Supporting Information

Cu-Catalyzed Four-Component Polymerization of Alkynes,Sulfonyl Azides, Nucleophiles and Electrophiles
Junnan He, Nan Zheng*, Ming Li, Yubin Zheng, and Wangze Song*
State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China.
Table of Contents

1. Experimtal Section S2
2. Reaction Conditions Screening for 4-CP S5
3. ${ }^{1} \mathrm{H}$ NMR Spectra of Monomers. S7
4. ${ }^{1} \mathrm{H}$ NMR Spectra of Synthetic Polymers S12
5. Structural Characterization of P1a/2a/3a/4f S31
6. Structural Characterization of P1a/2a/3a/4h S32
7. TGA curves of polymers S33
8. Structural Characterization of P1, P2, P3 and P4 S35
9. ${ }^{1} \mathrm{H}$ NMR Spectra of the Mixture of 3 a and 4 h S38
10. GPC curves of polymers S39
11. ${ }^{1} \mathrm{H}$ NMR Spectrum of P1a/2a/3a/4i/5 S41

1. Experimtal Section

Synthesis of the diyne 1b

$\operatorname{Bis}(4-b r o m o p h e n y l)$ ether ($3.0 \mathrm{mmol}, 984.2 \mathrm{mg}$), trimethylsilylacetylene $(7.5 \mathrm{mmol}, 1100 \mu \mathrm{~L}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.3$ $\mathrm{mmol}, 210.3 \mathrm{mg}), \mathrm{PPh}_{3}(0.6 \mathrm{mmol}, 158.4 \mathrm{mg})$ and $\mathrm{Cul}(0.3 \mathrm{mmol}, 57.1 \mathrm{mg})$ were dissolved in the mixture solvent of THF (15 mL) and TEA (5 mL). The reaction mixture was stirred at $70{ }^{\circ} \mathrm{C}$ overnight. After the reaction was completed, the mixture was cooled to room temperature and filtered by a short pad of Celite. The solvent was removed in vacuo. The residue was purified by column chromatography, giving the pure product ((oxybis(4,1-phenylene))bis(ethyne-2,1-diyl))bis(trimethylsilane) as a white powder in 67% yield (728.9 mg). ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.46(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 4 \mathrm{H}), 6.93(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 4 \mathrm{H}), 0.28-0.17(\mathrm{~m}, 18 \mathrm{H})$. (Figure S1)
((Oxybis(4,1-phenylene))bis(ethyne-2,1-diyl))bis(trimethylsilane) ($0.82 \mathrm{mmol}, 288.2 \mathrm{mg}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(2.44 \mathrm{mmol}$, 337.2 mg) were added in the mixture solvent of methanol (1 mL) and THF (3 mL) in a 15 mL vial. The reaction mixture was stirred at room temperature for 12 h . After the reaction was completed, the mixture was filtered to remove $\mathrm{K}_{2} \mathrm{CO}_{3}$ and the residue was extracted with $\mathrm{DCM}(3 \times 20 \mathrm{~mL})$. The organic layer was collected and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The target product 4,4'-oxybis(ethynylbenzene) (1b) was obtained as a yellow powder in 89% yield (159.1 mg). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.50(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 5 \mathrm{H})$, 6.98 (d, J = $8.7 \mathrm{~Hz}, 4 \mathrm{H}$), 3.07 (s, 2H). (Figure S2)

Synthesis of the diyne 1c

4,4'-Diiodo-1,1'-biphenyl ($1.0 \mathrm{mmol}, 40.6 \mathrm{mg}$), trimethylsilylacetylene ($2.5 \mathrm{mmol}, 350 \mu \mathrm{~L}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.05$ $\mathrm{mmol}, 35.1 \mathrm{mg}$) and $\mathrm{Cul}(0.05 \mathrm{mmol}, 9.5 \mathrm{mg}$) were dissolved in 30 mL mixture solvent of THF (20 mL) and TEA (10 $\mathrm{mL})$. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ overnight. After the reaction was completed, the mixture was cooled to room temperature and filtered by a short pad of Celite. The solvent was removed in vacuo and the residue was purified by column chromatography, giving the pure product as a white powder 4,4'-bis((trimethylsilyl)ethynyl)-1,1'-biphenyl in 68% yield (235.7 mg). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.55(\mathrm{~s}, 8 \mathrm{H}), 0.44-$ 0.19 (m, 18H). (Figure S3)

