Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2021

Electronic supplementary information (ESI)

Synthesis and characterization of β , β '-dimethylated dithieno[3,2-b:2',3'-d]pyrroles and their corresponding regioregular conducting electropolymers⁺

Sebastian Förtsch[§], Elena Mena-Osteritz and Peter Bäuerle*

Institute of Organic Chemistry II and Advanced Materials University of Ulm, Albert-Einstein-Allee 11 89081 Ulm, Germany E-mail: <u>peter.baeuerle@uni-ulm.de</u>

[§]New address: IFF, August-Wolff-Straße 13, 29699 Walsrode, Germany

Table of Content

		page
1. Single crystal X-ray st	tructure analysis of Me-DTP 5	S2
2 General oxidative po	lymerization mechanism of DTP	S4
3. Potentiodynamic ele	ctropolymerization of Me-DTPs 2, 4, 6, and 7 and characterization of the	S5
corresponding p(Me	-DTP)s P2, P4 , and P7	
4. DFT-calculation on a	Me-DTP trimer	S7
5. Spectroelectrochemi	ical characterization of characterization Me-DTP polymers P4, P5, and P7	S8
6. ¹ H-NMR-spectrum of	f soluble polymer P4'	S9
7. Absorption spectrum	n of soluble polymer P4'	S9
8. References		S10

1. Single crystal X-ray structure analysis of Me-DTP 5

Bond precision:	C-C = 0.002	25 Å	Wavelength=1.54184			
Cell:	a=14.1113(3) b=14.1996(3) c=6.88839(13) alpha=90 beta=90 gamma=90					
Temperature:	150 K					
Volume Space group Hall group Moiety formula Sum formula Mr Dx,g cm-3 Z Mu (mm-1) F000 F000' h,k,lmax Nref Tmin.Tmax	Calculated 1380.26(5) P n m a -P 2ac 2n C16 H13 N 283.39 1.364 4 3.350 592.0 595.89 17,17,8 1469 0.547.0.71) S2 S2	Reported 1380.26(4) P n m a -P 2ac 2n C16 H13 N S2 C16 H13 N S2 283.39 1.364 4 3.350 592.0 17,17,8 1461 0.788.1.000			
Tmin'	0.404	.0	0.760,1.000			
Correction method= # Reported T Limits: Tmin=0.788 Tmax=1.000 AbsCorr = MULTI-SCAN						
Data completeness= 0.995 R(reflections)= 0.0312(1298) S = 1.049 Npar= 98		Theta(max)= 74.038 wR2(reflections)= 0.0866(1461)				

 Table S1
 Crystallographic data of Me-DTP 5 (CCDC number: 2070707)

 Table S2: Relevant bond length distances in the X-Ray structure analysis of Me-DTP 5.

Atom1	Atom2	Bond length (Å)
C12	C5	1.359(2)
C5	C9	1.429(2)
C9	C3	1.388(2)
C3	C3	1.418(2)
S1	C12	1.734(2)
S1	C3	1.726(2)
C5	C16	1.499(2)
C9	N3	1.389
N3	C1	1.431
C1	C14	1.374
C14	C10	1.384
C10	C13	1.373
C13	C6	1.369
C6	C7	1.385
C7	C1	1.370

Atom2	Atom3	Angle (deg.)
C5	C9	108.8(1)
C9	C3	115.2(1)
C3	S1	110.3(1)
S1	C12	90.58(7)
C12	C5	115.1(1)
C5	C16	125.1(1)
C5	C9	126.0(1)
C9	N3	135.4
C9	C3	109.4
C3	C3	107.1(1)
N3	C1	126.4
C1	C7	120.0
C7	C6	119.8
C6	C13	120.5
C13	C10	119.3
C10	C14	120.7
C14	C1	119.5
C1	C7	120.2
	Atom2 C5 C9 C3 S1 C12 C5 C5 C9 C9 C9 C3 N3 C1 C7 C6 C13 C10 C14 C1	Atom2Atom3C5C9C9C3C3S1S1C12C12C5C5C16C5C9C9N3C9C3C3C3C3C1C1C7C7C6C6C13C13C10C10C14C14C1C14C1C14C1C14C1C1C7

 Table S3: Relevant bond angles in the X-Ray structure analysis of Me-DTP 5.

 Table S4: Relevant torsion angles in the X-Ray structure analysis of Me-DTP 5.

Atom1	Atom2	Atom3	Atom4	Torsion angle (deg.)
S1	C12	C5	C16	-179.6(1)
C12	C5	C9	N3	-177.8
S1	C3	C3	S1	0.0(3)
C5	C9	N3	C1	-5.9
C9	N3	C1	C7	92.1
C9	N3	C1	C14	-87.9
C12	C5	C9	C3	0.0(2)
C5	C9	C3	C3	-178.2(1)
S1	C12	C5	C9	0.0(2)
C3	C3	C9	N3	0.2

Table S5 Inter- and intramolecular short contacts (below the sum of the corresponding atomic van der Waalsradii) in the X-Ray structure analysis of Me-DTP 5.

