SUPPORTING INFORMATION

Synthesis of poly(caprolactone)-*block*-poly[oligo (ethylene glycol) methyl methacrylate] amphiphilic grafted nanoparticles (AGNs) as improved oil dispersants

Christopher B. Keller*^a, Susan E. Walley^d, Curtis W. Jarand^b, Jibao He^c, Muhammad Ejaz^a, Daniel A. Savin^d, and Scott

M. Grayson^a

^aDepartment of Chemistry, Percival Stern Hall, Tulane University, New Orleans, Louisiana, 70118

^bDepartment of Physics and Engineering Physics, Percival Stern Hall, Tulane University, New Orleans, Louisiana,

70118

^cCoordinated Instrument Facility, Percival Stern Hall, Tulane University, New Orleans,

Louisiana, 70118

^dDepartment of Chemistry, Leigh Hall, University of Florida, Gainesville, Florida 32611

Correspondence to: S. M. Grayson (E-mail: sgrayson@tulane.edu)

Table of contents

Figure		S1	:	Room		te	mperature		TEM
images							3		
Figure	S2 :	TGA	measurement	ts tak	ken	from	Figure	4(a), SiO ₂ -
он					.4				
Figure	S3:	TGA	measurements	taken	n fr	om	Figure	4(b),	SiO ₂ -GPS-
он				4					
Figure	S4:	TGA	measurements	taken	fron	n Fi	gure	4(c) <i>,</i>	SiO ₂ -GPS-PCL-
он				5					
Figure	S5:	TGA	measurements	taken	from	n Fi	gure	4(d),	SiO ₂ -GPS-PCL-
Br				5					
Figure	S6:	TGA	measurements	taken	from	Figure	4(e),	SiO ₂ -GPS	S-PCL-POEGMA-
Br			6						

Figure	57: TGA m	easurer	ments take	n fro	m Figure 4	(f), SiO	2-GPS-PCL	-POEGM	A-Br after	4 redis	spersion	cycles.	•••••	•••••	6
Figure	S8	:	TGA	r	neasurem	ents	of	ur	n-grafted		PCL	an	d	un	-grafted
POEGN	1A	••••••					7								
Figure		5	i9:		TGA		m	leasuren	nents		of			un	-grafted
PCL				•••••			••••••		7						
Figure		S	10:		TGA		n	neasurer	ments		of			un	-grafted
POEGN	1A								8						
Table	S1 :	Decon	nposition	te	emperatur	es	assignmer	nts,	measured	fro	om -	ΓGA	first	de	erivative
plots		•••••		8											
Figure	S11:	. 1	¹ H N	MR	spect	trum	of	ε-cap	orolactone	2	monom	er	with		labeled
peaks						9									
Figure	S1 .	2:	¹³ C	٢	NMR	spec	trum	of	e-ca	prolact	tone	ma	onome	er	with
peaks							9								
Figure	S13: ¹ H	NMR s	pectrum d	of wa	ater-initiat	ed un	-grafted F	PCL (san	nple 2A a	and 20	C) gener	ated in	n situ	with	labeled
peaks	10														
Figure	S14: ¹ H	NMR	spectrum	of	water-in	itiated	un-grafte	ed PCL	(sample	2B)	generat	ed in	situ	with	labeled
peaks		10													
Figure	S15: ¹ H	NMR	spectrum	of	water-in	itiated	un-grafte	ed PCL	(sample	2D)	generat	ed in	situ	with	labeled
peaks		11													
Figure	S16: ¹³ C	NMR	spectrun	n of	water-in	itiated	un-graft	ed PCL	(sample	2A)	generat	ed in	situ	with	labeled
peaks		11													
Figure	S17:	¹H	NMR		spectrum	of	ethy	l 2-	bromoisol	butyrat	e (I	EBiB)	wit	h	labeled
peaks		•••••			12										
Figure	S18:	¹³ C	NMR		spectrum	of	f ethy	rl 2-	bromoisol	butyrat	te (I	EBiB)	wit	h	labeled
peaks					12										
Figure	<i>S19:</i> ¹ H	NMR	spectrum	of	oligo(ethy	lene g	glycol) m	ono-met	hyl ethe	r met	hacrylate	e (OEG	ima)	with	labeled
peaks	13														
Figure	<i>\$20:</i> ¹³ C	NMR	spectrum	of	oligo(ethy	ylene	glycol) m	ono-me	thyl ethe	r met	hacrylat	e (OEG	GMA)	with	labeled
peaks	13														

