Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2021

Electronic supporting information

Purpurin derivatives as visible-light photosensitizers for 3D-printing and valuable biological applications

Pauline Sautrot-Ba,¹ Vlasta Brezová,² Jean-Pierre Malval,³ Annalisa Chiapionne,⁴ Louise Breloy,¹ Samir Abbad-Andaloussi,⁵ Davy-Louis Versace^{*1}

¹Université Paris-Est Créteil (UPEC), ICMPE–UMR-CNRS 7182, 2-8 rue Henri Dunant, 94320 Thiais, France.

²Slovak University of Technology in Bratislava, Institute of Physical Chemistry and Chemical Physics, Department of Physical Chemistry, Radlinského 9, SK-812 37 Bratislava, Slovak Republic.

³Institut de Chimie des Matériaux de Mulhouse (IS2M)-UMR 7361, 15 rue Jean Starcky - BP 2488, 68057 Mulhouse Cedex, France.

⁴Politechnico di Torino, Dipartimento di Scienza Applicata e Tecnologia, C. so Duca degli Abruzzi 24, 10129 Torino, Italy

⁵Université Paris-Est Créteil (UPEC), Laboratoire Eau, Environnement, Systèmes Urbains (LEESU), UMR-MA 102, 61 avenue Général de Gaulle, 94010 Créteil Cedex, France.

Figure S1. ¹H NMR spectrum of PA in CDCl₃

Figure S2. ¹³C NMR spectrum of PA in CDCl₃

Figure S3. HSQC NMR spectrum of PA in CDCl₃

Figure S4. ¹H NMR spectrum of PmA in CDCl₃

Figure S5. ¹³C NMR spectrum of PmA in CDCl₃

Figure S6. HSQC NMR spectrum of PmA in CDCl₃

Figure S7. ¹H NMR spectrum of purpurin (P) in CDCl₃

Figure S8. The normalized experimental (1) and simulated (2) EPR spectra obtained upon *in situ* LED@450 nm exposure of **P**/Iod/benzene solution in the presence of spin trapping agent under argon. (**A**) DMPO, exposure 225 s; EPR spectrometer settings: microwave frequency, ~ 9.44 GHz; microwave power, 11.35 mW; center field, ~336.3 mT; sweep width, 7 mT; gain, 1.00×10^5 ; modulation amplitude, 0.05 mT; sweep time, 45 s; time constant, 10.24 ms; number of scans, 5. (**B**) PBN, exposure 900 s; EPR spectrometer settings: microwave power, 1.13 mW; center field, ~336.2 mT; sweep width, 5 mT; gain, 1.00×10^5 ; modulation amplitude, 0.025 mT; sweep time, 45 s; time constant, 10.24 GHz; microwave power, 1.13 mW; center field, ~336.2 mT; sweep width, 5 mT; gain, 1.00×10^5 ; modulation amplitude, 0.025 mT; sweep time, 45 s; time constant, 10.24 GHz; microwave power, 1.13 mW; center field, ~336.2 mT; sweep width, 5 mT; gain, 1.00×10^5 ; modulation amplitude, 0.025 mT; sweep time, 45 s; time constant, 10.24 GHz; microwave power, 1.13 mW; center field, ~336.2 mT; sweep width, 5 mT; gain, 1.00×10^5 ; modulation amplitude, 0.025 mT; sweep time, 45 s; time constant, 10.24 ms; number of scans, 10.

Figure S9. The normalized experimental (1) and simulated (2) EPR spectra obtained upon *in situ* LED@450 nm exposure of **PmA**/Iod/benzene solution in the presence of spin trapping agent under argon. (**A**) DMPO, exposure 450 s; EPR spectrometer settings: microwave frequency, ~ 9.44 GHz; microwave power, 1.12 mW; center field, ~336.2 mT; sweep width, 7 mT; gain, 1.00×10^5 ; modulation amplitude, 0.025 mT; sweep time, 45 s; time constant, 10.24 ms; number of scans, 5. (**B**) PBN, exposure 900 s; EPR spectrometer settings: microwave frequency, ~ 9.44 GHz; microwave power, 1.14 mW; center field, ~336.2 mT; gain, 1.00×10^5 ; modulation amplitude, 0.025 mT; sweep width, 5 mT; gain, 1.00×10^5 ; modulation amplitude, 0.025 mT; sweep width, 5 mT; gain, 1.00×10^5 ; modulation amplitude, 0.025 mT; sweep width, 5 mT; gain, 1.00×10^5 ; modulation amplitude, 0.025 mT; sweep width, 5 mT; gain, 1.00×10^5 ; modulation amplitude, 0.025 mT; sweep width, 5 mT; gain, 1.00×10^5 ; modulation amplitude, 0.025 mT; sweep width, 5 mT; gain, 1.00×10^5 ; modulation amplitude, 0.025 mT; sweep width, 5 mT; gain, 1.00×10^5 ; modulation amplitude, 0.025 mT; sweep time, 45 s; time constant, 10.24 ms; number of scans, 10.

