Supporting information for

Hybrid polyurethanes composed of isobutylsubstituted open-cage silsesquioxane in the main chains: Synthesis, properties, and surface segregation in a polymer matrix

Yukiho Ueda, Hiroaki Imoto, Arifumi Okada, Huaizhong Xu, Hideki Yamane, Kensuke Naka
(a)

(b)

(c)

Figure $\mathbf{S 1}(\mathrm{a}){ }^{1} \mathrm{H}-$, (b) ${ }^{13} \mathrm{C}$-, and (c) ${ }^{29} \mathrm{Si}-\mathrm{NMR}$ spectra of $\mathbf{2}$ in CDCl_{3}.

Figure S2 SEC traces of crude 4b polymerized at $50^{\circ} \mathrm{C}$ and r.t.

Figure S3 SEC traces of crude 4a polymerized at $50^{\circ} \mathrm{C}$ and r.t.

Figure S4 SEC traces of 4a, 4b, 4c, and 4d before and after the purification.
(a)

(b)

(c)

Figure $\mathbf{S 5}(\mathrm{a}){ }^{1} \mathrm{H}-$ - (b) ${ }^{13} \mathrm{C}$-, and (c) ${ }^{29} \mathrm{Si}-\mathrm{NMR}$ spectra of $\mathbf{4 a}$ in CDCl_{3}.
(a)

(b)

(c)

Figure $\mathbf{S 6}(\mathrm{a}){ }^{1} \mathrm{H}-$ - (b) ${ }^{13} \mathrm{C}$-, and (c) ${ }^{29} \mathrm{Si}-\mathrm{NMR}$ spectra of $\mathbf{4 b}$ in CDCl_{3}.
(a)

(b)

(c)

Figure $\mathbf{S 7}$ (a) ${ }^{1} \mathrm{H}-$ - (b) ${ }^{13} \mathrm{C}$-, and (c) ${ }^{29} \mathrm{Si}-\mathrm{NMR}$ spectra of $\mathbf{4 c}$ in CDCl_{3}.
(a)

(b)

(c)

20	0	-20	-40	-60
		$-8 / \mathrm{ppm}$	-80	

Figure $\mathbf{S 8}$ (a) ${ }^{1} \mathrm{H}-$ - (b) ${ }^{13} \mathrm{C}$-, and (c) ${ }^{29} \mathrm{Si}-\mathrm{NMR}$ spectra of 4 d in CDCl_{3}.

Figure $\mathbf{S 9}$ FT-IR spectra of $\mathbf{4 a}, \mathbf{4 b}, \mathbf{4 c}$, and $\mathbf{4 d}$.

Figure $\mathbf{S} 10 \mathrm{TGA}$ thermograms of the polymers under N_{2} and air, $10^{\circ} \mathrm{C} / \mathrm{min}$. No residue remained under N_{2} due to sublimation, but high residual weights corresponding to SiO_{2} were remained under air.

Table S1 Static water contact angles of the films of PMMA and PMMA containing 4.

Polymer	Static water contact angles ["]						
	$100 \mathrm{wt} \%$	$0.5 \mathrm{wt} \%$	$1 \mathrm{wt} \%$	$2 \mathrm{wt} \%$	$5 \mathrm{wt} \%$	$10 \mathrm{wt} \%$	$20 \mathrm{wt} \%$
4a	105.0 ± 1.0	101.5 ± 1.0	101.8 ± 1.6	102.9 ± 1.7	102.0 ± 1.3	102.1 ± 1.3	102.8 ± 1.1
4b	121.4 ± 2.4	105.3 ± 1.2	106.2 ± 0.8	106.2 ± 1.8	110.4 ± 1.2	110.9 ± 1.0	113.8 ± 2.1
4c	104.4 ± 1.7	101.3 ± 0.8	101.6 ± 1.2	102.7 ± 1.2	101.6 ± 0.7	101.9 ± 1.6	102.4 ± 1.5
4d	106.1 ± 0.7	102.0 ± 0.3	101.8 ± 1.2	103.2 ± 1.3	102.9 ± 0.5	101.3 ± 1.1	102.5 ± 0.7

Figure S11 Photographs of PMMA films containing $0.5,1,2,5,10$, and $20 w t \% 4$.

Figure S12 Transmittance spectra of PMMA films containing $0.5,1,5,10$, and $20 \mathrm{wt} \%$ of (a) 4a, (b) 4b, (c) 4c, and (d) 4d.

Figure S13 SEM images of PMMA films containing $0.5,1,2,5,10$, and $20 \mathrm{wt} \% 4$.

Figure S14 Si $2 p$ spectra of the PMMA film containing $5 \mathrm{wt} \%$ 4a before and after the argon ion sputtering.

(a)

(b)

(c)

Figure S15 SEM images of (a)PMMA nanofiber, (b) PMMA with $2 \mathbf{w t \%} \mathbf{4 a}$, and (c) PMMA with $5 \mathbf{w t} \% \mathbf{4 a}$.

