Supporting Information for:

Synthesis of well-defined diblock copolymer nano-objects by RAFT nonaqueous emulsion polymerization of *N*-(2-acryloyloxy)ethyl pyrrolidone in nonpolar media

R. R. Gibson, A. Fernyhough, O. M. Musa and S. P. Armes*

Figure S1. (a) Chloroform GPC curves recorded for a PSMA₈ precursor and a series of PSMA₈-PNAEP_x diblock copolymers synthesized by the RAFT non-aqueous emulsion polymerization of NAEP at 90 °C in *n*-dodecane using a PSMA₈/T21s molar ratio of 4.0. (b) Evolution in M_n and M_w/M_n with target PNAEP DP for a series of PSMA₈-PNAEP_x diblock copolymers as judged by GPC analysis (refractive index detector with calibration using a series of near-monodisperse PMMA standards). The GPC data for the corresponding PSMA₈ precursor is also shown as a reference. (c) Evolution in z-average diameter (and the corresponding DLS polydispersity) with increasing target PNAEP DP for a series of PSMA₈-PNAEP_x diblock copolymers as judged by OLS after dilution from 20 to 0.1% w/w solids using *n*-dodecane.

Figure S2. Digital images recorded for (a) $PSMA_8$ -PNAEP_x nano-objects prepared by RAFT non-aqueous emulsion polymerization of NAEP at 90 °C in *n*-dodecane indicating incipient flocculation (from left to right x= 20, 50 and 100) and (b) $PSMA_8$ -PBzMA_x nano-objects prepared by RAFT dispersion polymerization of NAEP at 90 °C in *n*-dodecane indicating colloidally stable dispersions (from left to right x= 20, 50 and 100).

Figure S3. (a) Conversion vs. time curves obtained for the RAFT solution polymerization of SMA at 70 °C in toluene targeting a PSMA DP of 60 at 50% w/w solids using a PETTC RAFT agent and AIBN initiator (PETTC/AIBN molar ratio = 5.0). (b) Corresponding evolution in M_n and M_w/M_n with conversion observed for the same SMA homopolymerization. The dashed line indicates the theoretical M_n data. The experimental M_n data set differs from this theoretical line owing to a systematic GPC calibration error that is incurred by using PMMA standards.

Figure S4. Chloroform GPC curves recorded for a PSMA₃₆ precursor and two corresponding chain-extended PSMA₃₆-PNAEP₆₀ diblock copolymers prepared by RAFT *solution* polymerization of NAEP in toluene at 90 °C (red trace) or by RAFT *non-aqueous* emulsion polymerization of NAEP in *n*-dodecane at 90 °C (blue trace). In each case, the PSMA₃₆/T21s molar ratio was 4.0. These GPC traces indicate relatively high blocking efficiencies (particularly for the synthesis conducted in *n*-dodecane) but the presence of a high molecular weight shoulder suggests that some chain transfer to polymer occurs in this case.

Figure S5. Solubility (v/v%) of NAEP monomer in *n*-dodecane between 20 and 90 °C as determined by visual inspection.

Figure S6. ¹H NMR spectra recorded in CD_2Cl_2 for the PSMA₃₆ precursor (red spectrum), NAEP monomer (blue spectrum) and a PSMA₃₆-PNAEP₆₀ diblock copolymer (purple spectrum) prepared at 20% w/w solids by RAFT non-aqueous emulsion polymerization in *n*-dodecane at 90 °C. Comparison of the integrated monomer vinyl signals with appropriate polymer signals in the latter spectrum indicate more than 99% conversion in this case.

Table S1. Summary of NAEP monomer conversion, diblock copolymer M_n and M_w/M_n data as determined by chloroform GPC and the z-average diameters and polydispersities (PDI) determined by DLS studies for linear PSMA₃₆-PNAEP_x diblock copolymer nanoparticles prepared *via* RAFT dispersion polymerization prepared in various *n*-dodecane at 90 °C.

