# **SUPPORTING INFORMATION**

## **Isoselective 4-Methylpentene Polymerization by**

# Pyridylamido Hafnium Catalysts

Lingzhi Wang,<sup>a</sup> Donghui Li,<sup>a</sup> He Ren,<sup>b</sup> Yuru Wang,<sup>b</sup> Wei Wu,<sup>b</sup> Yuxin Gao,<sup>b</sup> Xiong

Wang,<sup>c</sup> and Haiyang Gao\*a

<sup>a</sup> School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yatsen University, Guangzhou 510275, China.

<sup>b</sup> Daqing Chemical Engineering Research Center, Petrochemical Research Institute, CNPC, Daqing 163714, China.

<sup>c</sup> Lanzhou Petrochemical Research Center, Petrochemical Research Institute, PetroChina, Lanzhou 730060, China.

\* Corresponding author. Fax: +86-20-84114033. Tel.: +86-20-84113250. E-mail: Gao H.: gaohy@mail.sysu.edu.cn

#### Content

| <ol> <li>DSC curves of polymers</li> </ol> | of polymers   |
|--------------------------------------------|---------------|
|                                            | of polymers4  |
| $\angle$ VII V HAUS ULDUIVIIUIS            | of polymers A |

#### 1. Characterization of Pyridylamido Hafnium Complexes



Figure S1. <sup>1</sup>H NMR spectrum of complex 1 in C<sub>6</sub>D<sub>6</sub>.

<sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>, 400 MHz): δ (ppm) 8.58 (d, 1H, Nap-*H*), 8.25 (d, 1H, Nap-*H*), 7.81 (d, 1H, Nap-*H*), 7.72 (d, 1H, Nap-*H*), 7.50 (d, 1H, Py-*H*), 7.36-7.00 (m, 9H, Ar-*H*), 6.83 (d, 1H, Py-*H*), 6.57 (s, 1H, NC*H*), 6.55 (d, 1H, Py-*H*), 3.83 (sept, 1H, C*H*(CH<sub>3</sub>)<sub>2</sub>), 3.34 (sept, 1H, C*H*(CH<sub>3</sub>)<sub>2</sub>), 2.90 (sept, 1H, C*H*(CH<sub>3</sub>)<sub>2</sub>), 1.38 (d, 3H, CH(CH<sub>3</sub>)<sub>2</sub>), 1.36 (d, 3H, CH(CH<sub>3</sub>)<sub>2</sub>), 1.19 (d, 3H, CH(CH<sub>3</sub>)<sub>2</sub>), 1.15 (d, 3H, CH(CH<sub>3</sub>)<sub>2</sub>), 0.96 (s, 3H, Hf-CH<sub>3</sub>), 0.71 (d, 3H, CH(CH<sub>3</sub>)<sub>2</sub>), 0.69 (s, 3H, Hf-CH<sub>3</sub>), 0.39 (d, 3H, CH(CH<sub>3</sub>)<sub>2</sub>).



<sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>, 400 MHz): δ (ppm) 8.53 (d, 1H, Nap-*H*), 8.28 (d, 1H, Nap-*H*), 7.80 (d, 1H, Nap-*H*), 7.73 (d, 1H, Nap-*H*), 7.50 (d, 1H, Py-*H*), 7.36-7.25 (m, 4H, Ar-*H*), 7.03-6.97 (m, 2H, Ar-*H*), 6.76 (d, 1H, Py-*H*), 4.68 (sept, 1H, C*H*(CH<sub>3</sub>)<sub>2</sub>), 4.37 (s, 1H, NC*H*), 2.62 (sept, 1H, C*H*(CH<sub>3</sub>)<sub>2</sub>), 1.78 (d, 3H, CH(C*H*<sub>3</sub>)<sub>2</sub>), 1.61 (d, 3H, CH(C*H*<sub>3</sub>)<sub>2</sub>), 1.41 (d, 3H, CH(C*H*<sub>3</sub>)<sub>2</sub>), 1.12 (s, 3H, Hf-C*H*<sub>3</sub>), 1.08 (d, 3H, CH(C*H*<sub>3</sub>)<sub>2</sub>), 1.00 (s, 9H, C(C*H*<sub>3</sub>)<sub>3</sub>), 0.67 (s, 3H, Hf-C*H*<sub>3</sub>).



