Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Poly[Glycidyl Oligo(oxyethylene)carbamate]s (PG_n - EO_mR' and R- PG_n - EO_mR'): Controlled Synthesis and Effects of Molecular Parameters (n and m), Side Group (R'), and End-Group (R) on Thermoresponsive Property

Tingyu He,^a Yanqiu Wang,^a Liang Xu,^a Xiangming Fu,^a Atsushi Narumi,^b Shin-ichiro Sato,^c Xiande Shen *,^{a,d} and Toyoji Kakuchi,*,^{a,c,d}

Contents

1. Synthesis of 3,6-dioxaoctyl isocyanate (ICEO ₂ Et)	S1
2. SEC traces of tBBA-PBnGE _n , R-PBnGE _n , PG _n , R-PG _n , PG _n -EO _m R', and R-PG _n -EO _m R'	S2
3. ¹H NMR spectrum for the polymerization mixture	S4
4. ¹ H and ¹³ C NMR spectra of R-PBnGE _n and R-PG _n -EO _m R'	S5
5. Tables for the synthesis and characterization of PG, R-PG, PG-EO _m R', and R-PG-EO _m R'	Se

^a Research Center for Polymer Materials, School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road 7989, Jilin 130022, China

^b Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan

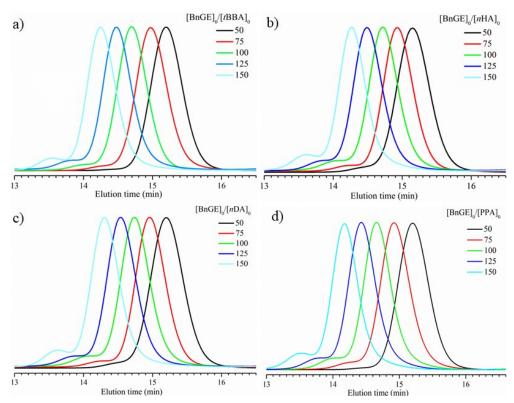
^c Division of Applied Chemistry and Frontier Chemistry Center, Faculty of Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan

d Chongqing Research Institute, Changchun University of Science and Technology, No. 618Liangjiang Avenue, Longxing Town, Yubei District, Chongqing City 401135, China

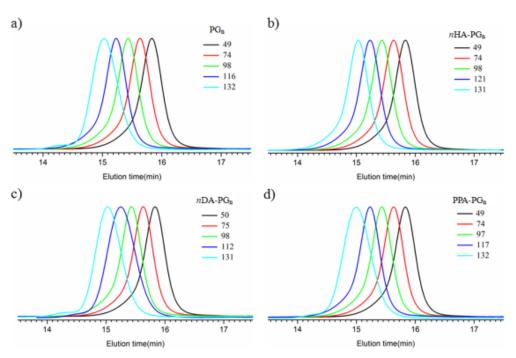
^{*} E-mail: shenxiande@cust.edu.cn (X. S.) and kakuchi@eng.hokudai.ac.jp (T. K.)

1. Synthesis of 3,6-dioxaoctyl isocyanate (ICEO₂Et)

Scheme S1. Reagents and conditions:¹⁾ a) NaH, in THF at room temp for 48 h under N_2 , b) TFA, in dichloromethane at room temp. under N_2 for 42 h, c) DPPA, TEA, in toluene for 2 h under N_2 at room temperature d) heating at 70 °C for 3 h.


2-Ethoxyethanol (EtOEtOH) (20 g, 222 mmol) and *tert*-butyl acrylate (*t*BA) (29.0 mL, 200 mmol) were added to sodium hydride (NaH; 53.3 mg, 2.22 mmol) in dry THF (130 mL). After stirring at room temperature for 48 h under N₂ atmosphere, the solvent was removed by rotary evaporation, then the remaining product was purified by column chromatography using ethyl acetate to afford 3-(2-ethoxyethoxy)propionic acid (DONA) as a colorless oily liquid. Yield, 40 g (82.6%). Trifluoroacetic acid (TFA; 62.8 g, 500 mmol) was added to *t*BDON (40 g, 183 mmol) in dichloromethane (116 mL), and the reaction mixture was stirred at room temperature under N₂ for 42 h. After removing the solvent, the residual product was distilled under reduced pressure to give a colorless and transparent liquid of 3-(2-ethoxyethoxy) propionic acid (DONA). Yield, 20.8 g (70.1%).²⁾