Figure S10. The normalized experimental (1) and simulated (2) EPR spectra obtained after 900 s *in situ* LED@450 nm exposure of **PmA**/Iod/benzene solution in the presence of ND spin trap under argon. EPR spectrometer settings: microwave frequency, ~ 9.44 GHz; microwave power, 1.15 mW; center field, ~336.4 mT; sweep width, 4 mT; gain, 1.00×10^5 ; modulation amplitude, 0.02 mT; sweep time, 90 s; time constant, 20.48 ms; number of scans, 10.

Figure S11. The normalized experimental (1) and simulated (2) EPR spectra obtained after 900 s *in situ* LED@400 nm exposure of **PA**/Iod/benzene solution in the presence of ND spin trap under argon. EPR spectrometer settings: microwave frequency, ~ 9.43 GHz; microwave power, 0.11 mW; center field, ~336.2 mT; sweep width, 4.5 mT; gain, 5.02×10^4 ; modulation amplitude, 0.01 mT; sweep time, 125 s; time constant, 20.48 ms; number of scans, 5.

Figure S12. Steady-state photolysis of A) P, B) P/Iod, C) P/Iod/rhodamine B, D) P/MDEA and E) P/TT in ACN after irradiation by LED@405 nm (60 mW/cm²) under air conditions. [P] = 0.14 mM, [Iod] = 13 mM, [MDEA] = 30 mM, [Trithiol] = 10 mM, and [RhB] = 3.10^{-6} M .

Figure S13. Steady-state photolysis of A) PmA, B) PmA/Iod, C) PmA/Iod/ rhodamine B, D) PmA/MDEA and E) PmA/TT in ACN after irradiation by LED@405 nm (60 mW/cm²) under air conditions. [PmA] = 0.12 mM, [Iod] = 13 mM, [MDEA] = 30 mM, [Trithiol] = 10 mM, and [RhB] = 3.10^{-6} M .

Figure S14. Steady-state photolysis of A) PA, B) PA/Iod, C) PA/Iod/ rhodamine B, D) PA/MDEA and E) PA/TT in ACN after irradiation by LED@405 nm (60 mW/cm²) under air conditions. [PA] = 0.10 mM, [Iod] = 13 mM, [MDEA] = 30 mM, [Trithiol] = 10 mM, and [RhB] = 3.10^{-6} M.

Figure S15. Fluorescence quenching of A) P, B) PmA and C) PA upon gradual addition of Iod in ACN. <u>Insert</u>: Stern-Volmer plot I_0/I as a function of the concentration of Iod for the calculation of the fluorescence quenching constants K_{SV} .

Figure S16. Cyclic voltammogram of purpurin (P), monoallyl purpurin (PmA) and triallyl purpurin (PA) in ACN + 10^{-3} M nBu₄NBF₄ measured at a scan rate of 100 mV/s. [P] = [PmA] = [PA] = 10^{-3} M.

Figure S17. Transition absorption spectra of A) **P**, B) **PmA** and C) **PA** in ACN under argon atmosphere ($\lambda_{ex} = 355$ nm).

Figure S18. Decay traces of A) **PmA**/Iod at 410 nm and B) **PA**/Iod at 560 nm in ACN under argon atmosphere ($\lambda_{ex} = 355$ nm). **Insert**: Determination of the bimolecular quenching rate constants of A) k_q^{Iod} (**³PmA**^{*}) and B) k_q^{Iod} (**³PA**^{*}) using LFP ($\lambda_{ex} = 355$ nm, 7 ns pulse width). Pseudo-first-order decay rate constant of **³PA**^{*} monitored at 560 nm *vs*. varying concentration of Iod.

Figure S19. Decay traces of **PA**/Iod at 700 nm in ACN under argon atmosphere ($\lambda_{ex} = 355$ nm). Lifetime > 150 µs.

