Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2021

## Cobalt catalysed controlled copolymerization: an efficient approach to bifunctional

polyisoprene with enhanced properties

## Dirong Gong<sup>a,b\*</sup>, Fuming Tang<sup>a</sup>, Yuechao Xu<sup>a</sup>, Zhonghan Hu<sup>a</sup>, Wanwei Luo<sup>a</sup>

- <sup>a</sup> Ningbo Key Laboratory of Specialty Polymers, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China.
- <sup>b</sup> State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- \*Corresponding author. Email: Gongdirong@nbu.edu.cn

























Fig. 11S The mass spectrometry of complex COPN<sup>3</sup>.Pz



Fig. 12S The mass spectrometry of complex  $c_{OPN^3}$ .



Fig. 13S The UV-vis of complexes



**Fig. 14S** The GPC profiles of copolymers (a: run 1, b: 6 and c: 10 in table 1) collected at different time



Fig. 16S The <sup>13</sup>C NMR of of poly(isoprene-co-My(OH)<sub>2</sub>) (run 3, table 1)



Fig. 17S The DOSY NMR of poly(isoprene-co-My(OH)<sub>2</sub>) (run 3, table 1)



**Fig. 18S** Reactivity ratio X=  $(1-F_1)(f_1/1-f_1)^2/F_1$ , Y= $(f_1/1-f_1)(2-1/F_1)$ ; IP+My-(OH)<sub>2</sub>: r<sub>1</sub>= 1.17, r<sub>2</sub>= 0.87; IP+My-OH-Py: r<sub>1</sub>= 1.14, r<sub>2</sub>= 0.82;, IP+My-OH-Fu, r<sub>1</sub>= 1.21, r<sub>2</sub>= 0.86.)



Fig. 19S The HSQC NMR of poly(isoprene-co-My-OH-Py) (run 7, table 1)



Fig. 20S The HMBC NMR of poly(isoprene-co-My-OH-Py) (run 3, table 1)





Fig. 21S The <sup>1</sup>H NMR of poly(isoprene-co-My-OH-Fu) (run 11, table 1)



Fig. 22S The <sup>1</sup>H NMR of of poly(isoprene-co-My-OH-Fu) (run 12, table 1)



Fig. 23S The DOSY NMR of poly(isoprene-co-My-OH-Fu) (run 11, table 1)



Fig. 24S The DOSY NMR of poly(isoprene-co-My-OH-Fu) (run 12, table 1)



**Fig. 25S** The  $T_g$  of copolymers (a: run1, table 1, b: run 3 table 1, c: run 6, table 1, d: run 7, table 1, e: run 8, table 1, f: run 9, table 1, g: run 11, table 1, h: run 12, table 1)



Fig. 26S The WCA of copolymers (a: run1, table 1, b: run 3 table 1, c: run 6, table 1, d:

run 7, table 1, e: run 8, table 1, f: run 9, table 1, g: run 11, table 1, h: run 12, table 1)



**Fig. 27S** The TGA of copolymers (a: run1, table 1, b: run 3 table 1, c: run 6, table 1, d: run 7, table 1, e: run 8, table 1, f: run 9, table 1, g: run 11, table 1, h: run 12, table 1)