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Figure S1. 1H NMR spectrum of Monomer T.

Figure S2. 13C NMR spectrum of Monomer T.
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Figure S3. COSY spectrum of Monomer T.
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Figure S4. HMQC spectrum of Monomer T.
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Figure S5. HMBC spectrum of Monomer T.

Figure S6. NOESY spectrum of Monomer T.
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Figure S7. 1H NMR spectrum of PAU-0.

Figure S8. 13C NMR spectrum of PAU-0.
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Figure S9. COSY spectrum of PAU-0.
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Figure S10. HMQC spectrum of PAU-0.
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Figure S11. HMBC spectrum of PAU-0.
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Figure S12. 1H NMR spectrum of PAU-25.
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Figure S13. 13C NMR spectrum of PAU-25.
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Figure S14. COSY spectrum of PAU-25.
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Figure S15. HMQC spectrum of PAU-25.
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Figure S16. HMBC spectrum of PAU-25.
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Figure S17. 1H NMR spectrum of PAU-51.
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Figure S18. 13C NMR spectrum of PAU-51.
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Figure S19. COSY spectrum of PAU-51.
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Figure S20. HMQC spectrum of PAU-51.
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Figure S21. HMBC spectrum of PAU-51.
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Figure S22. 1H NMR spectrum of PAU-71.

Figure S23. 13C NMR spectrum of PAU-71.
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Figure S24.  COSY spectrum of PAU-71.
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Figure S25.  HMQC spectrum of PAU-71.
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Figure S26.  HMBC spectrum of PAU-71.
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Figure S27. 1H NMR spectrum of PAU-86.

Figure S28. 13C NMR spectrum of PAU-86.
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Figure S29. COSY spectrum of PAU-86.
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Figure S30. HMQC spectrum of PAU-86.
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Figure S31. HMBC spectrum of PAU-86.
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Figure S32. 1H NMR spectrum of PAU-MDI.
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Figure S33. 13C NMR spectrum of PAU-MDI.
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Figure S34. COSY spectrum of PAU-MDI.
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Figure S35. HMQC spectrum of PAU-MDI.
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Figure S36. HMBC spectrum of PAU-MDI.

Figure S37. 1H NMR spectrum of the soluble fraction of PU-MDI after TGA measurements. 
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Figure S38. Temperature sweep DMA (left: storage moduli, and right: loss moduli) curves of 
PAU-71 and PAU-86. 

Figure S39. 1H NMR spectrum of PAU-86 after the rheology measurements. 
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Figure S40. Schematic representation of melt-spinning process.  

Figure S41. Cross-polarized optical microscopy images of the melt-spun PAU-86 fibre at the 
beginning of the spinning procedure (left) and at the end of it (right). 
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Figure S42. 1H-NMR of PAU-86 fibre. The signals corresponded to Monomer T were 
indicated. The signals corresponding to PAU-86 were marked by stars (*). For specific 
assignments, please see Fig. 1.

Figure S43. PAU-85 before fibre spinning. 



S35

Figure S44. First heating cycle of PAU-86 fibre (black curve) and raw polymer powder before 
processing (red curve).

Figure S45. TGA (left) weight loss and (right) derivative weight loss curves of PAU-86 fibre 
(black curve) and unprocessed polymer powder (red curve). 

Table S1. Thermal properties of PU86 before and after fiber spinning. a The temperature for 
maximal degradation rate in TGA. b The temperature for 5% weight loss in TGA curves.
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Figure S46. Acid-hydrolysis of the PAU-86 fibre and Elastane. The time above each photo 
indicates the reaction time when the photo was taken. 

Figure S47. 1H NMR spectrum in THF-d8 of yielded material extracted by THF from the solid 
residue remaining of the PAU-86 fibre. 
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Figure S48. 1H NMR spectrum in DMSO-d6 of yielded material after hydrolysis of PAU-86 
fibre for 24 h. The signals for di-TMP and 4,4-diaminodiphenylmethane were indicated. 

Figure S49. 1H NMR spectrum in DMSO-d6 of yielded material after hydrolysis of PAU-86 
fibre for 48 h. The signals for di-TMP and 4,4-diaminodiphenylmethane were indicated. 
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Figure S50. 1H NMR spectrum in DMSO-d6 of yielded material after hydrolysis of PAU-86 
fibre for 52 days. The signals for di-TMP and 4,4-diaminodiphenylmethane were indicated. 

Table S2. The yield of the recovered monomers.

Table S3. Yield of the recovered monomers when using different solvents for extraction.
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Figure S51. 1H NMR spectrum of PAU-0. The signals necessary for calculating the DBTDL 
content were indicated. For assignments of all signals see Fig. 1.

Figure S52. Zoomed-in 1H NMR spectrum of PAU-0. The signals necessary for calculating 
the DBTDL content were indicated. 
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Figure S53. 1H NMR spectrum of PAU-25. The signals necessary for calculating the DBTDL 
content were indicated. For assignments of all signals see Fig. 1.