4,4'-Bis((trimethylsilyl)ethynyl)-1,1'-biphenyl ($0.5 \mathrm{mmol}, 173.2 \mathrm{mg}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.5 \mathrm{mmol}, 207.3 \mathrm{mg})$ were added in the mixture solvent of methyl alcohol (1 mL) and THF (3 mL). The reaction mixture was stirred at room temperature for 12 h . After the reaction was completed, the mixture was filtered to remove $\mathrm{K}_{2} \mathrm{CO}_{3}$ and the residue was extracted with $\mathrm{DCM}(3 \times 15 \mathrm{~mL})$. The organic layer was collected and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The target product 4,4'-diethynyl-1,1'-biphenyl (1c) was obtained as a white powder in 93% yield (94.1 mg). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.67-7.52(\mathrm{~m}, 8 \mathrm{H}), 3.16(\mathrm{~s}, 2 \mathrm{H})$. (Figure S4)

Synthesis of sulfonyl azide 2b

4-Methoxybenzenesulfonyl chloride ($5.0 \mathrm{mmol}, 1.03 \mathrm{~g}$) was dissolved in the mixture of acetone (10 mL) and water (10 mL). $\mathrm{NaN}_{3}(6.5 \mathrm{mmol}, 423 \mathrm{mg})$ was added into the mixture in an ice bath. The reaction was recovered to room temperature and the mixture was stirred for 12 h . After the reaction was completed, the acetone was removed in vacuo. The residual solution was extracted by EtOAc $(3 \times 50 \mathrm{~mL})$. The organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The 4-methoxybenzenesulfonyl azide (2b) was obtained as a white powder in 91% yield (969.2 mg). ${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(} 500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.92(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.08 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 3.94 (s, 3H). (Figure S5)

Synthesis of sulfonyl azide 2c

Using the same synthesis method as that for sulfonyl azide $\mathbf{2 b}$, the 4-nitrobenzenesulfonyl azide (2c) was obtained as a yellow powder in 86% yield (1.02 g). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.93(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=$ $17.1 \mathrm{~Hz}, 2 \mathrm{H}$). (Figure S6)

Synthesis of sulfonyl azide 2d

Using the same synthesis method as that for sulfonyl azide 2b, 4-bromobenzenesulfonyl azide (2d) was obtained as a white powder in 90% yield (1.17 g). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, d_{6}$-DMSO): $\delta 8.10-7.87$ ($\mathrm{m}, 4 \mathrm{H}$). (Figure S7)

Synthesis of diol 3b

3-Mercaptopropionic acid ($55.0 \mathrm{mmol}, 4.8 \mathrm{~mL}$), acetone ($25.0 \mathrm{mmol}, 1.9 \mathrm{~mL}$) and a catalytic amount of trifluoroacetic acid (TFA) were added into a 20 mL vial under nitrogen atmosphere at room temperature for 4 h . The reaction mixture was quenched in an ice bath. Then, the solution was filtered and washed three times with
cold water and hexane. 3, 3^{\prime}-(propane-2, 2^{\prime}-diylbis(sulfanediyl))dipropionic acid (TK-COOH) was obtained in vacuo as a white powder in 80% yield. Then, $\mathrm{TK}-\mathrm{COOH}(1.5 \mathrm{mmol}, 378.5 \mathrm{mg})$ was dissolved in 10 mL anhydrous THF solution, followed by the dropwise addition of the solution which was prepared using $\mathrm{LiAlH}_{4}(19.5 \mathrm{mmol}, 740.0$ mg) dissolved in 10 mL anhydrous THF. Then the mixture was stirred at $70{ }^{\circ} \mathrm{C}$ for 1 h . After the reaction was completed, NaOH solution (10\%) was slowly added into the mixture until no gas was produced. The solution was filtered and the combined organic layers were washed with brine ($3 \times 15 \mathrm{~mL}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The pure product of $\mathbf{3 b}$ was obtained as a yellow oil in 91% yield (305.8 mg). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.94-3.68(\mathrm{~m}, 4 \mathrm{H}), 2.86-2.71(\mathrm{~m}, 4 \mathrm{H}), 2.63(\mathrm{~s}, 2 \mathrm{H}), 1.94-1.79(\mathrm{~m}, 4 \mathrm{H}), 1.62(\mathrm{~s}, 6 \mathrm{H})$. (Figure S8)

