The influence of 2-acrylamidephenylboronic acid on the phase behaviour of its copolymers with N-isopropylacrylamide in aqueous solution

Mateusz Gosecki,^a Piotr Ziemczonek,^a Paulina Maczugowska,^b Anna Czaderna-Lekka,^b Marcin Kozanecki,^b Monika Gosecka^{*a}

a Polymer Division, Centre of Molecular and Macromolecular Studies, Polish Academy of Science, Poland, Sienkiewicza 112, 90-363 Lodz, Poland

b Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland

Figure S1. ¹H NMR spectrum of P(NIPAM-co-2-AAPBA) 5 recorded in deuterium oxide.

Figure S2. ¹H NMR spectrum of P(NIPAM-*co*-2-AAPBA)_10 recorded in deuterium oxide.

Figure S3. ¹H NMR spectrum of P(NIPAM-co-2-AAPBA)_15 recorded in deuterium oxide.

Figure S4. ¹H NMR spectrum of P(NIPAM-*co*-2-AAPBA)_17 RAFT recorded in deuterium oxide.

Figure S5. ¹H NMR spectrum of P(NIPAM-*co*-2-AAPBA)_30 recorded in deuterium oxide.

Figure S6. ¹H NMR spectrum of P(NIPAM-*co*-2-AAPBA)_45 recorded in deuterium oxide.

Figure S7. ¹H DOSY NMR spectrum of P(NIPAM-*co*-2-AAPBA)_5 recorded in deuterium oxide.

Figure S8. ¹H DOSY NMR spectrum of P(NIPAM-*co*-2-AAPBA) _10 recorded in deuterium oxide.

Figure S9. ¹H DOSY NMR spectrum of P(NIPAM-*co*-2-AAPBA) _15 recorded in deuterium oxide.

Figure S10. ¹H DOSY NMR spectrum of P(NIPAM-*co*-2-AAPBA)_17 (RAFT) recorded in deuterium oxide.

Figure S11. ¹H DOSY NMR spectrum of P(NIPAM-co-2-AAPBA) _30 recorded in deuterium oxide.

Figure S12. ¹H DOSY NMR spectrum of P(NIPAM-co-2-AAPBA) _45 recorded in deuterium oxide.

Figure S13. The conversion rate of 2-acrylamidephenyl boronic acid pinacol ester, 2-AAPBAPE and N-isopropylacrylamide, NIPAM in the molar ration 10:90 in the free radical copolymerization.

Figure S14. Heating-cooling cycles recorded by DLS for PNIPAM (a) and P(NIPAM-*co*-2-AAPBA)copolymers differing 2-AAPBA molar content (b-f) revealing the phase transition temperatures.

Figure S15. The turbidity experiments recorded for aqueous solutions of P(NIPAM-co-2-AAPBA)_5.

Figure S16. The turbidity experiments recorded for aqueous solutions of P(NIPAM-*co*-2-AAPBA)_15 at the concentration 0.25 and 1.00 wt%, respectively.

Figure S17. The turbidity experiments recorded for aqueous solutions of P(NIPAM-*co*-2-AAPBA)_30 at the concentration 0.25 and 1.00 wt%, respectively.

Figure S18. Variable temperature ¹H NMR spectra of P(NIPAM-*co*-2-AAPBA)_5 recorded in deuterium oxide.

Figure S19. Variable temperature ¹H NMR spectra of P(NIPAM-*co*-2-AAPBA)_17 (RAFT) recorded in deuterium oxide.

Figure S20. Variable temperature ¹H NMR spectra of P(NIPAM-*co*-2-AAPBA)_30 recorded in deuterium oxide.

Figure S21. Variable temperature ¹H NMR spectra of PNIPAM homopolymer recorded in deuterium oxide.

Figure S22. Raman active vibrational mode typical for B_3O_3 in boroxine composed of 2-acetamidephenylboronic acid at 752 cm⁻¹.Boron atoms (pink), oxygen atoms (red), nitrogen atoms (blue), carbon atoms (grey), hydrogen atoms (white).

Figure S23. Raman active vibrational mode typical for B_3O_3 in boroxine composed of 2-acetamidephenylboronic acid at 780 cm⁻¹. Boron atoms (pink), oxygen atoms (red), nitrogen atoms (blue), carbon atoms (grey), hydrogen atoms (white).

Figure S24. Raman active vibrational mode typical for B_3O_3 in boroxine composed of 2-acetamidephenylboronic acid at **957** cm⁻¹. Boron atoms (pink), oxygen atoms (red), nitrogen atoms (blue), carbon atoms (grey), hydrogen atoms (white).

Figure S25. Raman active vibrational mode typical for B_3O_3 in boroxine composed of 2acetamidephenylboronic acid at **999** cm⁻¹. Boron atoms (pink), oxygen atoms (red), nitrogen atoms (blue), carbon atoms (grey), hydrogen atoms (white).