Figure S20. EPR spectrum measured upon 1350 s *in situ* LED@450 nm exposure of P/MDEA/benzene solution under argon. EPR spectrometer settings: microwave frequency, ~ 9.44 GHz ; microwave

power, 1.12 mW; center field, \sim 336.4 mT; sweep width, 3 mT; gain, 1.00×10⁵; modulation amplitude, 0.05 mT; sweep time, 45 s; time constant, 20.48 ms; number of scans, 5.

Figure S21. The normalized experimental (1) and simulated (2) EPR spectra obtained upon *in situ* LED@450 nm irradiation of **P**/MDEA/benzene solution in the presence of DMPO spin trap under argon (* denotes of purpurin anthrasemiquinone radical). (**A**) exposure 225 s ; (**B**) exposure 675 s. EPR spectrometer settings : microwave frequency, ~ 9.43 GHz ; microwave power, 10.93 mW; center field, ~336.0 mT; sweep width, 7 mT; gain, 1.00×10^5 ; modulation amplitude, 0.05 mT; sweep time, 45 s; time constant, 10.24 ms; number of scans, 5.

Figure S22. The normalized experimental (1) and simulated (2) EPR spectra obtained upon 900s *in situ* LED@450 nm exposure of benzene solutions under argon. (**A**) **PmA**/MDEA/DMPO (* denotes signal of **PmA** anthrasemiquinone radical); EPR spectrometer settings: microwave frequency, ~ 9.44 GHz; microwave power, 11.32 mW; center field, ~336.2 mT; sweep width, 7 mT; gain, 1.00×10^5 ; modulation amplitude, 0.05 mT; sweep time, 45 s; time constant, 10.24 ms; number of scans, 10 and (**B**) **PmA**/MDEA; EPR spectrometer settings: microwave frequency, ~ 9.44 GHz; microwave power, 1.15 mW; center field, ~336.7 mT; sweep width, 2 mT; gain, 1.00×10^5 ; modulation amplitude, 0.05 mT; sweep time, 45 s; time constant, 10.24 ms; number of scans, 10 and (**B**) **PmA**/MDEA; EPR spectrometer field, ~336.7 mT; sweep width, 2 mT; gain, 1.00×10^5 ; modulation amplitude, 0.05 mT; sweep time, 45 s; time constant, 10.24 ms; number of scans, 10.

Figure S23. Fluorescence quenching of A) **P** and B) **PmA** upon gradual addition of MDEA in ACN ($\lambda_{exc} = 480$ nm). <u>Insert</u>: Stern-Volmer plot I₀/I as a function of the concentration of MDEA for the calculation of the fluorescence quenching constants K_{SV}.

Figure S24. Decay traces of PmA/MDEA at 410 nm in ACN under argon atmosphere ($\lambda_{ex} = 355$ nm). <u>Insert</u>: Determination of the bimolecular quenching rate constants of k_q^{MDEA}(³PmA*) using LFP ($\lambda_{ex} = 355$ nm, 7 ns pulse width). Pseudo-first-order decay rate constant of ³PmA* monitored at 410 nm *vs*. varying MDEA concentration.

Figure S25. The normalized experimental (1) and simulated (2) EPR spectra obtained upon 450 s *in situ* LED@450 nm exposure of benzene solutions under argon: (A) P/TT/DMPO; (B) P/TT/Iod/DMPO. EPR spectrometer settings: microwave frequency, ~ 9.44 GHz; microwave power, 1.11 mW; center field, ~336.0 or ~336.5 mT; sweep width, 7 mT; gain, 1.00×10^5 ; modulation amplitude, 0.025 mT; sweep time, 45 s; time constant, 10.24 ms; number of scans, 10.

Figure S26. The normalized experimental (1) and simulated (2) EPR spectra obtained upon 450 s *in situ* LED@450 nm exposure of benzene solutions under argon: (A) PmA/TT/DMPO; (B) PmA/TT/Iod/DMPO. EPR spectrometer settings: microwave frequency, ~ 9.44 GHz; microwave power, 1.11 mW; center field, ~336.0 or ~336.5 mT; sweep width, 7 mT; gain, 1.00×10^5 ; modulation amplitude, 0.025 mT; sweep time, 45 s; time constant, 10.24 ms; number of scans, 10.

Figure S27. Fluorescence quenching of PmA upon gradual addition of TT in ACN ($\lambda_{exc} = 480$ nm). <u>Insert</u>: Stern-Volmer plot I₀/I as a function of the concentration of TT for the calculation of the fluorescence quenching constants K_{SV}.