**Figure S3.** <sup>1</sup>H NMR spectrum of complex **3** in  $C_6D_6$ .

<sup>1</sup>HNMR (C<sub>6</sub>D<sub>6</sub>, 400 MHz): δ (ppm) 8.56 (d, 1H, Ar-*H*), 8.35 (d, 1H, Ar-*H*), 7.78 (d, 1H, Ar-*H*), 7.70 (dd, 1.5 Hz, 1H, Ar-*H*), 7.57 (d, 1H, Ar-*H*), 7.35-7.18 (m, 4H, Ar-*H*), 7.02

(t, 1H, Ar-*H*), 6.57 (d, 1H, Ar-*H*), 3.61 (sept, 2H, C*H*(CH<sub>3</sub>)<sub>2</sub>), 1.43 (s, 6H, (CH<sub>3</sub>)<sub>2</sub>C), 1.28 (d, 6H, CH(CH<sub>3</sub>)<sub>2</sub>), 1.20 (d, 6H, CH(CH<sub>3</sub>)<sub>2</sub>), 0.69 (s, 6H, Hf-CH<sub>3</sub>).

## 2. GPC traces of polymers



Figure S4. GPC traces of PMPs produced by 1 at different monomer concentrations.



Figure S5. GPC traces of PMPs produced by 2 at different temperatures.

## 3. DSC curves of polymers



Figure S6. DSC curves of PMPs produced by 1 at different temperatures.



Figure S7. DSC curves of PMPs produced by 2 at different temperatures.

## 4. NMR characterization of polymers



Figure S8. <sup>1</sup>H NMR spectra of PMPs produced by 1, 2, and 3 at 40 °C.

### 5. XRD patterns of polymers



Figure S9. Magnified X-ray powder diffraction patterns of PMPs produced by 1 at different temperatures.



Figure S10. Peak separation of the X-ray diffraction patterns by 1 at 0 °C.



Figure S11. Peak separation of the X-ray diffraction patterns by 1 at 20 °C.



Figure S12. Peak separation of the X-ray diffraction patterns by 1 at 30 °C.



Figure S13. Magnified X-ray powder diffraction patterns of PMPs produced by 2 at different temperatures.



Figure S14. Peak separation of the X-ray diffraction patterns by 2 at 0 °C.



Figure S15. Peak separation of the X-ray diffraction patterns by 2 at 20 °C.



Figure S16. Peak separation of the X-ray diffraction patterns by 2 at 30 °C.



Figure S17. X-ray powder diffraction patterns of PMPs produced by 3 at different temperatures.



Figure S18. Peak separation of the X-ray diffraction patterns by 3 at 30 °C.



**Figure S19.** Peak separation of the X-ray diffraction patterns by **3** at 40 °C.

|        | Form  | I        | Form II |       |          | Form III |              |          |  |
|--------|-------|----------|---------|-------|----------|----------|--------------|----------|--|
| 2θ (°) | d (Å) | (hkl)    | 2θ (°)  | d (Å) | (hkl)    | 2θ (°)   | <i>d</i> (Å) | (hkl)    |  |
| 9.48   | 9.32  | 200      | 9.26    | 9.54  | 100      | 9.08     | 9.73         | 200      |  |
| 13.44  | 6.58  | 220      | 10.44   | 8.47  | 020      | 12.92    | 6.85         | 220      |  |
| 16.70  | 5.30  | 212      | 10.96   | 8.07  | 120      | 16.30    | 5.43         | 211      |  |
| 18.34  | 4.83  | 321      | 13.26   | 6.67  | 011      | 18.32    | 4.84         | 400      |  |
| 20.66  | 4.30  | 113, 411 | 15.00   | 5.90  | 111      | 20.78    | 4.27         | 420, 321 |  |
| 21.66  | 4.10  | 322, 203 | 16.34   | 5.42  | 021, 121 | 22.74    | 3.91         | 411      |  |
|        |       |          | 17.40   | 5.09  | 111, 220 | 26.36    | 3.38         | 431, 501 |  |
|        |       |          | 18.56   | 4.78  | 200      |          |              |          |  |
|        |       |          | 19.70   | 4.50  | 031      |          |              |          |  |
|        |       |          | 20.44   | 4.34  | 040, 121 |          |              |          |  |
|        |       |          | 21.24   | 4.18  | 221      |          |              |          |  |
|        |       |          | 22.78   | 3.90  | 231,141  |          |              |          |  |
|        |       |          | 24.28   | 3.66  | 041      |          |              |          |  |
|        |       |          | 25.80   | 3.45  | 140, 172 |          |              |          |  |

