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Fig. S2. '"H NMR spectrum (600 MHz, in CDCls), molar-mass distribution, and MALDI-TOF MS spectra
(measured in linear mode using DCTB as the matrix and TFAAg as the cationization agent) of a,®-

bis[hydrodimethylsilyl]-terminated PPTS (PPTS-(H),, Myxmr = 11.0 kg mol™!, (X, pr) = 51.2, Dy = 1.13y).
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Experimental Section
Materials.

Hexamethylcyclotrisiloxane (D3, Tokyo Chemical Industry (TCI), 98%), phenyltrichlorosilane (PhSiCl;, Shin-
Etsu Chemical), 4-bromotoluene (TCI, >99.0%), magnesium (Mg, turnings, for Grignard reaction, >99.5%,
FUJIFILM Wako), triphenylsilanol (Ph;SiOH, TCI, >98.0%), trimethylsilanol (Me;SiOH, Sigma-Aldrich, 97.5%),
tert-butylimino-tri(pyrrolidino)phosphorane (fBu-P,(pyrr), Aldrich, >97.0%), benzoic acid (Kanto, >99.5%),
pyridine (FUJIFILM Wako, dehydrated, >99.5%), chlorodimethylsilane (HMe,SiCl, Aldrich, 98%),
chlorodimethyl(vinyl)silane (Me,ViSiCl, TCI, >97.0%), allyl(chloro)dimethylsilane (AllylSiMe,Cl, Sigma-
Aldrich, 97%), chloro(bromomethyl)dimethylsilane (BrCH,SiMe,Cl, TCI, >95.0%), lithium trimethylsilanolate
(Me;SiOLi, Sigma-Aldrich, 95%), sodium hydrogen carbonate (NaHCO;, FUJIFILM Wako, 99.6-100.3%),
sodium sulfate (Na,SO4, FUIJIFILM  Wako, >99.0%), trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-
propenylidene]malononitrile (DCTB, Aldrich, >98%), silver trifluoroacetate (TFAAg, FUJIFILM Wako, >97.0%),
sodium trifluoroacetate (TFANa, FUJIFILM Wako, >97.0%), hexane (FUJIFILM Wako, >97.0%), ‘dry’ diethyl
ether (Et,0, FUJIFILM Wako, super dehydrated, >99.5%), acetonitrile (MeCN, FUJIFILM Wako, >99.5%), ‘dry’
CH,Cl, (FUJIFILM Wako, super dehydrated, water content < 0.001%), ‘dry’ toluene (FUJIFILM Wako, super
dehydrated, water content < 0.001%), and ‘dry’ THF (FUJIFILM Wako, dehydrated —Super Plus—, water content
<0.001%) were used as received.

1-Hydroxy-1,1,3,3,5,5,7,7,7-nonamethyltetrasiloxane ~ (MeD4OH),8!  1,3-trimethylene-2-n-propylguanidine
(TMnPG),%? (diethylamino)ethynyldimethylsilane,S* dichlorophenyl(p-tolyl)silane,5* and chlorodimethyl(1-
naphthyl)silane (NaphSiMe,C1)$> were synthesized as previously reported.

Measurements
NMR

'H (600 MHz), 3C{'H} (150 MHz), and »Si{'H} (119 MHz) NMR spectra were recorded using a BRUKER
Biospin AVANCE III HD 600 NMR spectrometer with a CryoProbe. Chemical shifts are reported in o (ppm) and
are referenced to tetramethylsilane (0.00 ppm) for 'H, 13C, and *Si.

Size-exclusion chromatography (SEC)

Size-exclusion chromatography (SEC) was performed at 45 °C using a Waters ACQUITY Advanced Polymer
Chromatography (APC) System consisting of a p-Isocratic Solvent Manager (Model AIS), Sample Manager
pFTN (Model ASM), Column Manager-S (Model AZC), PDA TS Detector (Model ADT), and Refractive Index
(RI) Detector (Model URI) equipped with a Waters APC™ XT45 column (linear: 4.6 mm x 150 mm,; pore size:
4.5 nm; bead size: 1.7 um; exclusion limit: 5000), a Waters APC™ XT200 column (linear: 4.6 mm x 150 mm;
pore size: 20.0 nm; bead size: 2.5 pm; exclusion limit: 70 000), and a Waters APC™ XT450 column (linear: 4.6
mm X 150 mm; pore size: 45.0 nm; bead size: 2.5 pm; exclusion limit: 400 000) in toluene at a flow rate of 0.70
mL min~!. The number-average molar mass (M, sgc) and molar-mass dispersity (Py) were determined based on
a calibration curve prepared using polystyrene (PS) samples from a TSKgel® standard polystyrene oligomer kit
(Tosoh) with weight-average molecular mass (M) and (Py) values of 19.0x10° g mol~! (1.04), 9.64x10* g mol!
(1.01), 3.79%10* g mol~" (1.01), 1.74x10* g mol™" (1.01), 1.02x10* g mol™" (1.02), 5.06x103 g mol~' (1.02),
2.63x10% g mol™! (1.05), 1.01x103 g mol™! (1.16), and 5.9x10% g mol™! (1.19), along with PS samples from



