Electronic Supplementary Information

Stereogradient polycaprolactones formed by asymmetric kinetic resolution polymerization of 6-methyl-\&-caprolactone

Chengdong Lv, ${ }^{\text {a,b }}$ Guangqiang Xu, ${ }^{* a, b}$ Rulin Yang, ${ }^{\text {a,b }}$ Li Zhou ${ }^{\mathrm{a}}$ and Qinggang Wang *a,b

a. Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
b. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.

1. Synthesis procedure of 6-methyl-\&-caprolactone (6-MeCL)
2. Figures
3. Tables

1. Synthesis procedure of the racemic/chiral 6-methyl-\&-caprolactone (6-MeCL)

(a) Racemic 6-methyl-\&-caprolactone (rac-6-MeCL)

Rac-6-MeCL was synthesized by using the Baeyer-Villiger reaction. At room temperature, 3-chloroperoxybenzoic acid (m -CPBA, $30 \mathrm{~g}, 174 \mathrm{mmol}, 1.1$ equiv.) was added to 2 methylcyclohexanone ($17.7 \mathrm{~g}, 158 \mathrm{mmol}, 1$ equiv.) in 150 mL dichloromethane (DCM). After $12 \mathrm{~h}, \mathrm{Na}_{2} \mathrm{SO}_{3}(3 \mathrm{M}, 100 \mathrm{~mL})$ and saturated brine $(200 \mathrm{~mL})$ was added to the mixture. The reaction mixture was extracted with $\mathrm{DCM}(200 \mathrm{~mL})$ to obtain oil liquid. The crude product was then purified by flash chromatography (n-hexane: ethyl acetate $=20: 1$) to give a colorless liquid ($14.4 \mathrm{~g}, 71 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta: 4.48-4.41$ $(\mathrm{m}, 1 \mathrm{H}), 2.89-2.45(\mathrm{~m}, 2 \mathrm{H}), 2.04-1.79(\mathrm{~m}, 3 \mathrm{H}), 1.71-1.53(\mathrm{~m}, 3 \mathrm{H}), 1.35(\mathrm{~d}, J=6.4$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, Chloroform-d) $\delta: 175.7,77.0,36.4,35.2,28.5,23.1,22.7$.
(b) Chiral 6-methyl-s-caprolactone (R or S-6-MeCL)

(R) or (S)-6-methyl- ε-caprolactone was synthesized by six steps reactions from chiral propylene oxide.

Step 1: Under Ar condition, $\mathrm{CuI}(3.8 \mathrm{~g}, 0.03 \mathrm{~mol}, 0.1$ equiv.) was dissolved in dried THF (50 mL) and cooled to $-20^{\circ} \mathrm{C}$, then 3-butenylmagnesium bromide solution ($1 \mathrm{M} \mathrm{THF}, 250$ $\mathrm{mL}, 0.25 \mathrm{~mol}, 1.25$ equiv.) was added. (S) or (R)-propylene oxide (11.6 g in 50 mL THF, $0.2 \mathrm{~mol}, 1$ equiv.) was added slowly to react for 3 h . After accomplish, $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{M}, 150$
mL) was added to the reaction system, and ethyl acetate (100 mL) was used to extract the reaction system, dried to obtain colorless liquid $\mathbf{C 1}$ (18.2 g, 80\% yield).

Step 2: Under Ar condition, C1 compound (18.2 g, $0.16 \mathrm{~mol}, 1$ equiv.) was dissolved in DCM (100 mL), DMAP ($1.95 \mathrm{~g}, 0.016 \mathrm{~mol}, 0.1$ equiv. $)$ and triethylamine ($24.1 \mathrm{~g}, 0.24 \mathrm{~mol}$, 1.5 equiv.) were added at $0^{\circ} \mathrm{C}$. Then acetic anhydride ($24.4 \mathrm{~g}, 0.24 \mathrm{~mol}, 1.5$ equiv.) was added slowly and reacted overnight. After accomplish, reaction mixture was washed with brine (100 mL) for 3 times and dried to obtain $\mathbf{C} 2$ as colorless liquid ($22.3 \mathrm{~g}, 89 \%$ yield).