Figure S28. Decay traces of **P**/TT at 410 nm in ACN under argon atmosphere ($\lambda_{ex} = 355$ nm). **Insert**: Determination of the bimolecular quenching rate constants of A) $k_q^{TT}(^{3}P^{*})$ using LFP ($\lambda_{ex} = 355$ nm, 7 ns pulse width). Pseudo-first-order decay rate constant of $^{3}P^{*}$ monitored at 410 nm *vs.* varying concentration of TT.

Figure S29. Kinetics profiles of TMPTA in the presence of PmA/MDEA (0.5/2%, w/w) (A) under air and B) in laminate conditions upon exposure (1) Xe lamp, (2) LED@385 nm, (3) LED@405nm, (4) LED@455 nm, (5) LED@470 nm and (6) LED@530 nm irradiation. Thickness of the film = 25μ m.

Figure S30. Kinetics profiles of TMPTA in the presence of (A) **P**/MDEA (0.5/2%, w/w), (B) **AQ**/MDEA (0.5/2%, w/w) and (C) **BP**/MDEA (0.5/2%, w/w): in laminate conditions upon exposure (1) Xe lamp, (2) LED@385 nm, (3) LED@405nm, (4) LED@455nm and (5) LED@470nm irradiation; and under air upon exposure (6) LED@385nm and (7) LED@405nm irradiation. Thickness of the film = 25 μ m.

Figure S31. Decay traces of A) **P** (410 nm), B) **PmA** (410 nm) and C) **PA** (560 nm) in ACN with and without oxygen using LFP ($\lambda_{ex} = 355$ nm, 7 ns pulse width).

Figure S32. Photopolymerization profiles of acrylate function of A) **TMPTA** in the presence of **P**/Iod (0.5/2%, w/w) in laminate conditions; and **HEA** in the presence of **P**/Iod (0.5/2%, w/w) B) under air and C) in laminate conditions upon exposure (1) Xe lamp, (2) LED@385 nm, (3) LED@405nm, (4) LED@455 nm, (5) LED@470 nm and (6) LED@530 nm irradiation. Thickness of the film = 25μ m.

Figure S33. Photopolymerization profiles of acrylate function of TMPTA in the presence of (A) PmA/Iod (0.5/2%, w/w) in laminate conditions; and HEA in the presence of PmA/Iod (0.5/2%, w/w) B) under air and C) in laminate conditions upon exposure (1) Xe lamp, (2) LED@385 nm, (3) LED@405nm, (4) LED@455 nm, (5) LED@470 nm and (6) LED@530 nm irradiation. Thickness of the film = 25 μ m.

Figure S34. Photopolymerization profiles of acrylate function of A) **TMPTA** in the presence of **BP**/Iod (0.5/2%, w/w) in laminate conditions; and B) **HEA** in the presence of **BP**/Iod (0.5/2%, w/w): in laminate conditions upon exposure (1) LED@385 nm, (2) LED@405nm, and (3) LED@455 nm irradiation; and under air upon exposure (4) LED@385nm and (5) LED@405nm irradiation. Thickness of the film = 25 μ m.

Figure S35. Photopolymerization profiles of acrylate function of A) **TMPTA** in the presence of **AQ**/Iod (0.5/2%, w/w) and B) **HEA** in the presence of **AQ**/Iod (0.5/2%, w/w): in laminate conditions upon exposure (1) Xe lamp, (2) LED@385 nm, (3) LED@405nm, (4) LED@455 nm and (5) LED@470nm irradiation; and under air upon exposure (6) LED@385nm and (7) LED@405nm irradiation. Thickness of the film = 25 μ m.

Figure S36. Kinetics profiles of the acrylate and thiol functions in the **TMPTA/TT** (43/57%, w/w) in the presence of **PmA** (0.5 wt%) A) under air and B) in laminate conditions ; and **PmA/**Iod (0.5/2.0%, w/w) C) under air and D) in laminate conditions upon exposure Xe lamp (curves 1 and 7), LED@385 nm (curves 2 and 8), LED@405nm (curves 3 and 9), LED@455 nm (curves 4 and 10), LED@470 nm (curves 5 and 11) and LED@530 nm (curves 6 and 12) irradiation. Curves 1, 2, 3, 4, 5 and 6 = acrylate conversion; curves 7, 8, 9, 10, 11 and 12 = thiol conversion. Thickness of the film = 25 μ m.