Synthesis of the trans-4-nitro- β-nitrostyrene 4 e

4-Nitrobenzaldehyde ($5.0 \mathrm{mmol}, 755.6 \mathrm{mg}$), $\mathrm{NH}_{4} \mathrm{OAc}(34.5 \mathrm{mmol} 2105.8 \mathrm{mg}$) and nitromethane (12.0 mmol , 925.0 mg) were dissolved in 9 mL acetic acid in 25 mL round-bottom flask. The mixture was stirred at reflux temperature for 6 h . After the reaction was completed, the reaction solution was gradually cooled to room temperature and dropped into a large amount of water to quench the reaction. Then, the solution was neutralized with a 2 M sodium hydroxide solution. The mixture was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$) and the organic layer was collected. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude product was purified by column chromatography, giving the pure product $\mathbf{4 e}$ as a yellow powder in 65% yield $(631.9 \mathrm{mg}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.34(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.06(\mathrm{~d}, \mathrm{~J}=13.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.75 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.66 (d, $J=13.8 \mathrm{~Hz}, 1 \mathrm{H}$). (Figure S9)

Synthesis of methyl 2-(hydroxymethyl)acrylate

Methyl acrylate ($10.0 \mathrm{mmol}, 860.0 \mathrm{mg}$) and 30% formaldehyde solution ($13.0 \mathrm{mmol}, 1300 \mu \mathrm{~L}$) were dissolved in the mixture solvent of dioxane (15 mL) and water (15 mL) in a 50 mL bottom flask. Then, DABCO (10.0 mmol , 112.1 mg) was added into the mixture and stirred at the room temperature for 6 h . After the reaction was completed, the mixture solution was extracted with EtOAc $(3 \times 50 \mathrm{~mL})$ and collected the organic layer. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude product was purified by column chromatography, giving the pure product methyl 2 -(hydroxymethyl)acrylate as a colorless oil in 48% $(557.4 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.36-6.20(\mathrm{~m}, 1 \mathrm{H}), 5.86(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.94-$ $3.68(\mathrm{~m}, 3 \mathrm{H}), 2.73-2.18(\mathrm{~m}, 1 \mathrm{H})$. (Figure S10)

Synthesis of ethyl 2-(((tert-butoxycarbonyl)oxy)methyl)acrylate 4h

Ethyl 2-(hydroxymethyl)acrylate ($6.0 \mathrm{mmol}, 780.0 \mathrm{mg}$) and $\mathrm{Boc}_{2} \mathrm{O}(6.6 \mathrm{mmol}, 1600 \mu \mathrm{~L}$) were dissolved in 1 mL DCM in a 20 mL vial. The solution was cooled to $0^{\circ} \mathrm{C}$. Then, DMAP ($0.6 \mathrm{mmol}, 73.2 \mathrm{mg}$) was slowly added into the reaction solution at $0^{\circ} \mathrm{C}$. The mixture was cooled to room temperature and stirred for 12 h . After the reaction was completed, the reaction solution was diluted with DCM. The organic layer was washed with 4 N HCl solution, saturated NaHCO_{3} solution and brine. The organic layer was collected and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by column chromatography, giving the pure product $\mathbf{4 h}$ as a colorless oil in 89% yield (1.2 g). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.38(\mathrm{~s}, 1 \mathrm{H}), 5.88(\mathrm{~s}, 1 \mathrm{H}), 4.82(\mathrm{~s}, 2 \mathrm{H}), 4.13-4.54(\mathrm{~m}$, $2 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H}), 1.38-1.29(\mathrm{~m}, 3 \mathrm{H})$. (Figure S11)