Target diblock	NAEP	GPC ^b		DLS ^c		
copolymer	conversion ^a	$M_{\rm p}$ /	M _n /	NA /NA	Z-average	DLS
composition	/ %	g mol ⁻¹	g mol ⁻¹	IVI _w /IVI _n	diameter / nm	polydispersity
PSMA ₃₆ -PNAEP ₁₀	98	14 400	13 700	1.26	\$	\$
PSMA ₃₆ -PNAEP ₂₀	98	16 200	16 400	1.31	\$	\$
PSMA ₃₆ -PNAEP ₃₀	98	17 800	18 300	1.31	\$	\$
PSMA ₃₆ -PNAEP ₄₀	98	20 100	21 400	1.45	40	0.19
PSMA ₃₆ -PNAEP ₅₀	98	21 900	22 600	1.50	45	0.17
PSMA ₃₆ -PNAEP ₆₀	98	22 900	23 000	1.50	52	0.10
PSMA ₃₆ -PNAEP ₆₀ ⁺	99	19 500	20 300	1.36	35	0.11
PSMA ₃₆ -PNAEP ₇₀	99	25 700	25 800	1.76	60	0.12
PSMA ₃₆ -PNAEP ₈₀	99	33 600	23 300	2.40	69	0.09
PSMA ₃₆ -PNAEP ₉₀	99	39 700	23 200	3.00	76	0.08
PSMA ₃₆ -PNAEP ₁₀₀	99	43 700	31 000	3.33	77	0.05
PSMA ₃₆ -PNAEP ₁₁₀	99	48 900	26 500	3.87	86	0.05
PSMA ₃₆ -PNAEP ₁₅₀	99	*	*	*	100	0.05
PSMA ₃₆ -PNAEP ₂₀₀	99	*	*	*	128	0.03
PSMA ₃₆ -PNAEP ₃₀₀	>99	*	*	*	164	0.10
PSMA ₃₆ -PNAEP ₄₀₀	>99	*	*	*	202	0.02
PSMA ₃₆ -PNAEP ₅₀₀	>99	*	*	*	261	0.10

a. NAEP conversion determined by ¹H NMR spectroscopy.

b. Molecular weight data determined by chloroform GPC against a series of PMMA calibrants.

c. DLS studies measured at 0.1% w/w dispersions by dilution with *n*-dodecane.

\$ DLS analysis only indicated very low scattered light intensities, suggesting that micellar nucleation had not occurred in these syntheses.

* GPC analysis was not possible for these nanoparticles because molecular dissolution could not be achieved owing to core-crosslinking. Presumably, this is the result of extensive chain transfer to the acrylic polymer backbone.

⁺ Diblock copolymer nanoparticles synthesized using AIBN initiator at a PSMA₃₆:AIBN molar ratio of 4.0.

Figure S7. Schematic representation of the two possible explanations for the o/w Pickering emulsions that are formed after high-shear homogenization of an equal volume of deionized water and a 1.0% w/w dispersion of *hydrophobic* PSMA₃₆-PNAEP₇₀ nanoparticles in *n*-dodecane. (a) *In situ* nanoparticle inversion during homogenization produces *hydrophilic* PNAEP₇₀-PSMA₃₆ nanoparticles that then adsorb at the outer surface of the oil droplets. (b) The original *hydrophobic* PSMA₃₆-PNAEP₇₀ nanoparticles suggest that the second explanation is most likely to be correct. [N.B. Both schematic cartoons have been simplified for clarity. In scenario A, the excess (non-adsorbed) hydrophobic particles present within the oil droplet are not shown in scenario B].

Figure S8. Representative TEM images recorded for linear PSMA₃₆-PNAEP₆₀ and cross-linked PSMA₃₆-PNAEP₆₀-PEGDA₁₀ nano-objects. The latter nanoparticles exhibit a more well-defined spherical morphology, whereas the former tend to undergo (partial) deformation during TEM grid preparation. Inset image shows the corecrosslinked nano-objects at a higher magnification.