Figure S37. Photopolymerization profiles of a **TMPTA/TT** blend (43/57%, w/w) in the presence of A) **P** (0.5 wt%) in laminate conditions; and **P**/Iod (0.5/2.0%, w/w) B) under air and C) in laminate conditions upon Xe lamp (curves 1 and 7), LED@385 nm (curves 2 and 8), LED@405nm (curves 3 and 9), LED@455 nm (curves 4 and 10), LED@470 nm (curves 5 and 11) and LED@530 nm (curves 6 and 12) irradiation. Curves 1, 2, 3, 4, 5 and 6 = acrylate conversion; curves 7, 8, 9, 10, 11 and 12 = thiol conversion. Thickness of the film = 25 μ m.

Figure S38. Photopolymerization profiles of a **TMPTA/TT** blend (43/57%, w/w) in the presence of **AQ** (0.5 wt%) A) under air and B) in laminate conditions upon Xe lamp (curves 1 and 6), LED@385 nm (curves 2 and 7), LED@405nm (curves 3 and 8), LED@455 nm (curves 4 and 9) and LED@470 nm (curves 5 and 10) irradiation. Curves 1, 2, 3, 4 and 5 = acrylate conversion; curves 6, 7, 8, 9 and 10 = thiol conversion. Thickness of the film = 25 μ m.

Figure S39. Photopolymerization profiles of a **TMPTA/TT** blend (43/57%, w/w) in the presence of **BP** (0.5 wt%) A) under air and B) in laminate conditions upon LED@385 nm (curves 1 and 4), LED@405nm (curves 2 and 5) and LED@455 nm (curves 3 and 6) irradiation. Curves 1, 2 and 3 = acrylate conversion; curves 4, 5 and 6 = thiol conversion. Thickness of the film = 25 μ m.

Figure S40. Photopolymerization profiles of epoxy function of EPOX in the presence of (A) **AQ**/Iod (0.5/2%, w/w) and (B) **BP**/Iod (0.5/2%, w/w) under air upon exposure (1) LED@385 nm and (3) LED@405nm irradiation. Thickness of the film = 25 μ m.

Figure S41. Photopolymerization of a **TMPTA/EPOX** blend (50/50%, w/w) in the presence **P**/Iod (0.5/2.0%, w/w) in laminate conditions upon exposure Xe lamp (curves 1 and 7), LED@385 nm (curves 2 and 8), LED@405nm (curves 3 and 9), LED@455 nm (curves 4 and 10) irradiation. Curves 1, 2, 3 and 5 = acrylate conversion; curves 7, 8, 9 and 11 = thiol conversion. Thickness of the film = 25 μ m.

Figure S42. Photopolymerization of a **TMPTA/EPOX** blend (50/50%, w/w) in the presence **PmA**/Iod (0.5/2.0%, w/w) in laminate conditions upon exposure Xe lamp (curves 1 and 7), LED@385 nm (curves 2 and 8), LED@405nm (curves 3 and 9) and LED@455 nm (curves 4 and 10) irradiation. Curves 1, 2, 3 and 4 = acrylate conversion; curves 7, 8, 9 and 10 = thiol conversion. Thickness of the film = 25 μ m.

Figure S43. Kinetics profiles of the acrylate and epoxy functions of the **TMPTA/EPOX** blend (50/50%, w/w) in the presence of **PA**/Iod (0.5/2.0%, w/w) A) under air and B) in laminate conditions upon exposure Xe lamp (curves 1 and 7), LED@385 nm (curves 2 and 8), LED@405nm (curves 3 and 9), LED@455 nm (curves 4 and 10), LED@470 nm (curves 5 and

11) and LED@530 nm (curves 6 and 12) irradiation. Curves 1, 2, 3, 4, 5 and 6 = acrylate conversion; curves 7, 8, 9, 10, 11 and 12 = thiol conversion. Thickness of the film = 25μ m.

Figure S44. Kinetics profiles of the acrylate functions in the **HEA/EPOX** (50/50%, w/w) in the presence of **P**/Iod (0.5/2.0%, w/w) A) under air and B) in laminate conditions upon exposure

(1) Xe lamp, (2) LED@385 nm, (3) LED@405nm, (4) LED@455 nm, (5) LED@470 nm and
(6) LED@530 nm irradiation. Thickness of the film = 25 μm.