Synthesis of methyl 2-(((tert-butoxycarbonyl)oxy)methyl)acrylate 4i

Using the same procedure of $\mathbf{4 h}$ for the synthesis of $\mathbf{4 i}$, the product $\mathbf{4 i}$ was obtained as colorless oil in 84% yield (1.8 g). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.40(\mathrm{~s}, 1 \mathrm{H}), 5.92(\mathrm{~s}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H})$. (Figure S12)

Synthesis of P1a/2a/3a/4i/6

P1a/2a/3a/4i (40.5 mg) and TEA ($0.03 \mathrm{mmol}, 5 \mu \mathrm{~L}$) was dissolved in DMF (1 mL). Then 1,4benzenedimethanethiol $6(0.18 \mathrm{mmol}, 30.6 \mathrm{mg})$ was slowly added into the solution. The mixture was stirred at room temperature for 4 h . The solution was precipitated in methanol. The product was washed with methanol for three times and collected by centrifugation. The pure product $\mathbf{P 1 a} / \mathbf{2 a} / \mathbf{3 a} / 4 \mathrm{i} / 6$ was obtained as a brown solid in 90% yield.

P1a/2a/3a/4i/6
Scheme S1. The structure of $\mathrm{P} 1 \mathrm{a} / 2 \mathrm{a} / 3 \mathrm{a} / 4 \mathrm{i} / 6$.

2. Reaction Conditions Screening for 4-CP

Table S1. Effect of Catalyst on the 4-CP of 1a, 2a, 3a and 4a ${ }^{a}$

Entry	Catalysts	Yield (\%)	$\boldsymbol{M}_{\mathbf{n}}{ }^{\boldsymbol{b}}$	$\boldsymbol{M}_{\mathbf{w}}{ }^{\boldsymbol{b}}$	$\boldsymbol{\Xi}^{\boldsymbol{b}}$
1	CuI	64	11000	15000	1.37
2	CuCl	51	9800	12300	1.25
3	CuBr	65	13400	19700	1.37
4	$\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{PF}_{6}$	62	9500	15600	1.64
5	$(\mathrm{CuOTf})_{2} \mathrm{Tol}^{2}$	48	8600	13700	1.59

${ }^{a}$ Conditions: experiments were carried out at room temperature in the glove box for 12 h in THF. [1a] = [3a] = [4a] $=0.2 \mathrm{M},[2 \mathrm{a}]=0.6 \mathrm{M},[\mathrm{TEA}]=1.0 \mathrm{M},[\mathrm{Cu}(\mathrm{I})]=0.04 \mathrm{M} .{ }^{b} M_{\mathrm{n}}, M_{\mathrm{w}}$ and \bigoplus were determined by GPC in DMF with PMMA standards.

Table S2. Effect of Solvent on the 4-CP of 1a, 2a, 3a and 4a ${ }^{a}$

Entry	Solvent	Yield (\%)	$\boldsymbol{M}_{\mathbf{n}}{ }^{\boldsymbol{b}}$	$\boldsymbol{M}_{\mathbf{w}}{ }^{\boldsymbol{b}}$	$\boldsymbol{Ð}^{\boldsymbol{b}}$
1	DMF	53	8600	12000	1.31
2	DCM	54	6900	8500	1.23
3	THF	65	13000	20000	1.47
4	CHCl_{3}	48	7300	9100	1.28
5	DMSO	34	7300	8600	1.18
6	Toluene	$-c$	-	-	-

${ }^{a}$ Conditions: experiments were carried out at room temperature in the glove box for $12 \mathrm{~h} .[1 \mathrm{a}]=[3 \mathrm{a}]=[4 \mathrm{a}]=0.2$ $\mathrm{M},[2 \mathrm{a}]=0.6 \mathrm{M},[\mathrm{TEA}]=1.0 \mathrm{M},[\mathrm{CuBr}]=0.04 \mathrm{M} .{ }^{b} M_{\mathrm{n}}, M_{\mathrm{w}}$ and $Đ$ were determined by GPC in DMF with PMMA standards. ${ }^{c}$ No polymers were detected.

