Electronic Supplementary Information

Ionic polyacetylene with unique nanostructure and high stability by metathesis cyclopolymerization-induced self-assembly

Hongfei Lia, ${ }^{\text {,b }}$, Wei Song ${ }^{\text {c,* }}$, Xiaojuan Liao ${ }^{\text {a }}$, Ruyi Sun ${ }^{\text {a }}$ and Meiran Xie ${ }^{\text {a,** }}$
${ }^{\text {a }}$ School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China.E-mail: mrxie@chem.ecnu.edu.cn
${ }^{\mathrm{b}}$ Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
${ }^{\mathrm{c}}$ Department of Polymer and Composite Material, School of Materials Engineering, Yancheng Institute of Technology, Yancheng, 224051,China. E-mail: sw121092@ycit.cn

To a solution of N, N-dimethylethanolamine ($1.9 \mathrm{~g}, 21.0 \mathrm{mmol}), \mathrm{EDCI}(3.2 \mathrm{~g}, 17.0 \mathrm{mmol})$, and DMAP $(366.0 \mathrm{mg}, 3.0 \mathrm{mmol})$ in fresh distilled DCM $(10 \mathrm{~mL})$, the solution of 2-(2-propinyl)-4-pentinoic acid ($1.9 \mathrm{~g}, 14.0 \mathrm{mmol}$) in fresh distilled DCM $(10 \mathrm{~mL})$ was added dropwise under nitrogen at $0^{\circ} \mathrm{C}$, and the mixture was warmed to room temperature and stirred for 12 h . The resulting mixture was diluted with DCM $(20 \mathrm{~mL})$ and then washed with saturated NaHCO_{3} aqueous solution, water, and saturated brine. Then, dried over anhydrous MgSO_{4}. After removal of solvent, the crude product was purified using column chromatography (ethyl acetate/petroleum ether $=1: 1$) to yield intermediate compound $\mathbf{1}$ as a pale yellow liquid ($2.2 \mathrm{~g}, 11.0 \mathrm{mmol}, 78 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.26(\mathrm{t}$, $\left.2 \mathrm{H}, \mathrm{COOCH}_{2} \mathrm{CH}_{2}\right), 2.86\left(\mathrm{~m}, 1 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}\right), 2.70-2.56\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH} \equiv \mathrm{CCH}_{2}+\right.$ $\left.\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.30\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.08\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH} \equiv \mathrm{CCH}_{2}\right)$. IR (KBr): $3281(-\mathrm{NH}-)$, $3121(\mathrm{C} \equiv \mathrm{CH}), 2119(\mathrm{C} \equiv \mathrm{C}), 1737(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} .{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta-$ 78.80 (TFSI-). $^{-}$

Synthesis of ionized 2-(dimethylamino)ethyl 2-(prop-2-ynyl)pent-4-ynoate (M2)

 To a solution of 2-(dimethylamino)ethyl-2-(prop-2-ynyl)pent-4-ynoate (1) (2.2 g, 11.0 mmol $)$ in $\mathrm{CHCl}_{3}(10 \mathrm{~mL}), \mathrm{CH}_{3} \mathrm{I}(6.0 \mathrm{~g}, 42.0 \mathrm{mmol})$ was added, and the mixture was stirred at $45^{\circ} \mathrm{C}$ for 3 d . The mixture was concentrated and precipitated three times in diethyl ether and dried in vacuum to get iodized 2-(dimethylamino)ethyl-2-(prop-2-ynyl)pent-4ynoate (2) as a white solid ($3.4 \mathrm{~g}, 10.0 \mathrm{mmol}, 92 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.70$ (s, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.23\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{COOCH}_{2} \mathrm{CH}_{2}\right), 3.62\left(\mathrm{~d}, 9 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.87(\mathrm{~m}, 1 \mathrm{H}$, $\left.\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}\right), 2.83-2.56\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH} \equiv \mathrm{CCH}_{2}\right), 2.09\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH} \equiv \mathrm{CCH}_{2}\right)$.To a solution of $\mathbf{2}(3.4 \mathrm{~g}, 10.0 \mathrm{mmol})$ in the mixed solvent of deionized water $(10 \mathrm{~mL})$, acetone $(15 \mathrm{~mL})$, and methanol $(10 \mathrm{~mL})$, LiTFSI $(4.3 \mathrm{~g}, 15.0 \mathrm{mmol})$ in deionized water $(10 \mathrm{~mL})$ was added, and the mixture was stirred at room temperature for 2 d . The mixture
was concentrated and precipitated three times in diethyl ether and dried in vacuum to get M2 as colorless viscous liquid ($4.0 \mathrm{~g}, 8.0 \mathrm{mmol}, 80 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $4.60\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.80\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{COOCH}_{2} \mathrm{CH}_{2}\right), 3.27\left(\mathrm{t}, 9 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.90(\mathrm{~m}$, $\left.1 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}\right), 2.77-2.56\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH} \equiv \mathrm{CCH}_{2}\right), 2.24\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH} \equiv \mathrm{CCH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 171.82,119.76,80.31,71.39,65.03,58.31,54.19,53.43,42.87,30.94$, 19.83. ${ }^{19} \mathrm{~F}$ NMR (471 MHz, CDCl_{3}): δ-79.19. IR (KBr): $3304(\mathrm{C} \equiv \mathrm{CH}), 2121(\mathrm{C} \equiv \mathrm{C})$, $1751(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$. HR-ESIMS: Calcd. For $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NO}_{2}^{+}[\mathbf{M 2}]^{+}: 222.1494$, Found: 222.1484 .