Triethylamine (TEA; 17.6 mL, 127 mmol) and diphenyl phosphoryl azide (DPPA; 27.3 mL, 127 mmol) was added to a solution of DONA (20.8 g, 127 mmol) in dry toluene (160 mL). The whole reaction mixture was stirred for 2 h under N₂ at room temperature, then heated to 70 °C for 3 h. After removing the solvent, the obtained product was distilled under reduced pressure to give a colorless and transparent liquid of ICEO₂Et.²⁾ Yield, 54.7 %; ¹H NMR (500 MHz, CDCl₃): δ [ppm] = 3.69–3.58 (m, 6H, –OCH₂– and –<u>CH₂CH₂NCO</u>), 3.52 (q, 2H, J = 7.25Hz, –O<u>CH₂CH₃</u>), 3.40 (t, 2H, J = 6.49 Hz, –<u>CH₂NCO</u>), 1.21 (t, 3H, J = 7.23 Hz, –OCH₂<u>CH₃</u>). ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 125.0, 70.71, 70.32, 69.86, 66.71, 43.10, 15.24.


References

- 1) N. Sakai, M. Jin, S. Sato, T. Satoh and T. Kakuchi, *Polym. Chem.*, 2014, 5, 1057–1062.
- 2) T. R. Yerramreddy, M. Milewski, N. R. Penthala, A. L. Stinchcomb and P. A. Crooks, *Bioorg. Med. Chem. Lett.*, 2010, **20**, 3280–3283.

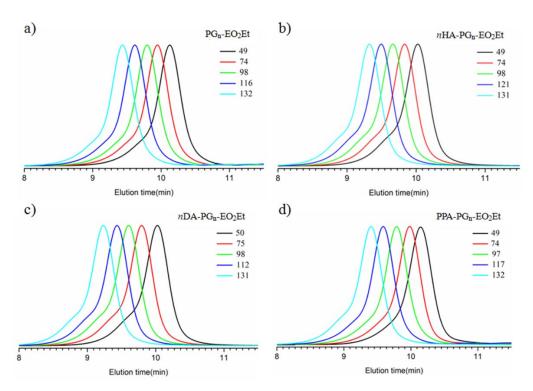

2. SEC traces of tBBA-PBnGE_n, R-PBnGE_n, PG_n, R-PG_n, PG_n-EO_mR', and R-PG_n-EO_mR'

Fig. S1. SEC traces of a) *t*BBA-PBnGE_n, b) *n*HA-PBnGE_n, c) *n*DA-PBnGE_n, and d) PPA-PBnGE_n obtained by the organocatalytic ROP of BnGE using *t*BBA, *n*HA, *n*DA, and PPA, respectively (eluent, THF; flow rate, 1 mL min⁻¹; PS standard).

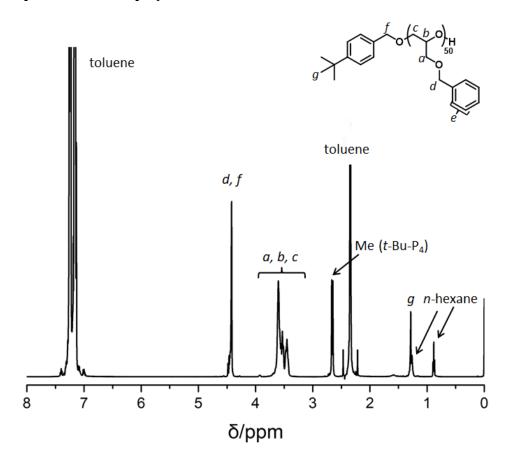
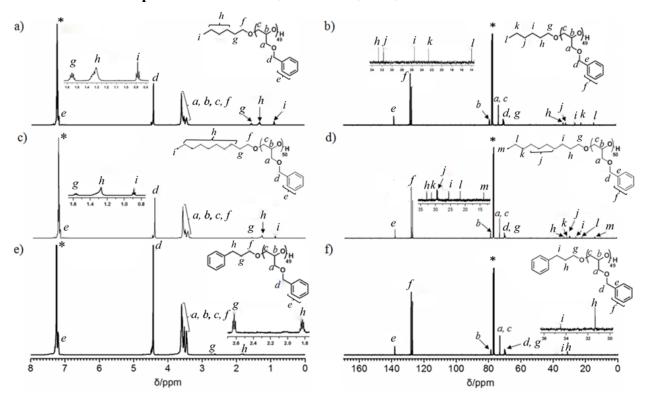


Fig. S2. SEC traces of a) PG_n , b) $nHA-PG_n$, c) $nDA-PG_n$, and d) $PPA-PG_n$ (eluent, H_2O in the presence of 0.05 % NaN_3 ; flow rate, 1 mL min⁻¹; PEG standard).