Step 3: Under Ar condition, C2 compound ($22.3 \mathrm{~g}, 0.143 \mathrm{~mol}, 1$ equiv.) was dissolved in dried THF (100 mL), and 9-BBN (0.5 M in THF, $380 \mathrm{~mL}, 0.179 \mathrm{~mol}, 1.25$ equiv.) was added to react overnight at $0^{\circ} \mathrm{C}$. Then $\mathrm{NaOH}\left(3 \mathrm{M}\right.$ in $\mathrm{H}_{2} \mathrm{O}, 60 \mathrm{~mL}, 0.179 \mathrm{~mol}, 1.25$ equiv.) and $\mathrm{H}_{2} \mathrm{O}_{2}\left(9.8 \mathrm{M}\right.$ in $\mathrm{H}_{2} \mathrm{O}, 18 \mathrm{~mL}, 0.179 \mathrm{~mol}, 1.25$ equiv.) were added to react for 4 h . After accomplish, reaction mixture was extracted with ethyl acetate $(100 \mathrm{~mL})$ and washed with brine for 3 times, then dried to obtain C3 as colorless liquid ($24.0 \mathrm{~g}, 96 \%$ yield).

Step 4: At - $10{ }^{\circ} \mathrm{C}$ (ice salt bath), Jones reagent ($2 \mathrm{M} \mathrm{CrO}_{3}$ in $\mathrm{H}_{2} \mathrm{SO}_{4}, 50 \mathrm{~mL}, 0.1 \mathrm{~mol}, 2.0$ equiv.) was added to $\mathbf{C} 3$ compound ($8.94 \mathrm{~g}, 0.05 \mathrm{~mol}, 1$ equiv.) in 100 mL acetone slowly to react for 3 h . After accomplish, 50 mL isopropanol was added, the mixture was filtered by diatomite (washed with acetone) and washed with saturated $\mathrm{NaHCO}_{3}(70 \mathrm{~mL})$. The aqueous phase was adjusted to $p \mathrm{H}=2$ with 1 N HCl solution, then extracted with 50 mL ethyl acetate. The organic phase was washed with brine (50 mL) and dried to obtain $\mathbf{C 4}$ as colorless liquid ($5.7 \mathrm{~g}, 59 \%$ yield $)$.

Step 5: At room temperature, $\mathbf{C 4}(5.7 \mathrm{~g}, 0.03 \mathrm{~mol}, 1$ equiv.) was dissolved in the mixture solution (THF: $\mathrm{H}_{2} \mathrm{O}=9: 1,50 \mathrm{~mL}$), then $\mathrm{LiOH}(1 \mathrm{~g}, 0.045 \mathrm{~mol}, 1.5$ equiv.) was added slowly to react overnight. After accomplish, THF was removed and the aqueous phase was adjusted to $\mathrm{pH}=2$ with 1 N HCl solution. Reaction mixture was extracted with ethyl acetate and washed with brine for 3 times to obtain light yellow liquid after rotary evaporator, then further purified with flash column chromatography ($\mathrm{PE}: \mathrm{EA}=3: 1$) to obtain C5 (1.5 g, 34\% yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 3.84-3.80(\mathrm{~m}, 1 \mathrm{H})$, $2.38(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.80-1.36(\mathrm{~m}, 6 \mathrm{H}), 1.20(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, Chloroform- d) $\delta 178.2,67.9,38.8,33.7,25.2,24.6,23.5$.

Step 6: At room temperature, $\mathrm{EDCI} \cdot \mathrm{HCl}(0.34 \mathrm{~g}, 0.04 \mathrm{~mol}, 1.3$ equiv. $)$ and DMAP ($0.25 \mathrm{~g}, 0.045$
mol, 1.5 equiv.) were dissolved in 40 mL DCM, and $\mathbf{C 5}$ ($0.2 \mathrm{~g}, 0.03 \mathrm{~mol}, 1$ equiv.) in 10 mL DCM was added to reaction mixture. After accomplish, DCM was removed and reaction mixture was purified by flash column chromatography ($\mathrm{PE}: \mathrm{EA}=20: 1$) to obtain (S) or $(R)-6-\mathrm{MeCL}$ as colorless oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 4.48-4.41(\mathrm{~m}, 1 \mathrm{H}), 2.89-2.45(\mathrm{~m}, 2 \mathrm{H}), 2.04$ $-1.79(\mathrm{~m}, 3 \mathrm{H}), 1.71-1.53(\mathrm{~m}, 3 \mathrm{H}), 1.35(\mathrm{~d}, J=6.4,3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform- d) δ 175.7, 77.0, 36.4, 35.2, 28.5, 23.1, 22.7.