General procedure for polymerizations

Synthesis of homopolymer via MCP
Homopolymer P2 was prepared by MCP using Ru-III as the catalyst and a typical procedure was as follow. In a dry nitrogen-filled Schlenk tube, a solution of Ru-III (7.1 $\mathrm{mg}, 8 \mu \mathrm{~mol})$ in 1 mL of THF, which was degassed in three freeze-vacuum-thaw cycles, was added to a degassed solution of $\mathbf{M 2}(100.0 \mathrm{mg}, 0.2 \mathrm{mmol})$ in 1 mL of THF to give a monomer concentration of $0.2 \mathrm{~mol} \cdot \mathrm{~L}^{-1}$. After 2 h , the polymerization was quenched by adding an excess of ethyl vinyl ether with stirring for 30 min , and then precipitated into a large quantity of diethyl ether. Polymer was dissolved in acetone, and precipitated once again from diethyl ether. The obtained polymer was dried in a vacuum oven at $40^{\circ} \mathrm{C}$ to give $\mathbf{P 2}$ as a purple black solid ($98 \mathrm{mg}, 98 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right)$: $\delta 6.92$ (d, $2 \mathrm{H},-\mathrm{CH}=\mathrm{CH}-$ on polymer chain), $4.77\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.01\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{COOCH}_{2} \mathrm{CH}_{2}\right)$, 3.59-3.33 (m, 9H, N(CH3 $)_{3}$), 3.27-2.99 (m, 5H, $\left.\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}+\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}\right) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta 174.53,138.35,123.89,123.36,121.34,118.79,116.24,65.04$, 58.21, 53.79, 39.76, 36.46. IR (KBr): $3044(\mathrm{CH}=\mathrm{CH}), 1736(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$.

Synthesis of random copolymer via MCP

The random copolymers were prepared by MCP with the mixture solution of the two
monomers, and a typical procedure was as follow. In a nitrogen-filled Schlenk tube, a solution of Ru-III ($1.8 \mathrm{mg}, 2 \mu \mathrm{~mol}$) in 1 mL of THF, which was degassed in three freeze-vacuum-thaw cycles, was added to a degassed solution of M1 (120 mg, 0.05 mmol$)$ and M2 $(25 \mathrm{mg}, 0.05 \mathrm{mmol})$ in 2 mL of THF to give a monomer concentration of $0.05 \mathrm{~mol} \cdot \mathrm{~L}^{-1}$. After stirring for 2 h , the polymerization was quenched by adding a drop of ethyl vinyl ether with stirring for further 30 min , and the solution was then poured into an excess of diethyl ether. The polymer was redissolved in acetone again, and precipitated once again from diethyl ether. The precipitate was dried under vacuum for 24 h at $40^{\circ} \mathrm{C}$ to obtain block copolymer $\mathbf{P}\left(\mathbf{1}_{25}\right.$-co- $\mathbf{2}_{25}$) as a purple black viscous solid (120 $\left.\mathrm{mg}, 90 \%\right) .{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 8.74$ (d, triazolium- H), 4.90 ($\mathrm{s},-\mathrm{N}=\mathrm{N}-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}-$), 4.77 (s , $\left.\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.45\left(\mathrm{~s},-\mathrm{NCH}_{3}\right), 4.22\left(\mathrm{~d}, \mathrm{CHCH}_{2} \mathrm{O}-\right), 4.14-3.98\left(\mathrm{~m},-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}-\right), 3.84-$ $3.43\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{CHCH}_{2}+\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}-+\mathrm{COOCH}_{2}+-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}+-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CH}_{2}\right), 2.78-2.60$ (m, $\left.\mathrm{CCH}_{2} \mathrm{CH}\right), 1.13\left(\mathrm{t},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$.

