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Experimental

Instrumentation

1H nuclear magnetic resonance (NMR) spectra were recorded using Varian Mercury 500-

MHz spectrometers in CDCl3 solvent. Mass spectrometry was performed using a MALDI-

TOF MS instrument (Bruker Daltonics). Differential scanning calorimetry (DSC, Mettler 821 

Instrument) was performed to observe the thermal properties of the hole transport materials 

(HTMs). Elemental analysis was conducted using a FlashSmartTM elemental analyzer. 

The absorption spectra of the HTMs were obtained using a UV-vis spectrophotometer (HP 

8453, λ = 190–1100 nm), and Photoluminescence (PL, Hitachi F-7000 and Thermo FA-357 

fluorescence spectrophotometer) spectra were recorded at room temperature (298 K). To 

measure the oxidation potential of the HTMs in the film state, cyclic voltammetry (CV) 

analysis was performed at a scan rate of 50 mV s-1 using a potentiostat (EA161, eDAQ). UV 

photoemission spectroscopy (UPS, Nexsa XPS system) was performed to find the energy 
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levels of the HTMs with He I as the UV source (21.2 eV). The samples were prepared in the 

film state, and the base pressure for the instrument was 2.0 × 10-7 Torr.

Space-charge-limited current (SCLC) method for measuring hole mobility

The hole mobilities of the HTMs were measured using the SCLC method after the 

fabrication with a typical device structure comprising of ITO/PEDOT:PSS (20 nm)/PVK or 

P-CzAc film (100 nm)/MoO3 (10 nm)/Ag (100 nm). The mobility was calculated according 

to J = 9ε0εrμV2/8L3, where J is the current density, ε0 is the permittivity of the HTL, εr is the 

relative dielectric constant, μ is the hole mobility, and L is the thickness of the HTL. The 

internal voltage is V = Vappl − Vbi − Va, where Vappl is the voltage applied to the device, Vbi is 

the work function difference between two electrodes, and Va is the voltage drop.   

Green QD-LED Fabrication and Measurements

The green QD-LED device structure comprised ITO/PEDOT: PSS (20 nm)/HTL (PVK (20 

nm) or P-CzAc (20 nm))/EML (QD: CdSe@ZnS core-shell structure, 10 mg/mL in octane)/ 

Zn0.85Mg0.15O (30 nm)/Al (100 nm). Prior to device fabrication, the ITO-coated substrates 

were washed with deionized water and isopropanol under ultrasonication for 10 min. Initially, 

UV-ozone treatment was performed for 20 min and PEDOT: PSS (20 nm) was deposited on 

the ITO-coated substrates at a spin rate of 4000 rpm for 40 s, followed by annealing at 155 °C 

for 15 min. Subsequently, the substrate was placed in a nitrogen-filled glove box. Then, 1.0 

wt.% PVK [Tokyo Chemical Industry, Mn = 60.0 kDa] solution was prepared from a 

chlorobenzene solvent, spin-coated on top of the ITO/PEDOT: PSS, and subsequently 

annealed at 130 °C for 20 min. The emitting layer was prepared from an octane solution of 
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CdSe@ZnS QDs and spin-coated at 3000 rpm for 30 s. Zn0.85Mg0.15O with a thickness of 30 

nm was deposited at 3000 rpm for 30 s and annealed for 15 min at 120 °C. Finally, Al 

electrodes were fabricated by vacuum deposition. The QD-LED device characteristics were 

measured using a Keithley SMU 236 instrument and a SpectraScan PR-655 colorimeter.
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Fig S1. 1H NMR spectrum of 3-bromo-9-(4-vinylbenzyl)-9H-carbazole.
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Fig S2. 1H NMR spectrum of 9,9-dimethyl-10-(9-(4-vinylbenzyl)-9H-carbazol-3-yl)-9,10-
dihydroacridine.
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Fig S3. 1H NMR spectrum of P-CzAc.
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Fig. S4. GPC analysis of P-CzAc.
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Fig. S5. Absorption spectra of PVK and P-CzAc in thin film states prior to and following 
solvent rinsing.
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Fig. S6. AFM topography (a, d), phase (b, e) images (15 μm × 15 μm), and line profile (c, f) 

of QD layer on PVK (a, b, c) and P-CzAc (d, e, f) HTL.

Fig. S7. Optimized structures and HOMO and LUMO distributions of simplified PVK and P-
CzAc by B3LYP in DFT calculations.


