). (B) Evolution of M_n and M_w/M_n with monomer conversion for the PEG₉₀-CPADB-mediated RAFT dispersion polymerization of DIPEMA (DIPEMA/PEG₉₀-CPADB = 150).

Fig. S6 ¹H NMR spectra of the block copolymer PEG_{90} -*b*-PDIPEMA_x obtained by RAFT dispersion polymerization of DIPMEA (targeted $DP_{PDIPEMA} = 150$) at different polymerization time, (A) 1 h, (B) 2 h, (C) 3 h, (D) 4 h, (E) 6 h, (F) 9 h, (G) 12 h and (H) 24 h.

Fig. S7 TEM images of the PEG₉₀-*b*-P(DIPEMA₁₄₀-*co*-CBMA_{5.66}) vesicles (as shown in Fig. 3F₂) after the processing of THF, (1) the vesicles were dispersed in THF, (2) the dispersions in THF were diluted with ethanol/water (7/3) to a specific concentration (0.5 wt%) for TEM characterization.

Table S3. Summary of results obtained by PEG₉₀-CPADB mediated RAFT dispersion copolymerization of DIPEMA and CBMA (DIPEMA/PEG₉₀-CPADB = 150, CBMA/DIPEMA = 10%) at different polymerization time, monomer conversion, M_n and M_w/M_n of the resultant polymers.

Polymerization time	^{<i>a</i>} Conversion of DIPEMA (%)	^{<i>a</i>} Conversion of CBMA (%)	^{<i>a</i>} Statistical DIPEMA units	^a Statistical CBMA units	^b M _{n,GPC} (kg/mol)	${}^{\mathrm{b}}M_{w}/M_{n}$
1 h	14.9	5.9	22.4	0.89	21.8	1.35
2 h	39.7	12.9	59.6	1.93		
3 h	48.3	18.8	72.5	2.82		
4 h	64.3	22.8	96.5	3.42		
6 h	78.3	31.7	117.5	4.75		
9 h	85.3	54.5	128.0	8.17		
12 h	89.2	65.4	133.7	9.80		
24 h	90.1	75.3	135.1	11.29		

^aThe conversion of DIPEMA and CBMA, the statistical DIPEMA units and CBMA units in the resultant PEG_{90} -*b*-P(DIPEMA_x-*co*-CBMA_y) were calculated according to the ¹H NMR spectra of the reaction media as shown in Fig. S8. ^bThe M_n and M_w/M_n of the resultant PEG_{90} -*b*-P(DIPEMA_x-*co*-CBMA_y) were determined by GPC.

Fig. S8 ¹H-NMR spectra of the reaction mixture of PEG_{90} -CPADB-mediated RAFT dispersion copolymerization of DIPEMA and CBMA (DIPEMA/PEG₉₀-CPADB = 150, CBMA/DIPEMA = 10%) at different polymerization times. 2,2'-Bipyridine was used as an internal standard to calculate the conversion of the monomer (DIPEMA) and cross-linker (CBMA). 50 µL of the reaction mixture was taken out for ¹H-NMR (DMSO-d₆) at specific time of polymerization. The calculation formula is as follows:

Conversion (%)_{DIPEMA} = $(1 - a_t/a_0) \times 100\%$

Conversion (%)_{CBMA} = $(1 - b_t/b_0) \times 100\%$

The integral values of vinyl protons of DIPEMA (a) and CBMA (b) at 0 h of polymerization are denoted as a_0 and b_0 , respectively. The integral values of vinyl protons of DIPEMA (a) and CBMA (b) at t h of polymerization are denoted as a_t and b_t , respectively. **PS:** In order to simplify the calculation, we assumed that the peak b was only contributed by the unreacted CBMA monomer in the solution and ignored the contribution of the CBMA units that were not completely reacted in the polymer. The peaks at 5.73 ppm were due to residual dichloromethane in the NMR tubes (The NMR tubes were washed with dichloromethane).

Fig. S9 (A) Conversion of DIPEMA (black line) and CBMA (red line) at different polymerization time of the PEG₉₀-CPADB-mediated RAFT dispersion copolymerization of DIPEMA and CBMA (DIPEMA/PEG₉₀-CPADB = 150, CBMA/DIPEMA = 10%). (B) GPC traces of the PEG₉₀-*b*-P(DIPEMA-*co*-CBMA) block copolymers obtained at 1 h of polymerization for the PEG₉₀-CPADB-mediated RAFT dispersion copolymerization of DIPEMA and CBMA (DIPEMA/PEG₉₀-CPADB-mediated RAFT dispersion copolymerization of DIPEMA and CBMA (DIPEMA/PEG₉₀-CPADB = 150, CPADB = 150, CBMA/DIPEMA = 10%). The GPC characterization for the PEG₉₀-*b*-P(DIPEMA_x-*co*-CBMA_y) formed after 2 h of polymerization is not conducted due to the cross-linked (or partially cross-linked) structures.

Fig. S10 TEM images (A-F) of the PEG_{90} -P(DIPEMA_x-*co*-CBMA_y) nano-objects obtained at different polymerization time by PEG_{90} -CPADB mediated RAFT dispersion copolymerization of DIPEMA and CBMA (DIPEMA/PEG₉₀-CPADB = 150, CBMA/DIPEMA = 10%). The red note on the top of each image is the composition of the solvophobic blocks in corresponding nano-objects. The subscript number of DIPEMA and CBMA is the statistical units of DIPEMA and CBMA in the formed P(DIPEMA-*co*-CBMA) blocks, respectively, which is calculated according to the ¹H NMR spectra as shown in Fig. S8.

Table S4. Summary of results obtained by RAFT dispersion polymerization of DIPEMA and CBMA, monomer conversion, M_n and M_w/M_n of the resultant polymers, morphology of the resultant nano-objects.