2. Figures

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{C} 5$ compound (400 MHz , Chloroform- d, 298 K).

Figure S2. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{C 5}$ compound (100 MHz , Chloroform- d, 298 K).

Figure S4. ${ }^{13} \mathrm{C}$ NMR spectrum of 6-MeCL (100 MHz, Chloroform-d, 298 K).

Figure $\mathrm{S} 5 .{ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{P}(6-\mathrm{MeCL})(400 \mathrm{MHz}$, Chloroform-d, 298 K).

Figure $\mathrm{S} 6 .{ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{P}(6-\mathrm{MeCL})(100 \mathrm{MHz}$, Chloroform- $d, 298 \mathrm{~K})$.

Figure S7. MALDI-TOF MS spectrum of low molecular weight $\mathrm{P}(6-\mathrm{MeCL})$.

Figure S8. Semilogarithmic plots of $\ln \left([6-\mathrm{MeCL}]_{0} /[6-\mathrm{MeCL}]_{\mathrm{t}}\right)$ versus time for $\mathrm{rac} / R / S-6-\mathrm{MeCL}$ polymerization catalyzed by (S)-CPA- 2 at room temperature.

Figure S9. ${ }^{1} \mathrm{H}$ NMR spectra of atactic/isotactic/stereogradient $\mathrm{P}(6-\mathrm{MeCL})$ s. (Atactic polymer: Table S1, entry $1 ;(R) /(S)$-polymer: Table 2 , entries $2 / 3$; Stereogradient polymer: Table 2, entry 1.)

Figure $\mathrm{S} 10 .{ }^{13} \mathrm{C}$ NMR spectra of atactic/isotactic/stereogradient $\mathrm{P}(6-\mathrm{MeCL}) \mathrm{s}$. (Atactic polymer: Table S1, entry $1 ;(R) /(S)$-polymer: Table 2 , entries $2 / 3$; Stereogradient polymer: Table 2 , entry 1 .)

Figure S11. $(R) /(S)-6-\mathrm{MeCL}$ ratios in stereogradient $\mathrm{P}(6-\mathrm{MeCL})$ samples from AKRP of rac-6MeCL by (R)-CPA- 2 according to Table S3.

Figure S12. ${ }^{1} \mathrm{H}$ NMR spectrum of the alcoholysis reaction (400 MHz , Chloroform- d, 298 K).

Figure S13. HPLC chromatogram of the rac-6-MeCL. Column, Chiralpak IA-3; flow rate, 1 $\mathrm{mL} / \mathrm{min}$; eluent, hexane/isopropanol $=95 / 5$; detector, UV $(230 \mathrm{~nm})$.

Figure S14. HPLC chromatogram of the unreacted 6-MeCL at 48\% conversion for AKRP of rac-6-MeCL (Table 1, entry 3).

3. Tables

Table S1. Synthesis of atactic P(6-MeCL) a

Entry	Cat.	$[\mathrm{M}] /[\mathrm{Cat}] /.[\mathrm{BnOH}]$	Time (h)	Conv. $(\%)$	$M_{\mathrm{n}, \mathrm{NMR}}{ }^{\mathrm{b}}$ $(\mathrm{g} / \mathrm{mol})$	$M_{\mathrm{n}, \mathrm{NMR}}{ }^{\mathrm{c}}$ $(\mathrm{g} / \mathrm{mol})$	$M_{\mathrm{n}, \mathrm{GPC}}{ }^{\mathrm{d}}$ $(\mathrm{g} / \mathrm{mol})$	$\mathrm{PDI}^{\mathrm{d}}$
1	Diphenyl phosphat	$50: 1: 1$	48	83	5400	5400	5000	1.14