Table S2. Summary of z-average diameters and DLS polydispersities (PDI) determined for linear PSMA₃₆-PNAEP₆₀ diblock copolymer nanoparticles and the corresponding core-crosslinked PSMA₃₆-PNAEP₆₀-PEGDA₁₀ triblock copolymer nanoparticles in *n*-dodecane (a poor solvent for PNAEP) and chloroform (a good solvent for PNAEP).

Target diblock	DLS diameter / nm (PDI)			
copolymer composition	<i>n</i> -Dodecane	Chloroform		
PSMA ₃₆ -PNAEP ₆₀	52 (0.10)	/		
PSMA ₃₆ -PNAEP ₆₀ -PEGDA ₁₀	57 (0.09)	84 (0.06)		

SAXS model

In general, the intensity of X-rays scattered by a dispersion of nano-objects [usually represented by dΣ the scattering cross section per unit sample volume, $\frac{d\Omega}{d\Omega}(q)$] can be expressed as:

> $\frac{d\Sigma}{d\Omega}(q) = NS(q) \int_{0}^{\infty} \dots \int_{0}^{\infty} F(q, r_1, \dots, r_k)^2 \Psi(r_1, \dots, r_k) dr_1 \dots dr_k$ S1

where $F(q, r_1, ..., r_k)$ is the form factor, $r_1, ..., r_k$ is a set of k parameters describing the structural morphology, $\Psi(r_1, ..., r_k)$ is the distribution function, S(q) is the structure factor and N is the nanoobject number density per unit volume, which can be expressed as:

$$N = \frac{\varphi}{\int_{0}^{\infty} \dots \int_{0}^{\infty} V(r_1, \dots, r_k) \Psi(r_1, \dots, r_k) dr_1 \dots dr_k}$$
S2

where $V(r_1, ..., r_k)$ is volume of the nano-object and φ is their volume fraction in the dispersion. For all SAXS experiments conducted herein, a dilute copolymer concentration of 1.0 % w/w was utilized. Thus it can be assumed that s(q) = 1 for all analysis and modeling.

Spherical model

The spherical micelle form factor equation for Equation S1 is given by¹:

$$F_{sph}(q) = N_s^2 \beta_s^2 A_s^2(q, R_s) + N_s \beta_c^2 F_c(q, R_g) + (q)$$
 S3

Where R_s is the core radius of the spherical micelle and R_a is the radius of gyration of the PSMA corona block. The core block and the corona block X-ray scattering length contrast is given by $\beta_s = V_s(\xi_s - \xi_{sol})$ and $\beta_s = V_c(\xi_c - \xi_{sol})$, respectively. Here ξ_s , ξ_c and ξ_{sol} are the X-ray scattering length densities of the core-forming block (ξ_{PNAEP} = 11.46 × 10¹⁰ cm⁻²), the coronal stabilizer block (ξ_{PSMA} = 9.237×10^{10} cm⁻²) and *n*-dodecane (ξ_{sol} = 7.322×10^{10} cm⁻²). V_s and V_c are the volumes of the coreforming block and the coronal stabilizer block, respectively. Using the molecular weights of the PNAEP and PSMA blocks and their respective mass densities (ρ_{PNAEP} = 1.26 g cm⁻³ and ρ_{PSMA} = 0.97 g cm⁻³), the

$$V = \frac{M_{n,po}}{m_{n,po}}$$

 $N_A \rho$, where M_{n.pol} corresponds to the numberindividual block volumes can be calculated from average molecular weight of the block determined by ¹H NMR spectroscopy.