Fig. S3. SEC traces of a) PG_n-EO₂Et, b) nHA-PG_n-EO₂Et, c) nDA-PG_n-EO₂Et, and d) PPA-PG_n-EO₂Et (eluent, H₂O in the presence of 0.05 % NaN₃; flow rate, 1 mL min⁻¹; PEG standard).

3. ¹H NMR spectrum for the polymerization mixture

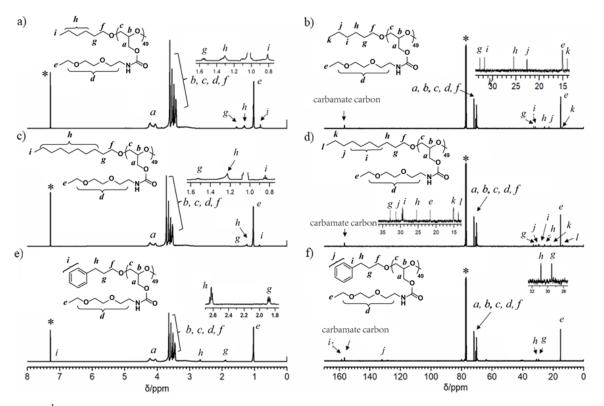


Fig. S4. ¹H NMR spectrum (CDCl₃) of the mixture after the polymerization of BnGE in toluene using tBBA as the initiator and t-Bu-P₄ (1.0 M solution in n-hexane) as the organocatalyst for 20 h ([BnGE]₀/[tBBA]₀ = 50).

4. ¹H and ¹³C NMR spectra of R-PBnGE_n and R-PG_n-EO_mR'

Fig. S5. ¹H NMR spectra (CDCl₃) of a) *n*HA-PBnGE₄₉, c) *n*DA-PBnGE₅₀, and e) PPA-PBnGE₄₉ and ¹³C NMR spectra (CDCl₃) of b) *n*HA-PBnGE₄₉, d) *n*DA-PBnGE₅₀, and f) PPA-PBnGE₄₉. The symbol * refers to solvent peaks.

Fig. S6. ¹H NMR spectra (CDCl₃) of a) *n*HA-PG₄₉-EO₂Et, c) *n*DA-PG₄₉-EO₂Et, and e) PPA-PG₄₉-EO₂Et and ¹³C NMR spectra (CDCl₃) of b) *n*HA-PG₄₉-EO₂Et, d) *n*DA-PG₄₉-EO₂Et, and f) PPA-PG₄₉-EO₂Et. The symbol * refers to solvent peaks.

5. Tables for the synthesis and characterization of PG, R-PG, PG-EO_mR', and R-PG-EO_mR'

Table S1. Synthesis and characterization of PG, nHA-PG $_n$, nDA-PG $_n$, and PPA-PG $_n$, which were obtained by the deprotection reactions of tBBA-PBnGE $_n$, nHA-PBnGE $_n$, nDA-PBnGE $_n$, and PPA-PBnGE $_n$, respectively