Table S3. Effect of Temperature on the 4-CP of 1a, 2a, 3a and 4a ${ }^{a}$

Entry	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Yield (\%)	$\boldsymbol{M}_{\mathrm{n}}{ }^{\boldsymbol{b}}$	$\boldsymbol{M}_{\mathbf{w}}{ }^{\boldsymbol{b}}$	$\boldsymbol{\Xi}^{\boldsymbol{b}}$
1	rt	65	13500	19900	1.47
2	40	53	8400	10600	1.27
3	50	50	7900	10500	1.30
4	60	$-c$	-	-	-

${ }^{a}$ Conditions: experiments were carried out under different temperature in the glove box for 12 h in THF. [1a] = $[3 \mathrm{a}]=[4 \mathrm{a}]=0.2 \mathrm{M},[2 \mathrm{a}]=0.6 \mathrm{M},[\mathrm{TEA}]=1.0 \mathrm{M},[\mathrm{CuBr}]=0.04 \mathrm{M} .{ }^{b} M_{\mathrm{n}}, M_{\mathrm{w}}$ and \oplus were determined by GPC in DMF with PMMA standards. c Insoluble gel was observed.

Table S4. Effect of Monomer Concentration on the 4-CP of 1a, 2a, 3a and 4a ${ }^{a}$

Entry	$[1 \mathrm{a}](\mathbf{M})$	Yield (\%)	$\boldsymbol{M}_{\mathrm{n}}{ }^{\boldsymbol{b}}$	$\boldsymbol{M}_{\mathbf{w}}{ }^{\boldsymbol{b}}$	$\boldsymbol{\Phi}^{\boldsymbol{b}}$
1	0.05	trace	-	-	-
2	0.1	15	10800	13200	1.22
3	0.2	62	16000	24900	1.50
4	0.3	64	12900	19300	1.49
5	0.4	$-c$	-	-	

${ }^{a}$ Conditions: experiments were carried out at room temperature in the glove box for 12 h in THF. [1a] = [3a] = [4a], [2a] $=3$ [1a], [TEA] $=5$ [1a], [CuBr] $=0.2$ [1a]. ${ }^{b} M_{n}, M_{w}$ and $Đ$ were determined by GPC in DMF with PMMA standards. ${ }^{c}$ Insoluble gel was observed.

Table S5. Effect of Time on the 4-CP of $1 \mathrm{a}, 2 \mathrm{a}, 3 \mathrm{a}$ and $4 \mathrm{a}^{a}$

Entry	Time (h)	Yield (\%)	$M_{\mathrm{n}}{ }^{b}$	$M_{w}{ }^{b}$	$\oplus^{\text {b }}$
1	0.1	36	3600	4200	1.18
2	0.5	43	4500	5600	1.25
3	1	43	7900	10800	1.22
4	2	52	9800	12500	1.27
5	4	50	9900	13900	1.40
6	6	59	10000	15000	1.50
7	12	60	15100	20800	1.38
8	24	64	13600	20200	1.48
9	36	58	13400	18700	1.39
10	48	48	12100	18500	1.53
11	60	-c	-	-	-

${ }^{a}$ Conditions: experiments were carried out at room temperature in the glove box in THF. [1a] = [3a] = [4a] $=0.2$ $\mathrm{M},[2 \mathrm{a}]=0.6 \mathrm{M},[\mathrm{TEA}]=1.0 \mathrm{M},[\mathrm{CuBr}]=0.04 \mathrm{M} .{ }^{b} M_{\mathrm{n}}, M_{\mathrm{w}}$ and \doteq were determined by GPC in DMF with PMMA standards. ${ }^{\text {c Insoluble gel was observed. }}$

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of ((oxybis(4,1-phenylene))bis(ethyne-2,1-diyl))bis(trimethylsilane) in CDCl_{3}.

Figure
S2.
NMR
spectrum
of
1b
in
CDCl_{3}

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectrum of 4,4 '-bis((trimethylsilyl)ethynyl)-1,1'-biphenyl in CDCl_{3}.

rt

Figure $\mathrm{S4} .{ }^{1} \mathrm{H}$ NMR spectrum of 1 c in CDCl_{3}.