The sphere form factor amplitude is used for the amplitude of the core self-term:

$$A_c(q,R_s) = \Phi(qR_s)exp\left(-\frac{q^2\sigma^2}{2}\right)$$
 S4

 $\Phi(qR_s) = \frac{3[sin(qR_s) - qR_scos(qR_s)]}{(qR_s)^3}$. A sigmoidal interface between the two blocks was Where assumed for the spherical micelle form factor (equation S4). This is described by the exponent term

with a width σ accounting for a decaying scattering length density at the micellar interface. This σ value was fixed at 2.2 during fitting.

The form factor amplitude of the spherical micelle corona is:

$$A_{c}(q) = \frac{\int_{R_{s}}^{R_{s}+2s} \mu_{c}(r) \frac{\sin(qr)}{qr} r^{2} dr}{\int_{R_{s}}^{R_{s}+2s} \mu_{c}(r) r^{2} dr} exp\left(-\frac{q^{2}\sigma^{2}}{2}\right)$$
S5

The radial profile, $\mu_c(r)$, can be expressed by a linear combination of two cubic b splines, with two fitting parameters *s* and *a* corresponding to the width of the profile and the weight coefficient, respectively. This information can be found elsewhere,^{2,3} as can the approximate integrated form of Equation S5. The self-correlation term for the corona block is given by the Debye function:

$$F_c(q,R_g) = \frac{2\left[\exp\left(-q^2R_g^2\right) - 1 + q^2R_g^2\right]}{q^4R_g^2}$$
 So

Where R_g is the radius of gyration of the PSMA coronal block. The aggregation number of the spherical micelle, N_s , is given by:

$$N_s = (1 - x_{sol}) \frac{\frac{4}{3}\pi R_s^3}{V_s}$$
 S7

Where x_{sol} is the volume fraction of solvent (in this case, *n*-dodecane) in the PNAEP micelle core. An effective structure factor expression proposed for interacting spherical micelles⁴ is used in equation S1:

$$S_{s}(q) = 1 + \frac{A_{s_mic}(q)^{2} [S_{PY}(q, R_{PY}, f_{PY}) - 1]}{F_{s_mic}(q)}$$
S8

Herein the form factor of the average radial scattering length density distribution of the micelles is given by $A_{s_mic}^{av}(q) = N_s[\beta_s A_s(q,R_s) + \beta_c A_c(q)]$ and $S_{PY}(q,R_{PY},f_{PY})$ is a hard-sphere interaction structure factor based on the Percus-Yevick approximation,⁵ where R_{PY} is the interaction radius and f_{PY} is the hard-sphere volume fraction. A polydispersity for one parameter (R_s) is assumed for the micelle model, which is described by a Gaussian distribution. Thus, the polydispersity function in Equation S1 can be replaced with:

$$\Psi(r_1) = \frac{1}{\sqrt{2\pi\sigma_{R_s}^2}} exp\left(-\frac{(r_1 - R_s)^2}{2\sigma_{R_s}^2}\right)$$
 S9

Where σ_{R_s} is the standard deviation for R_s . In accordance with equation S2, the number density per unit volume for the micelle model is expressed as:

$$N = \frac{\varphi}{\int_{0}^{\infty} V(r_1)\Psi(r_1)dr_1}$$
 S10

Where φ is the total *volume fraction* of copolymer in the spherical micelles and $V(r_1)$ is the total *volume* of copolymer within a spherical micelle $[V(r_1) = (V_s + V_c)N_s(r_1)]$.

- 1 J. S. Pedersen, J. Appl. Crystallogr., 2000, **33**, 637–640.
- 2 J. S. Pedersen and M. C. Gerstenberg, *Colloids Surfaces A Physicochem. Eng. Asp.*, 2003, **213**, 175–187.
- J. S. Pedersen, C. Svaneborg, K. Almdal, I. W. Hamley and R. N. Young, *Macromolecules*, 2003, **36**, 416–433.
- 4 J. S. Pedersen, J. Chem. Phys., 2001, **114**, 2839–2846.
- 5 D. J. Kinning and E. L. Thomas, *Macromolecules*, 1984, **17**, 1712–1718.