Supporting Information

Reprocessable covalent adaptable networks with excellent elevatedtemperature creep resistance: Facilitation by dynamic, dissociative bis(hindered amino) disulfide bonds

Mohammed A. Bin Rusayyis^a, and John M. Torkelson*,a,b

^a Dept. of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA

^b Dept. of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA

*Corresponding author. Email address: j-torkelson@northwestern.edu

Scheme S1. Synthesis of BiTEMPS methacrylate.

Figure S1. FTIR Spectra of TMPM and BiTEMPS methacrylate.

Figure S2. ¹H NMR spectrum of BiTEMPS methacrylate.

Figure S3. Heat flow curves of as-synthesized and molded network samples.

Figure S4. (a) Damping ratio (tan $\delta = E''/E'$) and (b) tensile storage modulus (*E'*) and loss modulus (*E''*) of 1st mold XLPHMA-2 and XLPHMA-5 networks.

Figure S5. Pictures of XLPHMA-2 sample (a) before and (b) after the creep test and XLPHMA-5 sample (c) before and (d) after the 3-kPa creep test at 70 °C.

Figure S6. Strain recovery as a function of time for the XLPHMA-5 network at 70 °C after 13.9 h of creep testing under different stresses.

Figure S7. Fitting of characteristic relaxation times determined from Maxwell model to the Arrhenius equation.

Figure S8. Fitting of stress relaxation data of the XLPHMA-5 network at 140 $^{\circ}$ C to (a) the Maxwell model and (b) KWW function.

Sample	XLPHN	/IA-2	XLPHMA-5			
	Swelling Ratio	Gel content	Swelling Ratio	Gel content		
	(%)	(%)	(%)	(%)		
As-synthesized	476 ± 8	89.6 ± 0.9	286 ± 7	96.9 ± 0.6		
1st mold	382 ± 5	94.3 ± 0.7	187 ± 16	98.8 ± 0.6		
2nd mold	_	-	183 ± 17	99.3 ± 0.4		
3rd mold	_	-	189 ± 12	98.9 ± 0.9		

Table S1. Swelling ratio and gel content of as-synthesized and molded poly(hexyl methacrylate) networks.

Table S2. E' value of 1^{st} mold XLPHMA-2 and XLPHMA-5 networks as a function of temperature.

Sample	Mala	E' (MPa)										
	IVIOIO	70 °C	80 °C	90 °C	100 °C	110 °C	120 °C	130 °C	140 °C	150 °C	160 °C	170 °C
XLPHMA-2	1 st mold	0.56	0.53	0.5	0.47	0.46	0.45	0.44	0.45	0.44	0.42	0.39
XLPHMA-5	1 st mold	2.66	2.22	2.04	1.93	1.79	1.70	1.69	1.65	1.64	1.67	1.66