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Figure S1. 1H NMR spectrum of P(NIPAM-co-2-AAPBA)_5 recorded in deuterium oxide.
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Figure S2. 1H NMR spectrum of P(NIPAM-co-2-AAPBA)_10 recorded in deuterium oxide.
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Figure S3. 1H NMR spectrum of P(NIPAM-co-2-AAPBA)_15 recorded in deuterium oxide.

Figure S4. 1H NMR spectrum of P(NIPAM-co-2-AAPBA)_17 RAFT recorded in deuterium oxide.
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Figure S5. 1H NMR spectrum of P(NIPAM-co-2-AAPBA)_30 recorded in deuterium oxide.

Figure S6. 1H NMR spectrum of P(NIPAM-co-2-AAPBA)_45 recorded in deuterium oxide.
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Figure S7. 1H DOSY NMR spectrum of P(NIPAM-co-2-AAPBA)_5 recorded in deuterium oxide.

Figure S8. 1H DOSY NMR spectrum of P(NIPAM-co-2-AAPBA) _10 recorded in deuterium oxide.
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Figure S9. 1H DOSY NMR spectrum of P(NIPAM-co-2-AAPBA) _15 recorded in deuterium oxide.

Figure S10. 1H DOSY NMR spectrum of P(NIPAM-co-2-AAPBA)_17 (RAFT) recorded in deuterium 
oxide.
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Figure S11. 1H DOSY NMR spectrum of P(NIPAM-co-2-AAPBA) _30 recorded in deuterium oxide.

Figure S12. 1H DOSY NMR spectrum of P(NIPAM-co-2-AAPBA) _45 recorded in deuterium oxide.
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Figure S13. The conversion rate of 2-acrylamidephenyl boronic acid pinacol ester, 2-AAPBAPE and N-
isopropylacrylamide, NIPAM in the molar ration 10:90 in the free radical copolymerization.
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Figure S14. Heating-cooling cycles recorded by DLS for PNIPAM (a) and P(NIPAM-co-2-
AAPBA)copolymers differing 2-AAPBA molar content (b-f) revealing the phase transition 
temperatures.
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Figure S15. The turbidity experiments  recorded for aqueous solutions of P(NIPAM-co-2-AAPBA)_5.

Figure S16. The turbidity experiments  recorded for aqueous solutions of P(NIPAM-co-2-AAPBA)_15 
at the concentration 0.25 and 1.00 wt%, respectively. 
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Figure S17. The turbidity experiments  recorded for aqueous solutions of P(NIPAM-co-2-AAPBA)_30 
at the concentration 0.25 and 1.00 wt%, respectively.

Figure S18. Variable temperature 1H NMR spectra of P(NIPAM-co-2-AAPBA)_5 recorded in 
deuterium oxide.
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Figure S19. Variable temperature 1H NMR spectra of P(NIPAM-co-2-AAPBA)_17 (RAFT) recorded 
in deuterium oxide.

Figure S20. Variable temperature 1H NMR spectra of P(NIPAM-co-2-AAPBA)_30 recorded in 
deuterium oxide.
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Figure S21. Variable temperature 1H NMR spectra of PNIPAM homopolymer recorded in deuterium 
oxide.

Figure S22. Raman active vibrational mode typical for B3O3 in boroxine composed of 2-
acetamidephenylboronic acid at 752 cm-1.Boron atoms (pink), oxygen atoms (red), nitrogen atoms 
(blue), carbon atoms (grey), hydrogen atoms (white).
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Figure S23. Raman active vibrational mode typical for B3O3 in boroxine composed of 2-
acetamidephenylboronic acid at 780 cm-1. Boron atoms (pink), oxygen atoms (red), nitrogen atoms 
(blue), carbon atoms (grey), hydrogen atoms (white). 

Figure S24. Raman active vibrational mode typical for B3O3 in boroxine composed of 2-
acetamidephenylboronic acid at 957 cm-1. Boron atoms (pink), oxygen atoms (red), nitrogen atoms 
(blue), carbon atoms (grey), hydrogen atoms (white). 
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Figure S25. Raman active vibrational mode typical for B3O3 in boroxine composed of 2-
acetamidephenylboronic acid at 999 cm-1. Boron atoms (pink), oxygen atoms (red), nitrogen atoms 
(blue), carbon atoms (grey), hydrogen atoms (white). 