entry		. 11. 0/	product			
	starting material	yield in %	Code	$M_{ m n,NMR}^a \left(M_{ m w}/M_{ m n}^b ight)$		
38	tBBA-PBnGE ₄₉	quant.	PG ₄₉	$3600^{c} (1.11)$		
39	tBBA-PBnGE ₇₄	quant.	PG ₇₄	$5500^{c} (1.12)$		
40	tBBA-PBnGE98	99.3	PG_{98}	7200 ° (1.13)		
41	tBBA-PBnGE ₁₁₆	92.6	PG_{116}	8000° (1.13)		
42	tBBA-PBnGE ₁₃₂	90.8	PG_{132}	8800 ° (1.14)		
43	<i>n</i> HA-PBnGE ₄₉	quant.	nHA-PG ₄₉	3700 (1.11)		
44	<i>n</i> HA-PBnGE ₇₄	quant.	nHA-PG ₇₄	5500 (1.12)		
45	<i>n</i> HA-PBnGE ₉₈	quant.	nHA-PG ₉₈	7300 (1.12)		
46	<i>n</i> HA-PBnGE ₁₂₁	96.5	nHA-PG ₁₂₁	8700 (1.13)		
47	<i>n</i> HA-PBnGE ₁₃₁	91.7	nHA-PG ₁₃₁	9700 (1.14)		
48	nDA-PBnGE ₅₀	quant.	nDA-PG ₅₀	3800 (1.12)		
49	nDA-PBnGE ₇₅	quant.	nDA-PG ₇₅	5700 (1.12)		
50	nDA-PBnGE ₉₈	quant.	nDA-PG ₉₈	7400 (1.13)		
51	<i>n</i> DA-PBnGE ₁₁₂	98.1	nDA-PG ₁₁₂	8200 (1.14)		
52	nDA-PBnGE ₁₃₁	90.3	nDA-PG ₁₃₁	8800 (1.15)		
53	PPA-PBnGE ₄₉	quant.	PPA-PG ₄₉	3700 (1.12)		
54	PPA-PBnGE ₇₄	quant.	PPA-PG ₇₄	5600 (1.13)		
55	PPA-PBnGE ₉₇	98.2	PPA-PG ₉₇	7100 (1.14)		
56	PPA-PBnGE ₁₁₇	92.9	PPA-PG ₁₁₇	8000 (1.15)		
57	PPA-PBnGE ₁₃₂	90.5	PPA-PG ₁₃₂	8900 (1.15)		

^aThe number average molecular weight determined by ¹H NMR spectra in CD₃OD. ^bThe molecular weight distribution determined by SEC in H₂O in the presence of 0.05 % NaN₃ using PEG standards. ^cThe weight average molecular weight determined by the SEC equipped with a MALS ($M_{w,MALS}$) in DMF in the presence of 0.01 M LiCl.

Table S2. Synthesis and characterization of nHA-PG $_n$ -EO $_2$ Et, nDA-PG $_n$ -EO $_2$ Et, and PPA-PG $_n$ -EO $_2$ Et, which were obtained by the post-modification reactions of nHA-PG $_n$, nDA-PG $_n$, and PPA-PG $_n$ with ICEO $_2$ Et, respectively

	starting material	:-11		product			_
entry			code M		$T_{\rm cp}{}^c$	$R_{\rm h}^d$ in nm	
				$M_{ m n,NMR}^a \left(M_{ m w}/M_{ m n}^b ight)$	in °C	at 25 °C	at $T_{\rm cp}$
58	nHA-PG ₄₉	81.5	nHA-PG ₄₉ -EO ₂ Et	11400 (1.14)	40.1	2.5	650
59	nHA-PG ₇₄	81.1	<i>n</i> HA-PG ₇₄ -EO ₂ Et	17800 (1.16)	38.6	3.1	672
60	nHA-PG ₉₈	78.6	nHA-PG ₉₈ -EO ₂ Et	22800 (1.19)	37.4	3.6	681
61	nHA-PG ₁₂₁	79.4	<i>n</i> HA-PG ₁₂₁ -EO ₂ Et	24100 (1.20)	36.4	4.2	696
62	nHA-PG ₁₃₁	70.1	<i>n</i> HA-PG ₁₃₁ -EO ₂ Et	31600 (1.22)	34.5	5.5	708
63	nDA-PG ₅₀	79.6	nDA-PG ₅₀ -EO ₂ Et	11800 (1.16)	36.1	2.8	806
64	nDA-PG ₇₅	80.4	<i>n</i> DA-PG ₇₅ -EO ₂ Et	18300 (1.17)	35.4	3.3	820
65	nDA-PG ₉₈	72.5	nDA-PG ₉₈ -EO ₂ Et	22900 (1.19)	34.2	3.9	835
66	nDA-PG ₁₁₂	73.9	nDA-PG ₁₁₂ -EO ₂ Et	27200 (1.21)	33.6	4.8	859
67	nDA-PG ₁₃₁	68.4	<i>n</i> DA-PG ₁₃₁ -EO ₂ Et	31900 (1.24)	33.0	5.9	878
68	PPA-PG ₄₉	78.5	PPA-PG ₄₉ -EO ₂ Et	11500 (1.15)	32.5	2.8	623
69	PPA-PG ₇₄	72.5	PPA-PG ₇₄ -EO ₂ Et	17300 (1.17)	30.6	3.5	648
70	PPA-PG ₉₇	71.0	PPA-PG ₉₇ -EO ₂ Et	22800 (1.18)	29.5	4.0	670
71	PPA-PG ₁₁₇	73.2	PPA-PG ₁₁₇ -EO ₂ Et	28600 (1.20)	29.0	5.1	681
72	PPA-PG ₁₃₂	67.5	PPA-PG ₁₃₂ -EO ₂ Et	31800 (1.22)	28.2	6.0	698