Figure $\mathbf{S 5} .{ }^{1} \mathrm{H}$ NMR spectrum of 2 b in CDCl_{3}.

Figure S6. ${ }^{1} \mathrm{H}$ NMR spectrum of 2 c in CDCl_{3}.

Figure
S7.
NMR
spectrum
of
2d
in
d_{6}-DMSO.

Figure S8. ${ }^{1} \mathrm{H}$ NMR spectrum of 3 b in CDCl_{3}.

Figure S9. ${ }^{1} \mathrm{H}$ NMR spectrum of 4 e in CDCl_{3}.

Figure S10. ${ }^{1} \mathrm{H}$ NMR spectrum of methyl 2-(hydroxymethyl)acrylate in CDCl_{3}.

Figure S11. ${ }^{1} \mathrm{H}$ NMR spectrum of 4 h in CDCl_{3}.

$\begin{array}{llllllllll}\text { Figure } & \text { S12. } & { }^{1} \mathrm{H} & \text { NMR } & \text { spectrum } & \text { of } & 4 i & \text { in } & \mathrm{CDCl}_{3} .\end{array}$

Figure S13. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{P} 1 \mathrm{a} / 2 \mathrm{a} / 3 \mathrm{a} / 4 \mathrm{a}$ in d_{6}-DMSO.

$$
\begin{aligned}
& \begin{array}{lllllllllllll}
9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 & -1 \\
& \\
\text { Chemical } \operatorname{shift}(\mathrm{ppm})
\end{array}
\end{aligned}
$$

Figure S14. ${ }^{1} \mathrm{H} \quad \mathrm{NMR} \quad$ spectrum of $\quad \mathrm{P} 1 \mathrm{a} / 2 \mathrm{a} / 3 \mathrm{a} / 4 \mathrm{~b}$ in d_{6}-DMSO.

Figure
S15. $\quad{ }^{1} \mathrm{H}$
NMR
spectrum
of $\quad P 1 a / 2 a / 3 a / 4 c$
in $\quad d_{6}$-DMSO.

Figure S16. ${ }^{1} \mathrm{H} \quad \mathrm{NMR} \quad$ spectrum of $\mathrm{P} 1 \mathrm{a} / 2 \mathrm{a} / 3 \mathrm{a} / 4 \mathrm{~d}$ in d_{6}-DMSO.

Figure S17. ${ }^{1} \mathrm{H} \quad \mathrm{NMR}$ spectrum of $\mathrm{P} 1 \mathrm{a} / 2 \mathrm{a} / 3 \mathrm{a} / 4 \mathrm{e}$ in d_{6}-DMSO.
(
$\begin{array}{lllllllll}\text { Figure } & \text { S18. } & { }^{1} \mathrm{H} & \mathrm{NMR} & \text { spectrum } & \text { of } & \mathrm{P} 1 \mathrm{a} / 2 \mathrm{a} / 3 \mathrm{a} / 4 \mathrm{f} & \text { in } & \mathrm{CDCl}_{3} .\end{array}$

Figure
S19.
${ }^{1} \mathrm{H}$
NMR
spectrum
of
P1a/2a/3a/4g
CDCl_{3}

Figure S20. ${ }^{1} \mathrm{H} \quad \mathrm{NMR} \quad$ spectrum of $\mathrm{P} 1 \mathrm{a} / 2 \mathrm{a} / 3 \mathrm{a} / 4 \mathrm{~h}$ in $\quad d_{6}$-DSMO.

Figure S21. ${ }^{1} \mathrm{H} \quad \mathrm{NMR}$ spectrum of $\mathrm{P} 1 \mathrm{a} / 2 \mathrm{a} / 3 \mathrm{a} / 4 \mathrm{i}$ in d_{6}-DSMO.

