Supporting Information

Solvent and catalyst-free modification of hyperbranched polyethyleneimines by ring-opening-addition or ring-opening-polymerization of *N*-sulfonyl aziridines

Zhunxuan Li, Rui Chen, Ying Wang, Linlin Zhu, Wenyi Luo, Zhen Zhang,* and Nikos Hadjichristidis

Figure S1. Structure of PEI determined by inverse gated ¹³C NMR.

(a)

≤ 56.28 ≤ 56.21 = -53.19 ≤ 56.28 ≤ 56.28 ≤ 56.28 ≤ 50.87 ≤ 50.87 ≤ 47.77 ≤ 47.77 ≤ 47.77 = -45.58= -45.58= -45.58

PEI 0.6K

 $1^{\circ}/2^{\circ}/3^{\circ} = 42/31/27$

PEI 1.8K

1°/2°/3° = 37/30/33

Figure S2. Inverse gated ¹³C NMR (100 MHz, D_2O , 25 °C) spectra of polyethyleneimine with molecular weight (a) 0.6K, (b) 1.8K, and (c) 10K. The ratio of different amino groups in the polymer is given.

(b)

Figure S3. ¹³C NMR (400 MHz, DMSO-*d*₆, 25 °C) spectrum of P(EI-SA).

Figure S4. Images of water/toluene emulsions stabilized by P(EI-SA) (sample of entry 2, Table 1) (water 4.0 g, toluene 4.0 g, modified PEI 16 mg).

Figure S5. ¹³C NMR (400 MHz, CDCl₃, 25 °C) spectrum of PEI0.6K-g-P(TsMAz)_{0.96}.

Figure S6. ¹H NMR (400 MHz, CDCl₃, 25 °C) spectra of (a) TsMAz, (b) crude product after reaction (sample of entry 7, Table 1), and (c) precipitated graft copolymer.

Figure S7. SEC (THF, 35 °C, PS standards) traces of (a) PEI0.6K, (b) PEI1.8K, and (c) PEI10K grafted with P(TsMAz) (Crude polymers without precipitation).

Figure S8. ¹H NMR (400 MHz, CDCl₃, 25 °C) spectra of the reaction mixture of PEI1.8K with TsMAz (solvent-free, 200 °C) took at different time intervals.

Figure S9. a) Gram-scale synthesis of PEI-*g*-PTsMAz by the reaction of PEI1.8K (0.043 g) with TsMAz (1.06 g, 5.0 equiv.) and the photos of the obtained product under room lighting and 365 nm UV illumination. b) SEC traces of crude (black line) and precipitated (red line) PEI-*g*-PTsMAz copolymers.

Figure S10. MALDI-ToF MS of P(TsMAz) initiated by N,N,N'-trimethylethylenediamine.

Figure S11. MALDI-ToF MS of P(TsMAz) initiated by *N*,*N*-dimethylethylenediamine.

Scheme S1. Ring-opening reaction of TsMAz with (a) *N*,*N*,*N*'-trimethylethylenediamine, and (b) *N*,*N*-dimethylethylenediamine.

Figure S12. ¹H NMR (400 MHz, CDCl₃, 25 °C) spectra of (a) TsMAz, (b) N,N,N'-trimethylethylenediamine, (c) N-(1-((2-(dimethylamino)ethyl)(methyl)amino) propan-2-yl)-4-methylbenzenesulfonamide.

Figure S13. ¹³C NMR, DEPT135, and DEPT90 (100 MHz, CDCl₃, 25 °C) spectra of *N*-(1-((2-(dimethylamino)ethyl)(methyl)amino)propan-2-yl)-4-methylbenzenesulfona mide.

N,*N*,*N*'-trimethylethylenediamine.

Figure S15. LC-MS of the ring-opened crude products of TsMAz by *N*,*N*-dimethylethylenediamine.

Figure S16. Thermogravimetry curves of PEI1.8K, and modified PEI1.8Ks.

sample	T _{di} ^a ∕⁰C	T _{dm} ^b ∕⁰C	Residual mass/wt %
PEI1.8K	289	351	0.67
PEI1.8K-SA _{0.71} (29% wt% PEI, sample of entry 2, Table 1)	291	338	12.2
PEI1.8K-g-P(TsMAz) _{0.96} (4 wt% PEI, sample of entry 3, Table 2)	307	343, 386	24.6

Table S1. Thermostability of PEI1.8K and modified PEIs.

 ${}^{a}T_{di}$ is the initial thermal decomposition temperature, at which the decomposition rate points out a significant weight loss (d(wt%)/dT > 1%/°C). ${}^{b}T_{dm}$ is the maximum decomposition temperature, at which the highest decomposition rate is observed for the corresponding pattern.

Figure S17. (a) Seven metal ion solutions before and after the treatment with PEI10K-SA_{0.83}; (b) PEI10K-SA_{0.83} copolymer after adsorption of metals.

Table S2.	Comparison	of adsorption	behavior	of	PEI10K-SA _{0.83}	with	a single	metal
ion and tl	he mixed met	tal ions.						

	single m	etal ion ^a	mixed metal ions ^b		
metal	adsorption	adsorption	adsorption	adsorption	
ion	efficiency ^c	capacity ^d	efficiency ^c	capacity ^d	
	(%)	(mg/g)	(%)	(mg/g)	
Fe ³⁺	36.65	16.0	36.67	15.2	
Co ²⁺	24.05	6.7	26.97	9.5	
Ni ²⁺	4.44	1.5	2.82	1.2	
Cu ²⁺	32.02	21.3	36.28	15.8	
Mn ²⁺	11.54	3.3	10.59	4.9	

^{*a*}Carried out in aqueous solution with a single metal ion as in Table 3. ^{*b*}Carried out in aqueous solution with the mixed metal ions (Fe³⁺, Co²⁺, Ni²⁺, Cu²⁺ & Mn²⁺), PEI10K-SA_{0.83} (30 mg) was added into 1.0 mL of mixed metal ions solution, and the mixture was stirred for 4 h. ^{*c*}Adsorption efficiency $\eta = (C_0 - C_f)/C_0 \times 100\%$. ^{*d*}Adsorption capacity q = [($C_0 - C_f$) × V]/m.

Figure S18. ¹H NMR (400 MHz, DMSO- d_6 , 25 °C) spectra of PEI10K-SA_{0.83}, and recycled PEI10K-SA_{0.83} after 5 adsorption-desorption cycles.