^aThe number average molecular weight determined by ¹H NMR spectra in CDCl₃. ^bThe molecular weight distribution determined by SEC in H₂O in the presence of 0.05 % NaN₃ using PEG standards. ^cThe cloud point temperature determined by UV-vis measurements in water (10 g L⁻¹). ^dThe average hydrodynamic radii determined by DLS measurements in water (10 g L⁻¹).

Table S3. Synthesis and characterization of nHA-PG $_n$ -EO $_3$ Et, nDA-PG $_n$ -EO $_3$ Et, and PPA-PG $_n$ -EO $_3$ Et, which were obtained by the post-modification reactions of nHA-PG $_n$, nDA-PG $_n$, and PPA-PG $_n$ with ICEO $_3$ Et, respectively

		' 1 1	product				
entry	starting material			$de M_{\rm n,NMR}^a (M_{\rm w}/M_{\rm n}^b)$	T_{cp}^{c} in °C	R_h^d in nm	
			code			at 25 °C	at $T_{\rm cp}$
73	nHA-PG ₄₉	80.5	nHA-PG ₄₉ -EO ₃ Et	13500 (1.16)	57.4	4.0	905
74	nHA-PG ₇₄	80.9	<i>n</i> HA-PG ₇₄ -EO ₃ Et	21100 (1.17)	56.6	5.4	924
75	nHA-PG ₉₈	79.6	<i>n</i> HA-PG ₉₈ -EO ₃ Et	26900 (1.19)	55.1	6.2	953
76	nHA-PG ₁₂₁	80.4	<i>n</i> HA-PG ₁₂₁ -EO ₃ Et	29400 (1.19)	54.5	6.8	983
77	nHA-PG ₁₃₁	75.1	<i>n</i> HA-PG ₁₃₁ -EO ₃ Et	37300 (1.22)	53.8	7.4	1021
78	nDA-PG ₅₀	80.6	nDA-PG ₅₀ -EO ₃ Et	14000 (1.17)	50.3	4.5	931
79	nDA-PG ₇₅	79.4	<i>n</i> DA-PG ₇₅ -EO ₃ Et	21600 (1.17)	49.5	5.6	950
80	nDA-PG ₉₈	79.5	nDA-PG ₉₈ -EO ₃ Et	27200 (1.18)	48.2	6.4	972
81	nDA-PG ₁₁₂	74.9	<i>n</i> DA-PG ₁₁₂ -EO ₃ Et	32100 (1.19)	47.3	6.9	1027
82	nDA-PG ₁₃₁	70.4	<i>n</i> DA-PG ₁₃₁ -EO ₃ Et	37600 (1.22)	46.5	7.6	1068
83	PPA-PG ₄₉	79.5	PPA-PG ₄₉ -EO ₃ Et	13600 (1.18)	45.3	4.2	887
84	PPA-PG ₇₄	72.5	PPA-PG ₇₄ -EO ₃ Et	20500 (1.19)	43.2	5.3	902
85	PPA-PG ₉₇	70.5	PPA-PG ₉₇ -EO ₃ Et	27000 (1.21)	42.0	6.4	922
86	PPA-PG ₁₁₇	71.2	PPA-PG ₁₁₇ -EO ₃ Et	33700 (1.21)	40.5	6.7	961
87	PPA-PG ₁₃₂	68.5	PPA-PG ₁₃₂ -EO ₃ Et	37600 (1.23)	39.2	7.2	998

^aThe number average molecular weight determined by ¹H NMR spectra in CDCl₃. ^bThe molecular weight distribution determined by SEC in H₂O in the presence of 0.05 % NaN₃ using PEG standards. ^cThe cloud point temperature determined by UV-vis measurements in water (10 g L⁻¹). ^dThe average hydrodynamic radii determined by DLS measurements in water (10 g L⁻¹).