 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | -1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | | | | |
| Chemical $\operatorname{shift}(\mathrm{ppm})$ | | | | | | | | | | |

Figure S22. ${ }^{1} \mathrm{H} \quad \mathrm{NMR} \quad$ spectrum of $\quad \mathrm{P} 1 \mathrm{~b} / 2 \mathrm{a} / 3 \mathrm{a} / 4 \mathrm{a}$ in d_{6}-DSMO.

Figure
S23.
NMR
spectrum
of $\quad \mathrm{P} 1 \mathrm{c} / 2 \mathrm{a} / 3 \mathrm{a} / 4 \mathrm{a}$
in
d_{6}-DSMO.

Figure
S24.
NMR
spectrum
P1d/2a/3a/4a
in
d_{6}-DSMO
(

Figure
S25. $\quad{ }^{1} \mathrm{H}$
NMR
spectrum
of $\quad \mathrm{P} 1 \mathrm{a} / 2 \mathrm{c} / 3 \mathrm{a} / 4 \mathrm{a}$
in $\quad d_{6}$-DSMO.

Figure
S26. $\quad{ }^{1} \mathrm{H}$
NMR
spectrum
of $\quad P 1 a / 2 d / 3 a / 4 a$
in $\quad d_{6}$-DSMO.
(

Figure S27. ${ }^{1} \mathrm{H} \quad \mathrm{NMR}$ spectrum of $\mathrm{P} 1 \mathrm{a} / 2 \mathrm{a} / 3 \mathrm{~b} / 4 \mathrm{a}$ in d_{6}-DSMO.

Figure S28. ${ }^{1} \mathrm{H} \quad \mathrm{NMR} \quad$ spectrum of $\quad \mathrm{P} 1 \mathrm{a} / 2 \mathrm{a} / 3 \mathrm{c} / 4 \mathrm{a}$ in $\quad d_{6}$-DSMO.

Figure
S29. ${ }^{1} \mathrm{H}$
NMR
spectrum
of
P1a/2d/3b/4a
in $\quad d_{6}$-DSMO.

Figure s30. ${ }^{1} \mathrm{H} \quad \mathrm{NMR} \quad$ spectrum \quad of $\quad \mathrm{P} 1 \mathrm{a} / 2 \mathrm{~d} / 3 \mathrm{~b} / 4 \mathrm{f} \quad$ in $\quad \mathrm{CDCl}_{3}$.

Figure S31. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{P} 1 \mathrm{a} / 2 \mathrm{~d} / 3 \mathrm{~b} / 4 \mathrm{~h}$ in d_{6}-DSMO.

C

\qquad
D

E

E

 d

Figure S32. ${ }^{1} \mathrm{H}$ NMR spectra of $1 \mathrm{a}, 2 \mathrm{a}, 3 \mathrm{a}, 4 \mathrm{f}$ and $\mathrm{P} 1 \mathrm{a} / 2 \mathrm{a} / 3 \mathrm{a} / 4 \mathrm{f}$ in $d_{6}-\mathrm{DMSO}$ or CDCl_{3}. The peaks of related solvents are marked with asterisks.

D

 m j

Figure S33. ${ }^{1} \mathrm{H}$ NMR spectra of $1 \mathrm{a}, 2 \mathrm{a}, 3 \mathrm{a}, 4 \mathrm{~h}$ and $\mathrm{P} 1 \mathrm{a} / 2 \mathrm{a} / 3 \mathrm{a} / 4 \mathrm{~h}$ in $d_{6}-\mathrm{DMSO}$ or CDCl_{3}. The peaks of related solvents are marked with asterisks.

7. TGA curves of polymers

Figure S34. TGA curves of $\mathrm{P} 1 \mathrm{a} / 2 \mathrm{a} / 3 \mathrm{a}, \mathrm{P} 1 \mathrm{a} / 2 \mathrm{a} / 3 \mathrm{a} / 4 \mathrm{a}$ and $\mathrm{P} 1 \mathrm{a} / 2 \mathrm{a} / 3 \mathrm{a} / 4 \mathrm{i} / 6$.
A

