Supporting Information

Homoleptic titanium and zirconium complexes exhibiting unusual O_{iminol}-metal coordination: Application in stereoselective ring-opening polymerization of lactide

Sagnik K. Roymuhury,^{*a*} Mrinmay Mandal,^{*a*} Debashis Chakraborty, ^{**b*} and Venkatachalam

Ramkumar^b

^aDepartment of Chemistry, Indian Institute of Technology Patna, Bihta 801103, Bihar, India.

^bDepartment of Chemistry, Indian Institute of Technology Madras, Chennai-600 036, Tamil Nadu, India. Fax: +044-22574202; Tel: +044-22574223; E-mail: dchakraborty@iitm.ac.in.

‡Current address: School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100, United States.

Fig. S1.¹H NMR (400 MHz, DMSO-d₆) of Compound $L1H_2$

Fig. S2.¹³C NMR (100 MHz, DMSO-d₆) of Compound L1H₂

Fig. S3. ESI mass spectrum of Compound $L1H_2$

Fig. S4.¹H NMR (400 MHz, DMSO-d₆) of Compound L2H₂

Fig. S5.¹³C NMR (100 MHz, DMSO-d₆) of Compound L2H₂

Fig. S6. ESI mass spectrum of Compound $L2H_2$

Fig. S7.¹H NMR (400 MHz, DMSO-d₆) of Compound L3H₂

Fig. S8.¹³C NMR (100 MHz, DMSO-d₆) of Compound L3H₂

Fig. S9. ESI mass spectrum of Compound $L3H_2$

Fig. S10.¹H NMR (400 MHz, CDCl₃) of Compound 1

Fig. S11.¹³C NMR (100 MHz, CDCl₃) of Compound 1

Fig. S12. ESI mass spectrum of Compound 1

Fig. S13.¹H NMR (400 MHz, CDCl₃) of Compound 2

Fig. S14.¹³C NMR (100 MHz, CDCl₃) of Compound 2

Fig. S15. ESI mass spectrum of Compound 2

Fig. S16.¹H NMR (400 MHz, CDCl₃) of Compound 3

Fig. S17.¹³C NMR (100 MHz, CDCl₃) of Compound 3

Fig. S18. ESI mass spectrum of Compound 3

Fig. S19.1H NMR (400 MHz, CDCl₃) of Compound 4

Fig. S20.¹³C NMR (100 MHz, CDCl₃) of Compound 4

Fig. S21. ESI mass spectrum of Compound 4

Fig. S22.¹H NMR (400 MHz, CDCl₃) of Compound 5

Fig. S23.¹³C NMR (100 MHz, CDCl₃) of Compound 5

Fig. S24. ESI mass spectrum of Compound 5

Fig. S25.¹H NMR (400 MHz, CDCl₃) of Compound 6

Fig. S26.¹³C NMR (100 MHz, CDCl₃) of Compound 6

Fig. S27. ESI mass spectrum of Compound 6

Fig. S28. Molecular structure of $L1H_2$

Fig. S29. rac-LA conversion vs. time plot using 1 and 4: $[M]_o/[Cat]_o= 200$ at 140 °C

Fig. S30. ¹H NMR spectrum (400 MHz, CDCl₃) of the crude product obtained from a reaction between *rac*-LA and **1** and BnOH in 15: 1: 5 ratios at 140 °C.

Fig. S31. Net Mulliken charge analysis of the optimized geometry of 1.

Compound	L1H ₂ .DMSO	L2H ₂ .DMSO	1	2	4
Molecular formula	$C_{22}H_{32}N_2O_3S_2$	C19 H26 N2 O3 S2	C _{40.03} H _{46.03} N4 O ₄ S ₂ Ti	C ₃₄ H ₃₆ N ₄ O ₄ S ₂ Ti	C40 H48 N4 O4 S2 Zr
Formula weight	436.61	394.54	758.83	676.69	804.16
T/K	296(2)	296(2)	296(2)	296(2)	296(2)
Wavelength (Å)	0.71073	0.71073	0.71073	0.71073	0.71073
Crystal system	Triclinic	Triclinic	Monoclinic	Monoclinic	Monoclinic
Space group	P1	P1	$P2_1/c$	$P2_1/n$	$P2_1/c$
a/Å	9.2586(2)	9.8710(3)	17.7190(9)	13.081(4)	17.8233(9)
b/Å	9.6167(2)	9.8841(3)	10.8186(5)	23.840(8)	10.9084(6)
c/Å	15.5862(4)	10.9592(3)	21.7958(11)	15.426(5)	21.6049(11)
α (°)	89.2238(12)	98.4485(11)	90	90	90
β (°)	75.0508(11)	94.8760(11)	93.293(2)	101.148(12)	94.0606(18)
γ (°)	65.7927(10)	94.1161(12)	90	90	90
V/Å ³	1216.17(5)	1049.95(5)	4171.2(4)	4720(3)	4190.0(4)
Z, Calculated density(Mg/ m ³)	2, 1.192	2, 1.248	4, 1.208	4, 0.952	4, 1.275
Absorption coefficient (mm ⁻¹)	0.242	0.273	0.347	0.301	0.404
Reflections collected/Independent	16707 / 4271	15632 / 3699	14548 / 3837	13883 / 4625	31084 / 7376
reflections					
Data/restraints/parameters	4271 / 0 / 278	3699 / 0 / 249	3837 / 68 / 535	4625 / 6 / 424	7376 / 50 / 514
Goodness of fit on F ²	1.037	1.042	1.057	1.111	1.077
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0737$,	$R_1 = 0.0743$,	$R_1 = 0.0471,$	$R_1 = 0.0585,$	$R_I = 0.0374,$
	$wR_2 = 0.2182$	$wR_2 = 0.2076$	$wR_2 = 0.1194$	$wR_2 = 0.1552$	$wR_2 = 0.0951$
R indices (all data)	$R_1 = 0.0850,$	$R_1 = 0.0832$,	$R_1 = 0.0730,$	$R_1 = 0.0769$,	$R_1 = 0.0569,$
	$wR_2 = 0.2338$	$wR_2 = 0.2207$	$wR_2 = 0.1493$	$wR_2 = 0.1676$	$wR_2 = 0.1113$
CCDC	1562812	1562816	1562817	1562818	1562819

Table S1. Crystal data for the structure $L1H_2$, $L2H_2$, 1, 2 and 4

 $\overline{R_1 = \sum |F_0| - |F_c| / \sum |F_0|}, wR_2 = \left[\sum (F_0^2 - F_c^2)^2 / \sum w(F_0^2)^2\right]^{1/2}$