	Atom1	Atom2	Length (Å)	Symm. op. M1	Symm. op. M2
InterM.	H13	C3	2.712	x,y,z	-1/2+x,1/2-y,1.5-z
	S1	S1	3.533	x,1/2-y,z	2-x,-1/2+y,-z
IntraM.	C1	C16	3.316		

Fig. S1 Scheme of the organization of the π -delocalized systems in the crystal structure analysis of Me-DTP **5** (blue bands evolution in the symmetry (9 0 4) and (9 0 -4) planes).

2. General oxidative polymerization mechanism of DTP

Scheme S1: Generally accepted oxidative polymerization mechanism of DTPs.¹

3. Potentiodynamic electropolymerization of Me-DTPs 2, 4, 6, and 7 and characterization of the corresponding p(Me-DTP)s P2, P4, and P7

Fig. S2 Electropolymerization of Me-DTP monomer 6 with a 9-anthracenyl residue at the nitrogen.

Fig. S3 Electropolymerization of Me-DTP monomer **2** with a hydrogen residue at the nitrogen (a) and characterization of the obtained film **P2** using different scan rates (b) and carrying out 30 cycles at a rate of 100 mV/s (c). Dependency of the anodic peak currents I_{pa} and the cathodic peak currents I_{pc} from the applied scan rate (d).

Fig. S4 Electropolymerization of Me-DTP monomer **4** with a hexyl residue at the nitrogen (a) and characterization of the obtained film **P4** using different scan rates (b) and carrying out 30 cycles at a rate of 100 mV/s (c). Dependency of the anodic peak currents I_{pa} and the cathodic peak currents I_{pc} from the applied scan rate (d).

Fig. S5 Electropolymerization of Me-DTP monomer **7** with a benzoyl residue at the nitrogen (a) and characterizeation of the obtained film P_{ec} **7** using different scan rates (b) and carrying out 30 cycles at a rate of 100 mV/s (c). Dependency of the anodic peak currents I_{pa} and the cathodic peak currents I_{pc} from the applied scan rate (d).

4. DFT-calculation on a Me-DTP trimer

Fig. S6 Geometry optimized structures of Me-DTP trimer with ethyl residues at the nitrogens. Calculations were carried out with the Gaussian 09 program.² Geometry optimizations were performed via DFT methods using the M06-2X correlation/exchange functional³ and the 6-311G basis set.

5. Spectroelectrochemical characterization of characterization Me-DTP polymers P4, P5, and P7

Fig. S7 UV-Vis-NIR spectra obtained from spectroelectrochemical measurements of films of p(Me-DTP) **P4**. Applied voltages are given vs. Ag/AgCl. Black arrows show the changes starting at low potentials. The blue arrow shows the further changes at high potentials. Artefacts due to switching of the detectors in the spectrometer are marked with * in the spectra.

Fig. S8 UV-Vis-NIR spectra obtained from spectroelectrochemical measurements of films of p(Me-DTP) **P5**. Applied voltages are given vs. Ag/AgCl. Black arrows show the changes starting at low potentials. The blue arrow shows the further changes at high potentials. Artefacts due to switching of the detectors in the spectrometer are marked with * in the spectra.

Fig. S9 UV-Vis-NIR spectra obtained from spectroelectrochemical measurements of films of p(Me-DTP) **P7**. Applied voltages are given vs. Ag/AgCl. Black arrows show the changes starting at low potentials. The blue arrow shows the further changes at high potentials. Artefacts due to switching of the detectors in the spectrometer are marked with * in the spectra.

6. ¹H-NMR-spectrum of soluble polymer P4'

Fig. S10: ¹H-NMR spectrum in THF-d₈ of the soluble fraction of p(Me-DTP) **P4'** prepared by chemical oxidation with iron trichloride.

7. Absorption spectrum of soluble polymer P4'

Fig. S11 Normalized UV-Vis absorption spectra of the soluble oxidatively prepared p(Me-DTP) P4' in THF solution.

Table S6: Optoelectronic properties of *N*-hexyl-substituted p(DTP) **P4** (electrochemically prepared) and **P4'** (prepared by chemical oxidation, soluble fractions).

P(Me-DTP)	E _{pa} ^a [V]	E _{onset} [V]	λ _{max} [nm]	λ _{onset} [nm]	HOMO ^b [eV]	LUMO ^c [eV]	E _g [eV]
P4	0.24	-0.03	400	475	-5.07	-2.77	2.40
P4'	0.28	0.02	383	444	-5.12	-2.33	2.79

Potentials are referenced vs. Fc/Fc⁺; $a E_{pa}$: anodic peak potential (scan rate 100 mV/s); b Redox potential of Fc/Fc⁺ is -5.1 eV on the Fermi scale; c The LUMO energy levels were calculated from the HOMO energy levels and the energy gaps E_{g} .

8. References

- 1 P. Audebert and F. Miomandre, Electrochemistry of Conducting Polymers in Handbook of Conducting Polymers, 3rd Edition, T. A. Skotheim, J. R. Reynolds (Eds), CRC Press, Boca Raton, USA, 2007, pp. 18-1.
- 2 M. J. Frisch, 2013, Gaussian, Inc., Wallingford CT.
- H. Adams, R. A. Bawa, K. G. McMillan, S. Jones, *Tetrahedron: Asymmetry* **2007**, *18*, 1003-1012.