1a

3a
4a

1 h

6 h

12 h

Figure S35. (A) The synthetic route of P1a/2a/3a/4a. (B) ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $\mathrm{P} 1 \mathrm{a} / 2 \mathrm{a} / 3 \mathrm{a} / 4 \mathrm{a}$ at different time intervals ($0.1 \mathrm{~h}, 0.5 \mathrm{~h}, 1 \mathrm{~h}, 2 \mathrm{~h}, 4 \mathrm{~h}, 6 \mathrm{~h}, 12 \mathrm{~h}$, and 24 h) in d_{6}-DMSO . (C) The change of $M_{\mathrm{w}}(\mathrm{P} 1 \mathrm{a} / 2 \mathrm{a} / 3 \mathrm{a} / 4 \mathrm{a})$ versus polymerization time. (D) The relative number change of 1 a and $4 a$ in the polymers versus polymerization time. (E) The process of polymerization together with functionalization indicated by cartoon.

8. Structural Characterization of P1, P2, P3 and P4

Table S6. One Pot Four-component Tandem Polyertizations of Different Monomers ${ }^{a}$

Entry	Polymers	Monomers 4	Yield (\%)	$\boldsymbol{M}_{\mathrm{n}}{ }^{\boldsymbol{b}}$	$\boldsymbol{M}_{\mathrm{w}}{ }^{\boldsymbol{b}}$	$\boldsymbol{\Xi}^{\boldsymbol{b}}$
1	P^{c}	-	71	4800	7200	1.5
2	P 2	4 a	63	11900	14800	1.24
3	P 3	4 f	85	8900	13800	1.55
4	P 4	4 h	69	15100	25100	1.67

${ }^{a}$ Conditions: experiments were carried out at room temperature in the glove box in DMF for 18 h . [1a] = [3a] = $[4 \mathrm{a}]=0.2 \mathrm{M},[2 \mathrm{a}]=0.6 \mathrm{M},[4 \mathrm{f}]=[4 \mathrm{~h}]=0.6 \mathrm{M},[\mathrm{CuBr}]=0.04 \mathrm{M},[\mathrm{TEA}]=1.0 \mathrm{M} .{ }^{b} M_{\mathrm{n}}, M_{\mathrm{w}}$ and \oplus were determined by GPC in DMF with PMMA standards. ${ }^{\text {c }}$ The polymer was synthesized at room temperature in DMF for 6 h .

Figure S36. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathrm{P} 1(\mathrm{~A}), 4 \mathrm{f}(\mathrm{B})$ and $\mathrm{P} 3(\mathrm{C})$ in d_{6}-DMSO.

Figure S37. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathrm{P} 1(\mathrm{~A}), 4 \mathrm{~h}(\mathrm{~B})$ and $\mathrm{P} 4(\mathrm{C})$ in d_{6}-DMSO.

Figure S38. ${ }^{1} \mathrm{H}$ NMR spectra of the mixture of 3 a and 4 h in d_{6} - DMSO before and after reaction.

10. GPC curves of polymers

Figure S39. GPC curve of (A) P1a/2a/3a/4a, (B) P1a/2a/3a/4b, (C) P1a/2a/3a/4c, (D) P1a/2a/3a/4d, (E) P1a/2a/3a/4e, (F) P1a/2a/3a/4f, (G) P1a/2a/3a/4g, (H) P1a/2a/3a/4h, (I) P1a/2a/3a/4i, (J) P1b/2a/3a/4a, (K) P1c/2a/3a/4a, (L) P1d/2a/3a/4a, (M) P1a/2b/3a/4a, (N) P1a/2d/3a/4a, (O) P1a/2a/3b/4a, (P) P1a/2a/3c/4a, (Q) P1a/2d/3b/4a, (R) P1a/2d/3b/4f, (S) P1a/2d/3b/4h, (T) P1a/2d/3a/4b.

Figure S40. GPC curve of (A) P1a/2a/3a/4a, (B) P1a/2a/3a/4f, (C) P1a/2a/3a/4h, (D) P1c/2a/3a/4a (Absolute molecular weights were determined by DMF SEC using a MALLS detector).

Figure S41. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{P} 1 \mathrm{a} / 2 \mathrm{a} / 3 \mathrm{a} / 4 \mathrm{i} / 5$ in d_{6}-DMSO.