Characterization of M2

The structure of M2 was characterized by NMR, HR-MS, and FT-IR spectroscopy. The ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 , 2}$, and $\mathbf{M} \mathbf{2}$ were shown in Fig. 1a. The proton resonances of $\mathbf{1}$ at $4.26,2.86$, and 2.08 ppm were assigned to the methylene connected with ester group, methyne, and terminal acetylenic groups, respectively. The area ratios of these three peaks matched well with the predicted values of $2: 1: 2$, indicating the correct structure of $\mathbf{1}$. After ionization of 1 by $\mathrm{CH}_{3} \mathrm{I}$ and anion exchanging reaction from I^{-}to TFSI^{-}, the proton resonance of methylene connected with N atom shifted from 2.60 ppm to 4.70 ppm , and finally moved to 4.60 ppm . The changes of proton resonances in Fig. 1 demonstrated the successful synthesis of M2. In the ${ }^{13} \mathrm{C}$ NMR spectrum (Fig. 1b), the carbon resonances of carbonyl and acetylenic groups appeared at 171.82 and 70.31 ppm . In the ${ }^{19} \mathrm{~F}$ NMR spectrum (Fig. $\mathrm{S} 1 \dagger$), fluorine resonance of TFSI- appeared at -79.90 ppm . In the FT-IR
spectrum of M2 (Fig. S2a \dagger), it was clear to see the acetylenic hydrogen stretching at 3304 cm^{-1}, acetylenic carbon stretching at $2121 \mathrm{~cm}^{-1}$, and the ester group absorption peak appeared at $1751 \mathrm{~cm}^{-1}$. Finally, it was found that the molecular weight of $[\mathbf{M} 2]^{+}$was 222.1484 by HR-ESIMS testing, which consistent with the theoretical calculation value of 222.1494. Apparently, all these points confirmed the successful preparation of M2.

Fig. S1. ${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{M 2}$ in CDCl_{3}.

Fig. S2. FT-IR spectra of (a) M2, (b) P2, (c) P1, and (d) P1-b-P2.

Table S1

Solubility of polymers in various solvents at room temperature.

Run	Diethyl ether	CHCl_{3}	THF	DMSO	Acetone
$\mathbf{P 1}$	-	++	++	++	++
$\mathbf{P 2}$	-	-	-	++	++
$\mathbf{P 1}-b-\mathbf{P 2}$	-	+-	+	++	++
$\mathbf{P}\left(\mathbf{1}_{25}-\mathrm{Co}-\mathbf{2}_{50}\right)$	-	+-	+	++	++

* 1 mg of matter in 1 mL of solvent.
-: insoluble; +-: partially soluble; +: soluble; ++: good soluble.

Fig. S3. GPC traces of homopolymer and copolymers.

Fig. S4. ${ }^{1} \mathrm{H}$ NMR spectra of (a) $\mathbf{P} \mathbf{1}_{25}$, (b) $\mathbf{P} \mathbf{2}_{25}$ (c) $\mathbf{P} \mathbf{1}_{25}-b-\mathbf{P} \mathbf{2}_{25}$, (d) $\mathbf{P} \mathbf{1}_{25}-b-\mathbf{P} \mathbf{2}_{50}$, and (e) $\mathbf{P}\left(\mathbf{1}_{25}-c o-\mathbf{2}_{50}\right)$.

