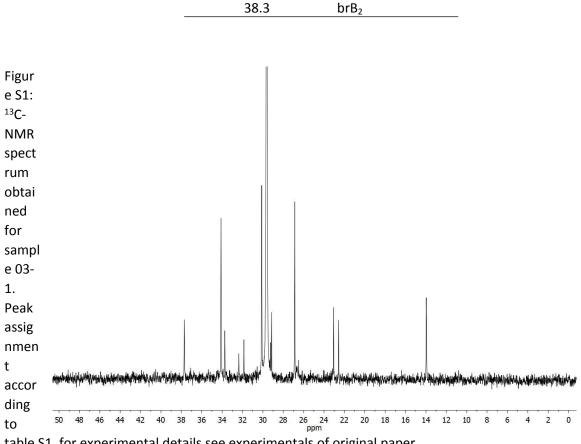
Supporting Information

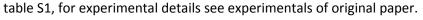
Linking Molecular Structure to Plant Conditions: Advanced Analysis of a Systematic Set of Mini-Plant Scale Low Density Polyethylenes

Kristina Maria Zentel^a, Paul Severin Eselem Bungu^b, Harald Pasch^{*b}, Markus Busch^{*c}

a. University of Hamburg, Bundesstr. 45, 20146 Hamburg, Germany.

b. University of Stellenbosch, PO Box X1, Stellenbosch 7602, South Africa. Email: hpasch@sun.ac.za


c. Technical University of Darmstadt, Alarich-Weiß-Straße 8, 64287 Darmstadt, Germany. Email: markus.busch@pre.tu-darmstadt.de


¹³C-NMR measurements

Peak assignment is performed according to literature (Axelson et al. 1979; Bovey et al. 1975; Striegel und Krejsa 2000). The chemical shifts observed with the respective peak assignments is given in table S1. xB_{γ} refers to the carbon atom x on a side branch with length y. The methyl-carbon at the end of a branch is always denoted as 1, the second last as 2 and so on. xB_{6}^{+} refers to all branches with chain length 6 or more and thus also includes the contribution of all chain ends (EOC, end of chain). br is the tertiary carbon atom of a branch point, α , β and γ refer to the carbon atoms of the backbone next to a branch point. The peaks used for calculation of the branching densities are displayed with a grey background. Not all peaks were observed in the measurements performed. The spectra are given in figures S1-S6. D1 time should be chosen three to five times of the spin-lattice relaxation time of the carbon atom with the slowest relaxation. Zhou et al. found a spin-lattice relaxation time of around 2 s for the carbon nuclei $3B_{6}^{+}$ at a Cr(acac)₃ concentration of 0.025 M. (Zhou et al. 2013) As this peak is used to calculate the LCB frequency, a D1 time of at 10 s as used here ensures quantitative conditions.

chemical shift / ppm	peak assignment
10.9	1B ₂
13.8	1B ₄ , 1B ₅ , 1B ₆ ⁺
22.4	2B ₅ , 2B ₆ ⁺
22.9	2B ₄
26.3	4B ₅
26.7	βB4, βB5, βB6+
28.9	4B ₆ +
29.0	3B ₄
29.4	backbone
29.9	γB_4 , γB_5 , γB_6^+
31.6	3B ₆ +
32.7	3B ₅
33.5	4B ₄
33.9	αB_4 , αB_5 , αB_6^+ , $5B_5$
37.4	brB _{4,} brB ₅ , brB ₆ +

Table S1. Chemical shifts for LDPE samples observed in ¹³C-NMR spectrum with peak assignment.

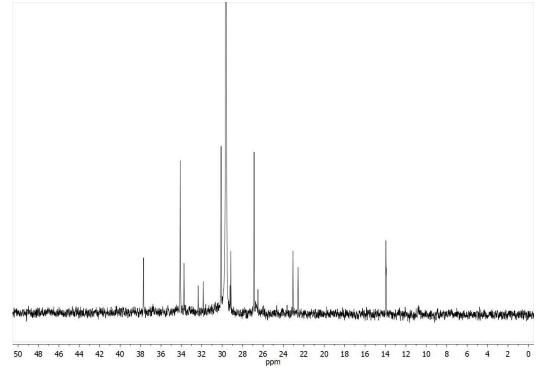


Figure S2: ¹³C-NMR spectrum obtained for sample 03-3. Peak assignment according to table S1, for experimental details see experimentals of original paper.