^a Samples	^b Conversion of DIPEMA (%)	^b Conversion of CBMA (%)	$^{c}M_{n}(\mathrm{g/mol})$	${}^{c}M_{w}/M_{n}$	^d Morphology
D ₆₀ C ₀	93.3	-	18800	1.20	S
$D_{80}C_{0}$	91.3	-	21900	1.23	S
$D_{100}C_{0}$	92.0	-	26100	1.26	S+W
$D_{120}C_{0}$	92.5	-	29400	1.15	S+W
$D_{150}C_{0}$	90.7	-	32300	1.19	L+V
$D_{60}C_{5\%}$	93.8	78.3	-	-	S+W
$D_{80}C_{5\%}$	93.0	76.9	-	-	S+W+L
$D_{100}C_{5\%}$	92.5	72.0	-	-	L
$D_{120}C_{5\%}$	91.2	72.5	-	-	V
$D_{150}C_{5\%}$	90.0	67.0	-	-	V
$D_{60}C_{10\%}$	93.0	78.3	-	-	W
$D_{80}C_{10\%}$	92.4	80.6	-	-	W
$D_{100}C_{10\%}$	92.0	80.0	-	-	W
D ₁₂₀ C _{10%}	91.4	77.1	-	-	W+L
$D_{150}C_{10\%}$	90.5	76.0	-	-	L+V

^abrief notation of each sample, wherein D represents PDIPEMA, the subscript number of D is the target DP_{PDIPEMA}, C represents CBMA, the subscript number of C is the feed molar ratio of CBMA/DIPEMA. ^bThe monomer conversion was calculated according to the ¹H NMR spectra of the reaction media. ^cThe M_n and M_w/M_n were determined by GPC. ^dThe morphology of each sample was identified by TEM, wherein S represents spherical micelles, W denotes worms, L is lamella, and V represents vesicles.

Fig. S11 ¹H NMR spectra of the block copolymers (A) PEG_{90} -*b*-PDIPEMA₆₀, (B) PEG_{90} -*b*-PDIPEMA₈₀, (C) PEG_{90} -*b*-PDIPEMA₁₀₀, (D) PEG_{90} -*b*-PDIPEMA₁₂₀, and (E) PEG_{90} -*b*-PDIPEMA₁₅₀ obtained by RAFT dispersion polymerization of DIPMEA with varying DIPEMA/PEG₉₀-CPADB (60~150). All the polymerizations were carried out for 24 h to make sure high monomer conversion. (F) GPC traces of the block copolymers PEG_{90} -*b*-PDIPEMA_{60~150} obtained by RAFT dispersion polymerization of DIPMEA with varying DIPEMA/PEG₉₀-*b*-PDIPEMA_{60~150} obtained by RAFT dispersion polymerization of DIPMEA with varying DIPEMA/PEG₉₀-*b*-PDIPEMA_{60~150} obtained by RAFT dispersion polymerization of DIPMEA with varying DIPEMA/PEG₉₀-CPADB (60~150) for 24 h.

^a Sample	рН 7.4	рН 5.0	рН 7.4	рН 5.0
			GSH 10mM	GSH 10mM
D ₆₀ C _{5%}	123.8±5.3 nm	183.8±3.2 nm	47.8±7.3 nm	8.6±2.4 nm
D ₈₀ C _{5%}	120.0±2.4 nm	204.9±7.3 nm	53.4±9.0 nm	9.2±1.6 nm
D ₁₂₀ C _{5%}	196.8±71.5 nm	290.8±49.9 nm	77.7±34.0 nm	8.5±0.8 nm
D ₁₅₀ C _{5%}	304.0±14.6 nm	492.7±97.7 nm	266.5±69.0 nm	9.0±1.7 nm

Table S5. Volume-averaged diameter of the nano-objects at different conditions

^abrief notation of each sample, wherein D represents PDIPEMA, the subscript number of D is the target $DP_{PDIPEMA}$, C represents CBMA, the subscript number of C is the feed molar ratio of CBMA/DIPEMA.

Fig. S12 DLS curves of the nano-objects (A) PEG₉₀-*b*-P(DIPEMA₆₀-*co*-CBMA_{5%}), (B) PEG₉₀-*b*-P(DIPEMA₈₀-*co*-CBMA_{5%}), (C) PEG₉₀-*b*-P(DIPEMA₁₂₀-*co*-CBMA_{5%}) and (D) PEG₉₀-*b*-P(DIPEMA₁₅₀-*co*-CBMA_{5%}) at different conditions.

Fig. S13 TEM images of the PEG_{90} -*b*-P(DIPEMA_x-*co*-CBMA_{10%}) nano-objects obtained by PEG_{90} -CPADB mediated RAFT dispersion copolymerization of DIPEMA and CBMA (CBMA/DIPEMA = 10%) with varying feed molar ratio of DIPEMA/PEG₉₀-CPADB, (A) 60, (B) 80, (C) 100, (D) 120 and (E) 150.

Fig. S14 TEM images of the PEG₉₀-*b*-P(DIPEMA_x-*co*-CBMA_y) nano-objects obtained by PEG₉₀-CPADB mediated RAFT dispersion copolymerization of DIPEMA and CBMA (CBMA/DIPEMA = 10 %) with varying feed molar ratio of DIPEMA/PEG₉₀-CPADB, (A) 60, (B) 80, (C) 100, (D) 120 and (E) 150. All the nano-objects were processed with the following steps: (1) the nano-objects were dispersed in THF, (2) the dispersions in THF were diluted with ethanol/water (7/3) to a specific concentration (0.1 wt%-0.5 wt%) for TEM characterization.