Fig. S5. (a) ${ }^{1} \mathrm{H}$ and (b) ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{P} 2$ in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$.

Table S2

The composition of block copolymers by ${ }^{1} \mathrm{H}$ NMR analysis.

	${ }^{a} \mathrm{~S}_{\mathrm{i}}: \mathrm{S}_{\mathrm{n}}$	${ }^{b} \mathrm{~S}_{\mathrm{i}}: \mathrm{S}_{\mathrm{n}}$
$\mathbf{P 1} \mathbf{1 2 5}^{2}-b-\mathbf{P} \mathbf{2}_{25}$	$2: 1$	$4: 1$
$\mathbf{P 1}_{25}-b-\mathbf{P} \mathbf{2}_{50}$	$1: 1$	$2: 1$

${ }^{a}$ Theoretical value of peak area ratio of S_{i} to S_{n}; ${ }^{b}$ the actual value of peak area ratio of S_{i} to S_{n} calculated by ${ }^{1} \mathrm{H}$ NMR analysis.

Fig. S6. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{P} \mathbf{1}_{25}-b-\mathbf{P} \mathbf{2}_{50}$ in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$.

Fig. S7. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{P}\left(\mathbf{1}_{25}-\mathrm{Co}-\mathbf{2}_{25}\right)$ in DMSO- d_{6}.

Fig. S8. Sizes of (a,c,e,g) $\mathbf{P 1}_{25}-b-\mathbf{P} 2_{25}$ and (b,d,f,h) $\mathbf{P 1}_{25}-b-\mathbf{P} \mathbf{2}_{50}$ at concentrations of (a,b) 1, (c,d) 0.1, and (e,f) $0.05 \mathrm{mg} \cdot \mathrm{mL}^{-1}$ in THF, as well as (g, h) $1 \mathrm{mg} \cdot \mathrm{mL}^{-1}$ in acetone; (i) $\mathbf{P}\left(\mathbf{1}_{25}-\mathrm{co}-\mathbf{2}_{25}\right)$ at $1 \mathrm{mg} \cdot \mathrm{mL}^{-1}$ in THF; (j) the schematic of block copolymers in different solvents.

Fig. S9. TEM images of $\mathbf{P 1}_{25}-b-\mathbf{P} \mathbf{2}_{25}$ in THF at the concentrations of (a) $0.05 \mathrm{mg} \cdot \mathrm{mL}^{-1}$ and (b) 0.5 $\mathrm{mg} \cdot \mathrm{mL}^{-1}$; (c) $\mathbf{P}\left(\mathbf{1}_{25}-\mathrm{co}-\mathbf{2}_{50}\right)$ in THF at a concentration of $0.05 \mathrm{mg} \cdot \mathrm{mL}^{-1}$.

Fig. S10. AFM images of polymer thin films on mica substrate: (a) $\mathbf{P} \mathbf{1}_{25}-b-\mathbf{P} \mathbf{2}_{50}$ prepared from acetone solution and (b) $\mathbf{P} \mathbf{1}_{25}-b-\mathbf{P} \mathbf{2}_{25}$ prepared from THF solution at the same concentration of $0.05 \mathrm{mg} \cdot \mathrm{mL}^{-1}$.

Fig. S11. Block copolymer $\mathbf{P 1}_{25}-b-\mathbf{P} \mathbf{2}_{50}$ in acetone (left) and THF (right) solutions for 3 days at room temperature.

Fig. S12. (a) UV-vis spectra of homopolymers and copolymers in acetone; UV-vis spectra of (b) $\mathbf{P} 1_{25^{-}}$ $b-\mathbf{P} \mathbf{2}_{25}$, (c) $\mathbf{P} \mathbf{1}_{25}-b-\mathbf{P} \mathbf{2}_{50}$, and (d) $\mathbf{P}\left(\mathbf{1}_{25}-\mathrm{CO}-\mathbf{2}_{25}\right)$ in acetone and THF.

Fig. S13. (a) DCS and (b) TGA curves of polymers.

Notes and references

1. J. Wu, C. Wang, D. Zhou, X. Liao, M. Xie and R. Sun, Macromol. Rapid Commun., 2016, 37, 2017-2022.