6)

								17
Figure	S28:	TGA	measurements	of	SiO ₂ -GPS-PCL-POEGN	1A-Br	NPs	(Sample
4a)								
Figure	S29:	TGA	measurements	of SiO ₂	-GPS-PCL-POEGMA-Br	NPs	(Sample	e 4b)
			18					
Figure	S30:	TGA	measurements	of	SiO ₂ -GPS-PCL-POEGN	1A-Br	NPs	(Sample
4c)								
Figure	S31:	TGA	measurements	of	SiO ₂ -GPS-PCL-POEGN	1A-Br	NPs	(Sample
4d)			19					
Figure	<i>S32:</i>	TGA	measurements	of	SiO ₂ -GPS-POGEM/	4-Br	NPs	(Sample
6)			1	19				
Figure S3	33: Sample	4a without	oil exposure and	after 24 hr	of oil exposure com	pared the	Anadarko	crude oil
reference.								20
Figure S3	4: Sample 4	a without c	vil exposure, after 24	1 hr, and 96	hr of oil exposure co	mpared the	e Anadarko	crude oil
reference.								20

3

Figure	S35:	Sample	4b	exposed	to	BP	crude	oil	for	72
hr					21					
Figure	S36:	Sample	4c	exposed	to	ВР	crude	oil	for	72
hr					21					
Figure	S37:	Sample	4d	exposed	to	ВР	crude	oil	for	72
hr					22					
Figure	<i>S38:</i>	Sample	6	exposed	to	BP	crude	oil	for	72
hr					22					

Figure S1: Room temperature TEM images from Figure 3: A) SiO₂-OH, B) SiO₂-GPS-OH (1), C) SiO₂-GPS-PCL-OH (2a), D) SiO₂-GPS-PCL-Br (3a), E) SiO₂-GPS-PCL-POEGMA-Br NPs (4a)

Figure S2: TGA measurements taken from Figure 4, shown as weight (%) vs. temperature (°C), of SiO₂-OH NPs (black) and the first derivative with respect to weight % (red)

Figure S3: TGA measurements taken from Figure 4, shown as weight (%) vs. temperature (°C), of SiO₂-GPS-OH NPs (black) and the first derivative with respect to weight % (red)

Figure S4: TGA measurements taken from Figure 4, shown as weight (%) vs. temperature (°C), of SiO₂-GPS-PCL-OH NPs (black) and the first derivative with respect to weight % (red)

Figure S5: TGA measurements taken from Figure 4, shown as weight (%) vs. temperature (°C), of SiO₂-GPS-PCL-Br NPs (black) and the first derivative with respect to weight % (red)

Figure S6: TGA measurements taken from Figure 4, shown as weight (%) vs. temperature (°C), of SiO₂-GPS-PCL-POEGMA-Br NPs (black) and the first derivative with respect to weight % (red)

Figure S7: TGA measurements taken from Figure 4, shown as weight (%) vs. temperature (°C), of SiO₂-GPS-PCL-POEGMA-Br NPs (black) and the first derivative with respect to weight % (red) after being dried and redispersed in deionized water four times

Figure S8: TGA measurements, shown as weight (%) vs. temperature (°C), of un-grafted PCL (gold) and un-grafted POEGMA (purple)

Figure S9: TGA measurements, shown as weight (%) vs. temperature (°C), of un-grafted PCL (black) and the first derivative with respect to weight % (red)

Figure S10: TGA measurements, shown as weight (%) vs. temperature (°C), of un-grafted POEGMA (black) and the first derivative with respect to weight % (red)