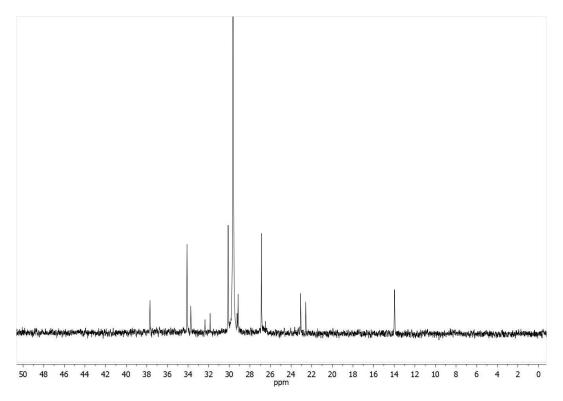


Figure S3: ¹³C-NMR spectrum obtained for sample 03-4. Peak assignment according to table S1, for experimental details see experimentals of original paper.

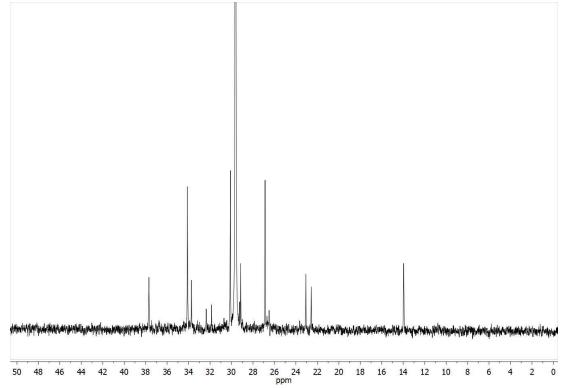


Figure S4: ¹³C-NMR spectrum obtained for sample 04-2. Peak assignment according to table S1, for experimental details see experimentals of original paper.

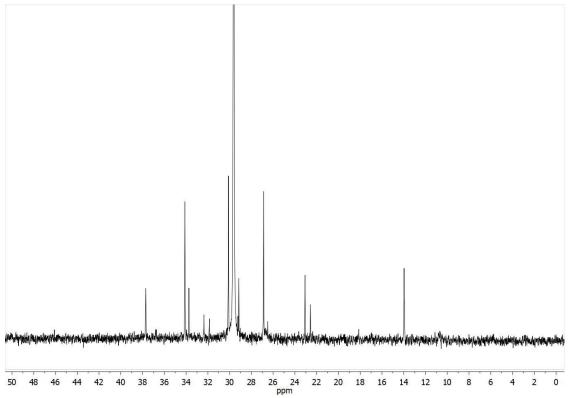


Figure S5: ¹³C-NMR spectrum obtained for sample 05-1. Peak assignment according to table S1, for experimental details see experimentals of original paper.

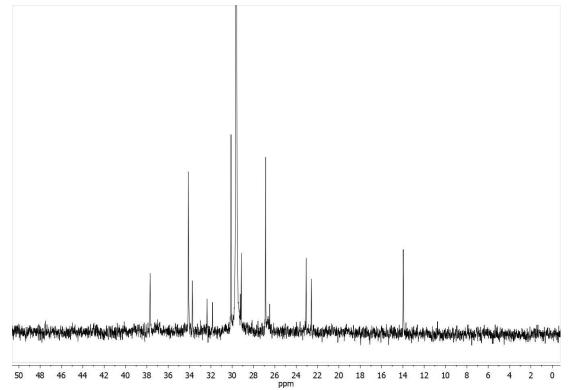


Figure S6: ¹³C-NMR spectrum obtained for sample 06-3. Peak assignment according to table S1, for experimental details see experimentals of original paper.

References

Axelson, D. E.; Levy, G. C.; Mandelkern, L. (1979): A Quantitative Analysis of Low-Density (Branched) Polyethylenes by Carbon-13 Fourier Transform Nuclear Magnetic Resonance at 67.9 MHz. In: *American Chemical Society* 12 (1), S. 41–52.

Bovey, F. A.; Schilling, F. C.; McCrackin, F. L.; Wagner, H. L. (1975): Short-Chain and Long-chain Branching in Low-Density Polyethylene. In: *Macromolecules* 9 (1), S. 76–80.

Striegel, André M.; Krejsa, Michael R. (2000): Complementarity of Universal Calibration SEC and 13C NMR in Determining the Branching State of Polyethylene. In: *Journal of Polymer Science Part B: Polymer Physics* 38, S. 3120–3135.

Zhou, Zhe; He, Yiyong; Qiu, Xiaohua; Redwine, David; Potter, Janece; Cong, Rongjuan; Miller, Matthew (2013): Optimum Cr(acac)3Concentration for NMR Quantitative Analysis of Polyolefins. In: *Macromolecular Symposia* 330 (1), S. 115–122. DOI: 10.1002/masy.201300034.