Figure S54. Zoomed-in 1H NMR spectrum of PAU-25. The signals necessary for calculating 
the DBTDL content were indicated. 
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Figure S55. 1H NMR spectrum of PAU-51. The signals necessary for calculating the DBTDL 
content were indicated. For assignments of all signals see Fig. 1.

Figure S56.  Zoomed-in 1H NMR spectrum of PAU-51. The signals necessary for calculating 
the DBTDL content were indicated. 
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Figure S57. 1H NMR spectrum of PAU-71. The signals necessary for calculating the DBTDL 
content were indicated. For assignments of all signals see Fig. 1.

Figure S58. Zoomed-in 1H NMR spectrum of PAU-71. The signals necessary for calculating 
the DBTDL content were indicated. 
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Figure S59. 1H NMR spectrum of PAU-86. The signals necessary for calculating the DBTDL 
content were indicated. For assignments of all signals see Fig. 1.

Figure S60. Zoomed-in 1H NMR spectrum of PAU-86. The signals necessary for calculating 
the DBTDL content were indicated. 
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Figure S61. 1H NMR spectrum of PAU-100. The signals necessary for calculating the 
DBTDL content were indicated. For assignments of all signals see Fig. 1.

Figure S62. Zoomed-in 1H NMR spectrum of PAU-100. The signals necessary for calculating 
the DBTDL content were indicated. 
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The catalyst content of the polymers was estimated using the method below:

MMDI = 250.25 g/mol

MT = 466.52 g/mol

MpTHF = 2000.00 g/mol

MDBTDL = 631.56 g/mol

The integrals used for each monomer were taken from Fig. S51-62. I[MDI] corresponds to 4 H 
on the MDI segment, I[T] corresponds to 4 H on the Monomer T segment, I[pTHF] corresponds 
to 111 H on the pTHF segment and I[DBTDL] corresponds to 44 H on the catalyst DBTDL.

The mass ratio (rx) between the monomers was then estimated by dividing the integral with 
the corresponding number of protons (nH-x), and then multiplied with the molecular mass of 
each monomer (Mx) individually:

Eq. S1   

𝐼[𝑋]

𝑛𝐻 ‒ 𝑋
∗  𝑀𝑥   = 𝑟𝑋 

Where X represents the monomer or the catalyst. 

Finally, the wt% DBTDL catalyst was calculated by dividing the mass ratio for DBTDL 
(rDBTDL) with the total mass:

Eq. S2

𝑟𝐷𝐵𝑇𝐷𝐿

𝑟𝑀𝐷𝐼 + 𝑟𝑇 + 𝑟𝑝𝑇𝐻𝐹 + 𝑟𝐷𝐵𝑇𝐷𝐿
∗ 100 = 𝑤𝑡% 𝐷𝐵𝑇𝐷𝐿

For example, the wt% DBTDL in PAU-86 was calculated below: 

𝐼[𝑀𝐷𝐼]

𝑛𝐻 ‒ 𝑀𝐷𝐼
∗  𝑀𝑀𝐷𝐼   = 𝑟𝑀𝐷𝐼 =

1.034
4

∗  250.25 =  64.69

𝐼[𝑇]

𝑛𝐻 ‒ 𝑇
∗  𝑀𝑇   = 𝑟𝑇 =

0.894
4

∗  466.52 = 104.27

𝐼[𝑝𝑇𝐻𝐹]

𝑛𝐻 ‒ 𝑝𝑇𝐻𝐹
∗  𝑀𝑝𝑇𝐻𝐹   = 𝑟𝑝𝑇𝐻𝐹 =

0.9764
111

∗  2000 = 17.59

𝐼[𝐷𝐵𝑇𝐷𝐿]

𝑛𝐻 ‒ 𝐷𝐵𝑇𝐷𝐿
∗  𝑀𝐷𝐵𝑇𝐷𝐿   = 𝑟𝐷𝐵𝑇𝐷𝐿 =

0.0121
44

∗  631.56 = 0.1737

𝑟𝐷𝐵𝑇𝐷𝐿

𝑟𝑀𝐷𝐼 + 𝑟𝑇 + 𝑟𝑝𝑇𝐻𝐹 + 𝑟𝐷𝐵𝑇𝐷𝐿
∗ 100 = 𝑤𝑡% 𝐷𝐵𝑇𝐷𝐿

0.1737
64.69 + 104.27 + 17.59 + 0.1737

∗ 100 = 0.093 𝑤𝑡% 𝐷𝐵𝑇𝐷𝐿
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Table S4. Catalyst content in the obtained polymers as estimated by the integrals of their 
corresponding 1H NMR signals. 

wt % DBTDL
PAU-0 0.19
PAU-25 0.11
PAU-51 0.15
PAU-71 0.045
PAU-86 0.093
PAU-100 0.12