Decomposition temp	Samples observed:	Species
100	SiO ₂ NP, SiO ₂ -GPS NP	water
475	SiO ₂ -GPS NP	GPS
400	SiO ₂ -GPS-PCL NP	PCL
275	SiO ₂ -GPS-PCL-Br NP, SiO ₂ -GPS-PCL-POEGMA-Br NP, SiO ₂ -GPS-PCL-POEGMA- Br NP (redisp)	POEGMA
250	ungrafted PCL	
325	ungrafted POEGMA	
375	ungrafted POEGMA	
275	SiO ₂ -GPS-POEGMA-Br NP	
350	SiO ₂ -GPS-POEGMA-Br NP	

Table S1: Decomposition temperatures assignments, measured from TGA first derivative plots

Figure S11: ¹H NMR spectrum of ε -caprolactone monomer with peaks at: 1.7 ppm (C, D CH₂ γ , δ position), 1.9 ppm (B CH₂ β position), 2.6 ppm (A CH₂ α position), and 4.2 ppm (E CH₂ ε position)

Figure S12: ¹³C NMR spectrum of ε -caprolactone monomer with peaks at: 22.9 ppm (C CH₂ β position), 28.9 ppm (D CH₂ γ position), 29.3 ppm (E CH₂ δ position), 34.5 ppm (B CH₂ α position), 69.3 ppm (F CH₂ ε position), and 176.2 ppm (A C(O))

Figure S13: ¹H NMR spectrum of water-initiated un-grafted PCL (Scheme 3-A, sample 2A and 2C) generated in situ with peaks at: 1.39 ppm (D, D', D" CH₂ γ position), 1.66 ppm (C, C', C", E, E', E" CH₂ β, δ position), 2.1 ppm (B', B" CH₂ α position), 2.31 ppm (B CH₂ α position), 3.3 ppm (F' CH₂ ε position), 3.65 ppm (F" CH₂ ε position), and 4.06 ppm (F CH₂ ε position)

Figure S14: ¹H NMR spectrum of water-initiated un-grafted PCL (Scheme 3-A, sample 2B) generated in situ with peaks at: 1.39 ppm (D, D', D" CH₂ γ position), 1.66 ppm (C, C', C", E, E', E" CH₂ β, δ position), 2.1 ppm (B', B" CH₂ α position), 2.31 ppm (B CH₂ α position), 3.3 ppm (F' CH₂ ε position), 3.65 ppm (F" CH₂ ε position), and 4.06 ppm (F CH₂ ε position)

Figure S15: ¹H NMR spectrum of water-initiated un-grafted PCL (Scheme 3-A, sample 2D) generated in situ with peaks at: 1.39 ppm (D, D', D" CH₂ γ position), 1.66 ppm (C, C', C", E, E', E" CH₂ β, δ position), 2.1 ppm (B', B" CH₂ α position), 2.31 ppm (B CH₂ α position), 3.3 ppm (F' CH₂ ε position), 3.65 ppm (F" CH₂ ε position), and 4.06 ppm (F CH₂ ε position)

Figure S16: ¹³C NMR spectrum of water-initiated PCL (Scheme 3-A, sample 2A) generated in situ with peaks at: 24.6 ppm (C, C', C'' CH₂ β position), 25.5 ppm (E, E' CH₂ δ position), 28.3 ppm (D, D', D'' CH₂ γ position), 32.3 ppm (E'' CH₂ δ position), 34.1 ppm (B, B', B'' CH₂ α position), 62 ppm (F'' CH₂ ϵ position), 64.2 ppm (F, F' CH₂ ϵ position), and 173.6 ppm (A, A'' C(O))

Figure S17: ¹H NMR spectrum of ethyl 2-bromoisobutyrate (EBiB) with peaks at: 1.3 ppm (A CH₃-CH₂), 1.9 ppm (C (CH₃)₂-C(Br)), and 4.2 ppm (B CH₃-CH₂-O)