${ }^{\text {a }}$ Reactions were carried out in toluene at room temperature; ${ }^{\text {b }}$ Calculated from $M_{\mathrm{n}[6-\mathrm{MeCL}]} \times$ Conv.
$\times 50+M_{\mathrm{n}[\mathrm{BnOH}]}$ by ${ }^{1} \mathrm{H}$ NMR. ${ }^{\mathrm{c}}$ Calculated from $M_{\mathrm{n}[6-\mathrm{MeCL}]} \times \mathrm{DP}+M_{\mathrm{n}[\mathrm{BnOH}]}, \quad \mathrm{DP}$ was the polymerization degree determined by the integral ratio between chain end and main chain by ${ }^{1} \mathrm{H}$ NMR. ${ }^{\text {d }}$ Determined by GPC at $40^{\circ} \mathrm{C}$ in THF against polystyrene standards.

Table S2. Synthesis of gram-scale atactic/stereogradient $\mathrm{P}(6-\mathrm{MeCL})$ s for the viscoelasticity test. ${ }^{\text {a }}$

Polymer	Monomer	Cat.	$[\mathrm{M}] /[\mathrm{Cat}]][\mathrm{BnOH}]$	Mass (g)	Yield $(\%)$	$M_{\mathrm{n}, \mathrm{GPC}}{ }^{\mathrm{b}}$ $(\mathrm{g} / \mathrm{mol})$	PDI $^{\mathrm{b}}$
Atactic $\mathrm{P}(6-$ MeCL $)$	rac-6-MeCL	Diphenyl phosphat	$350: 1: 7$	6	84	14600	1.16
Stereogradien $\mathrm{t} \mathrm{P}(6-\mathrm{MeCL})$	rac-6-MeCL	(R)-CPA-2	$350: 1: 7$	6	88	15100	1.15

${ }^{a}$ Reactions were carried out in toluene at room temperature; ${ }^{\text {b }}$ Determined by GPC at $40{ }^{\circ} \mathrm{C}$ in THF against polystyrene standards.

Table S3. $(R) /(S)-6-\mathrm{MeCL}$ monomer ratio in unreacted monomer and polymer at different
conversion. ${ }^{\text {a }}$

Conv. ${ }^{\mathrm{b}}$ $(\%)$	 $(\%)$	$(S)-6-\mathrm{MeCL}$ in unreacted monomer	$(R)-6-\mathrm{MeCL}$ in unreacted monomer	(S)-6-MeCL in polymer	$(R)-6-\mathrm{MeCL}$ in polymer	$(S)-6-\mathrm{MeCL}$ ratio in polymer $(\%)$	$(R)-6-\mathrm{MeCL}$ ratio in polymer (\%)
17	15	47.725	35.275	2.275	14.725	0.134	0.866
27	23	44.895	28.105	5.105	21.895	0.179	0.811
35	33	43.225	21.775	6.775	28.225	0.194	0.806
45	43	39.325	15.675	10.675	34.325	0.237	0.763
59	55	31.775	9.225	18.225	40.775	0.309	0.691
70	67	25.050	4.950	24.950	45.050	0.356	0.644
75	73	21.625	3.375	28.375	46.625	0.378	0.622
88	79	10.740	1.260	39.260	48.740	0.446	0.554

${ }^{\text {a }}$ Reactions were carried out in toluene using (R)-CPA-2 as organocatalyst and BnOH as the initiator at room temperature; $[\mathrm{rac}-6-\mathrm{MeCL}]_{0} /[\mathrm{CPA}-2]_{0} /[\mathrm{BnOH}]_{0}=50: 1: 1,[6-\mathrm{MeCL}]_{0}=0.4 \mathrm{~mol} \mathrm{~L}^{-1}$. ${ }^{\mathrm{b}}$ Monomer conversion was determined and calculated by ${ }^{1} \mathrm{H}$ NMR in CDCl_{3}. ${ }^{\mathrm{c}}$ Enantiomeric excess of the unreacted monomer was measured by chiral HPLC.