Figure S45. Kinetics profiles of the acrylate functions in the **HEA/EPOX** (50/50%, w/w) in the presence of **PmA/**Iod (0.5/2.0%, w/w) A) under air and B) in laminate conditions upon

exposure (1) Xe lamp, (2) LED@385 nm, (3) LED@405nm, (4) LED@455 nm, (5) LED@470 nm and (6) LED@530 nm irradiation. Thickness of the film = 25 μ m.

Figure S46. Photopolymerization profiles of a **HEA/EPOX** blend (50/50%, w/w) in the presence of **PA**/Iod (0.5/2.0%, w/w) A) under air and B) in laminate conditions upon exposure (1) Xe lamp, (2) LED@385 nm, (3) LED@405nm, (4) LED@455 nm, (5) LED@470 nm and (6) LED@530 nm irradiation. Thickness of the film = 25 μ m.

	$\succ 1 2 3 4$
Figure S47. Optical image of	the material used for the antibacterial

cycle experiments. Material

derived from the photopolymerization of PA/Iod/HEA/EPOX under LED@405 nm for 4 min.

Figure S48. Optical images of the pietri dishes of the irradiated and non-irradiated samples for each of the three antibacterial cycle experiments. The small yellow dots in the petri dishes of the non-irradiated samples correspond to S. aureus colonies.

Figure S49. Evaluation of the generated singlet oxygen from the visible-light irradiation of **PA** in ACN (comparison with Rose Benghal). The value of $\Phi_{\text{singlet oxygen (PA)}}/\Phi_{\text{singlet oxygen (RB)}}$ is obtained from the ratio of the corresponding slopes at initial time of irradiation. A value of 0.16 is therefore measured for the ¹O₂ photogeneration quantum yield by **PA**.

TABLES

Table S1. Photophysical characteristics of the excited singlet- and triplet-states of **P**, **PmA**and **PA** upon the addition of co-initiators.

	λ _{abs} ^{max} (nm)	K _{sv} ^{lod} (M ⁻¹)	K _{sv} ^{MDEA} (M ⁻¹)	K _{sv} ™ (M⁻¹)	k _q ^{lod} (M ⁻¹ . s ⁻¹)	k _q ^{ox} (M⁻¹. s⁻¹)	k _q ^{MDEA} (M ⁻¹ . s ⁻¹)	k _q ™ (M ⁻¹ . s ⁻¹)
Р	477	40	4800	-	-	$3.4 imes10^8$	-	$2.4 imes10^7$
PmA	480	3	13	1	$5 imes 10^9$	$3.7 imes10^8$	2×10^7	-
PA	401	9.5	-	-	$1.1 imes 10^8$	$2 imes 10^8$	$7 imes 10^8$	$1.2 imes 10^8$

Table S2. The spin-Hamiltonian parameters of phenyl(4-methyl) spin-adduct elucidated from the simulations of the experimental EPR spectra measured upon irradiation of P, PmA or PA in the deoxygenated benzene solutions containing Iod and various spin trapping agents.

Spin trap	<i>a</i> _N (mT)	<i>а</i> _н (mT)	g-factor
DMPO ^a	1.402±0.003	1.955±0.003	2.0060±0.0001
PBN ^b	1.452±0.003	0.221±0.0006	2.0061±0.0001
PBN (¹⁵ N)	2.106±0.003	0.293±0.003	2.0061±0.0001
ND	1.027±0.002	0.093±0.001, 0.093±0.001(H ^{meta})	2.0059±0.0001
		0.287±0.002, 0.270±0.001 (H ^{ortho})	
		$0.308 {\pm} 0.001, 0.308 {\pm} 0.001, 0.305 {\pm} 0.001 \; (\text{CH}_3)^{\text{para}}$	

^{a 13}C satellites 0.781 mT (2×¹³C), 0.580 mT, 0.552 mT ; ^{b 13}C satellites 0.749 mT (2×¹³C), 0.492 mT (4×¹³C)²⁴

Table S3. The spin-Hamiltonian parameters of anthrasemiquinones estimated from the simulations of the experimental EPR spectra measured upon irradiation of **P**, **PmA** (LED@450 nm) or **PA** (LED@400 nm) in the deoxygenated benzene solutions containing MDEA.

Photosensitizer	<i>а</i> _н (mT)	g-factor
Р	not resolved	2.0043±0.0001
PmA	0.130 (2H), 0.124 (1H), 0.074 (2H), 0.062 (2H)	2.0040±0.0001
PA	0.174 (1H), 0.114 (1H), 0.106 (2H), 0.066 (1H)	2.0041±0.0001