Figure S18: ¹³*C NMR spectrum of ethyl 2-bromoisobutyrate (EBiB) with peaks at: 13.9 ppm (A CH₃-CH₂), 30.8 ppm (E (CH₃)₂-C(Br)), 55.9 ppm (D C(O)-C(CH₃)₂-Br), 62.0 ppm (B CH₃-CH₂-O), and 171.7 ppm (C O-C(O)-C(CH₃)₂)*

Figure S19: ¹H NMR spectrum of oligo(ethylene glycol) mono-methyl ether methacrylate (OEGMA) with peaks at: 1.9 ppm (B CH₃-C), 3.4 ppm (F O-CH₃), 3.5 ppm (E' CH₂-CH₂-O(CH₃)), 3.6 ppm (E CH₂-CH₂-O(CH₂)), 3.7 ppm (D CH₂-CH₂-CH₂), 4.3 ppm (C CH₂-CH₂-CH₂), 5.6 and 6.1 ppm (A CH₂-CH₂-CH₂)

Figure S20: ¹³C NMR spectrum of oligo(ethylene glycol) mono-methyl ether methacrylate (OEGMA) with peaks at: 18.3 ppm (B CH₃-C), 58.9 ppm (H O-CH₃), 63.9 ppm (E O-CH₂-CH₂), 69.1 ppm (F CH₂-CH₂-O), 70.6 ppm (G O-CH₂-CH₂-O), 71.9 ppm (G' CH₂-CH₂-O), 125.7 ppm (A CH₂-C(CH₃)), 136.2 ppm (C CH₂-C(CH₃)-C(O)), and 167.3 ppm (D C(CH₃)-C(O)-O)

Figure S21: ¹H NMR spectrum of EBiB-initiated POEGMA (Scheme 3-B, sample 4A) generated in situ with peaks at: 0.95 ppm (E, E', E'' CH₃-C(R)₃), 1.1 ppm (C (CH₃)₂-C(R)₂), 1.31 ppm (A CH₃-CH₂-O), 1.9 ppm (D, D', D'' C(CH₃)-CH₂-C(CH₃)), 3.4 ppm (H CH₂-O-CH₃), 3.58 ppm (G'' O-CH₂-CH₂-O), 3.67 ppm (F, F'', G O-CH₂-CH₂-O), 3.76 ppm (B CH₃-CH₂-O), and 4.15 ppm (F' O-CH₂-CH₂-O)

Figure S22: ¹H NMR spectrum of EBiB-initiated POEGMA (Scheme 3-B, sample 4B) generated in situ with peaks at: 0.95 ppm (E, E', E'' CH₃-C(R)₃), 1.1 ppm (C (CH₃)₂-C(R)₂), 1.31 ppm (A CH₃-CH₂-O), 1.9 ppm (D, D', D'' C(CH₃)-CH₂-C(CH₃)), 3.4 ppm (H CH₂-O-CH₃), 3.58 ppm (G'' O-CH₂-CH₂-O), 3.67 ppm (F, F'', G O-CH₂-CH₂-O), 3.76 ppm (B CH₃-CH₂-O), and 4.15 ppm (F' O-CH₂-CH₂-O)

Figure S23: ¹H NMR spectrum of EBiB-initiated POEGMA (Scheme 3-B, sample 4C) generated in situ with peaks at: 0.95 ppm (E, E', E'' CH₃-C(R)₃), 1.1 ppm (C (CH₃)₂-C(R)₂), 1.31 ppm (A CH₃-CH₂-O), 1.9 ppm (D, D', D'' C(CH₃)-CH₂-C(CH₃)), 3.4 ppm (H CH₂-O-CH₃), 3.58 ppm (G'' O-CH₂-CH₂-O), 3.67 ppm (F, F'', G O-CH₂-CH₂-O), 3.76 ppm (B CH₃-CH₂-O), and 4.15 ppm (F' O-CH₂-C(H₃-O))