**Table S1.** Diffraction angles  $2\theta$  and Bragg spacings *d* of the reflections observed in

the XRD patterns of the PMPs

The data taken from references Macromolecules 1994, 27, 3864-3868; Macromolecules 2003, 36, 6087-6094; Polymer, 1987, 28, 1321; ACS Appl. Mater. Inter. 2011, 3, 969-977.

|        | Form l       | IV       |        | Form V       | 7     |
|--------|--------------|----------|--------|--------------|-------|
| 2θ (°) | <i>d</i> (Å) | (hkl)    | 2θ (°) | <i>d</i> (Å) | (hkl) |
| 8.05   | 10.98        | 110      | 8.54   | 10.35        |       |
| 9.40   | 9.40         | 200      | 12.08  | 7.32         |       |
| 12.10  | 7.31         | 210      | 15.29  | 5.79         |       |
| 16.40  | 5.40         | 310      | 16.16  | 5.48         |       |
| 18.20  | 4.87         | 211      | 17.10  | 5.18         |       |
| 21.15  | 4.20         | 311      | 17.58  | 5.04         |       |
| 24.50  | 3.63         | 401      | 18.43  | 4.81         |       |
| 26.85  | 3.32         | 411      | 19.24  | 4.61         |       |
| 28.35  | 3.15         | 511      | 19.49  | 4.55         |       |
| 29.50  | 3.03         | 202, 212 | 21.34  | 4.16         |       |
| 36.40  | 2.47         | 531, 701 | 25.00  | 3.56         |       |
|        |              |          | 28.13  | 3.17         |       |

**Table S2.** Diffraction angles  $2\theta$  and Bragg spacings *d* of the reflections observed in

the XRD patterns of the PMPs

The data of Form IV taken from references Macromolecules 1999, 32, 935–938; ACS Appl. Mater. Inter. 2011, 3, 969–977. The data of Form V taken from references Macromolecules 1981, 14, 1390–1394; Polymer 1984, 25, 1619–1625.

#### **References:**

- De Rosa, C.; Borriello, A.; Venditto, V.; Corradini, P. Crystal Structure of Form III and the Polymorphism of Isotactic Poly(4-methylpentene-1). *Macromolecules* 1994, 27, 3864–3868.
- De Rosa, C. Crystal Structure of Form II of Isotactic Poly(4-methyl-1-pentene). Macromolecules 2003, 36, 6087–6094.
- Charlet, G.; Delmas, G. Effect of solvent on the polymorphism of poly(4methylpentene-1): 2. Crystallization in semi-dilute solutions. *Polymer*, 1987, 28, 1321.
- Daniel, C.; Vitillo, J. G.; Fasano, G.; Guerra, G. Aerogels and Polymorphism of Isotactic Poly(4-methyl-pentene-1). ACS Appl. Mater. Interfaces 2011, 3, 969– 977.
- De Rosa, C. Chain Conformation of Form IV of Isotactic Poly(4-methyl-1pentene). *Macromolecules* 1999, 32, 935–938.
- Aharoni, S. M.; Charlet, G.; Delmas, G. Investigation of solutions and gels of poly(4-methyl-1-pentene) in cyclohexane and decalin by viscosimetry, calorimetry, and x-ray diffraction. A new crystalline form of poly(4-methyl-1pentane) from gels. *Macromolecules* 1981, 14, 1390–1394.
- Charlet, G.; Delmas, G. Effect of Solvent on the Polymorphism of Poly(4methylpentene-1): 2. Crystallization in Semi-dilute Solutions. *Polymer* 1984, 25, 1619–1625.