Figure S24: ¹*H* NMR spectrum of EBiB-initiated POEGMA (Scheme 3-B, 4D) generated in situ with peaks at: 0.95 ppm (E, E', E'' CH₃-C(R)₃), 1.1 ppm (C (CH₃)₂-C(R)₂), 1.31 ppm (A CH₃-CH₂-O), 1.9 ppm (D, D', D'' C(CH₃)-CH₂-C(CH₃)), 3.4 ppm (H CH₂-O-CH₃), 3.58 ppm (G'' O-CH₂-CH₂-O), 3.67 ppm (F, F", G O-CH₂-CH₂-O), 3.76 ppm (B CH₃-CH₂-O), and 4.15 ppm (F' O-CH₂-CH₂-O)

Figure S25: ¹*H NMR spectrum of EBiB-initiated POEGMA (Scheme 3-B, sample 6) generated in situ with peaks at: 0.95 ppm (E, E', E'', CH₃-C(R)₃), 1.1 ppm (C (CH₃)₂-C(R)₂), 1.31 ppm (A CH₃-CH₂-O), 1.9 ppm (D, D', D'', C(CH₃)-CH₂-C(CH₃)), 3.4 ppm (H CH₂-O-CH₃), 3.58 ppm (G" O-CH₂-CH₂-O), 3.67 ppm (F, F", G O-CH₂-CH₂-O), 3.76 ppm (B CH₃-CH₂-O), and 4.15 ppm (F' O-CH₂-CH₂-O) (CH₂-O)*

Figure S26: ¹³C NMR spectrum of EBiB-initiated POEGMA (Scheme 3-B, sample 4A) generated in situ with peaks at: 44.78-46.75 ppm (K, K', K'' CH₂-C(CH₃)-CH₂), 47.31 ppm (D, D', D'' C(CH₃)-CH₂-C(CH₃)), 57.85 ppm (H O-CH₃), 64.12 ppm (F' O-CH₂-CH₂-O), 68.37 ppm (G' O-CH₂-CH₂-O), 70.05-70.25 ppm (F, G O-CH₂-CH₂-O), and 71.65 ppm (F'', G'' O-CH₂-CH₂-O), 177.41 ppm (L C(CH₃)-C(O)-CH₂)

Figure S27: TGA measurements, shown as weight (%) vs. temperature (°C), of SiO₂-GPS-PCL-POEGMA-Br NPs (Samples 4a-d) alongside SiO₂-GPS-POEGMA-Br NPs (Sample 6)

Figure S28: TGA measurements (black), shown as weight (%) vs. temperature (°C), of SiO₂-GPS-PCL-POEGMA-Br NPs (Samples 4a) alongside the first derivative with respect to weight percent (red)

Figure S29: TGA measurements (black), shown as weight (%) vs. temperature (°C), of SiO₂-GPS-PCL-POEGMA-Br NPs (Samples 4b) alongside the first derivative with respect to weight percent (red)

Figure S30: TGA measurements (black), shown as weight (%) vs. temperature (°C), of SiO₂-GPS-PCL-POEGMA-Br NPs (Samples 4c) alongside the first derivative with respect to weight percent (red)

Figure S31: TGA measurements (black), shown as weight (%) vs. temperature (°C), of SiO₂-GPS-PCL-POEGMA-Br NPs (Samples 4d) alongside the first derivative with respect to weight percent (red)

Figure S32: TGA measurements (black), shown as weight (%) vs. temperature (°C), of SiO₂-GPS-POGEMA-Br NPs (Sample 6) alongside the first derivative with respect to weight percent (red) before HF treatment to remove the silica NP core

Figure S33: Sample 4a without oil exposure (green) and after 24 hr of oil exposure (red) compared the Anadarko crude oil reference showing a 30:1 oil:NP uptake in a 24 hr testing window

Figure S34: Sample 4a without oil exposure (red) and after 24 hr (blue) and 96 hr (green) of oil exposure compared the Anadarko crude oil reference

Figure S36: Sample 4c exposed to BP crude oil for 72 hr (red)

Figure S38: Sample 6 exposed to BP crude oil for 72 hr (red)

Figure S39: A plot of surface tension (**r**, mN/m) vs. the natural log of concentration (mg/mL) for SiO₂-GPS-PCL-POEGMA-Br nanoparticles