Chemco Co. with M,, (Py) values of 17.0x10° g mol~! (1.06), 4.75x10* g mol~! (1.06), 9.00x103 g mol~! (1.04),
and 4.00x103 g mol~! (1.03).

High-resolution mass spectrometry (HR-MS)

High-resolution electrospray ionization (ESI) mass spectra were obtained using a Bruker micrOTOF II.

Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS)
MALDI-TOF MS of the obtained polymers was performed using a Bruker autoflex™ speed TOF/TOF system
with a Smartbeam laser (Bruker Daltonics). Spectra were acquired in the positive linear mode by accumulating
2500 to 5000 laser shots at a 19 kV acceleration voltage. External calibration was performed using Tosoh
TSKgel® standard Polystyrene TS-502 (M,, = 2.63 kg mol~!, Py = 1.05) and TS-521 (M,, = 5.06 kg mol™!, By =
1.02). In a typical measurement, a solution of the external standard was prepared by mixing TS-502 (12.5 pL, 10
mg mL™! in THF), TS-521 (12.5 pL, 10 mg mL™! in THF), the matrix (DCTB, 50 mg mL™!, 20 uL), and the
cationization agent (TFAAg, 2.2 mg mL™!, 45 uL). Solution of the samples were prepared by mixing polysiloxane
(30 mg mL™! in THF, 10 pL), the matrix (DCTB, 50 mg mL™!, 20 uL), and the cationization agent (TFANa or
TFAAg, 2.2 mg mL™!, 45 uL). Approximately 10 uL of the obtained mixture was spotted on a ground steel target

plate and dried prior to measurements.

Thermogravimetric analyses (TGA)
TGA measurements of the synthesized polysiloxanes were conducted using a HITACHI STA7200RV. The
samples (~5 mg) were placed in aluminum pans for each measurement. The samples were heated from 25 °C to

540 °C at a heating rate of 10 °C min™! under a nitrogen flow of 200 mL min!.

Differential scanning calorimetry (DSC)

DSC measurements were conducted using a Hitachi Hitech-Science DSC 7020. The samples (~5 mg) were
placed in aluminum pans with a lid for each measurement. The samples were heated to 180-250 °C, cooled to
—150 °C, heated again to 180-250 °C, and cooled again to 30 °C under a nitrogen flow of 50 mL min~!. The

heating and cooling rates were 10 °C min™'.

Synthesis of 1,3,5-triphenyl-1,3,5-tri-p-tolylcyclotrisiloxane (PT3)3%6

( 1\
Eb NaHCOj3 (3 equiv) Q o é _@ ; O« 5@ @ O
Pyridine (3 equiv) _Q—S‘i/ \§i—® g IS §I< >
Cl—si—Cl —— ~ """ o 5 8 o9 o 8
Dry toluene Si :Sl,/ Sl,,/
PT3 cis-PT3 trans-PT3
N~ J

NaHCO; (4.75 g, 56.6 mmol) was gradually added to a solution of dichloro(pheny)-p-tolylsilane (15.1 g, 56.6
mmol) and pyridine (4.46 mL, 56.6 mmol) in dry toluene (57 mL) at ambient temperature (22-25 °C) under an

argon atmosphere. The reaction mixture was stirred for 3 days. Then, the reaction mixture was diluted with



toluene and filtered through a filter paper. The filtrate was washed with water three times. The separated organic
phase was dried over Na,SO,, filtered through a filter paper, and the filtrate was concentrated under reduced
pressure. The obtained white solid was washed with hexane/diethyl ether = 9/1 (v/v) to dissolve and remove
higher oligomers of (pheny)-p-tolylsiloxanes, which mainly consisted of 1,3,5,7-tetramethyl-1,3,5,7-tetra-p-
tolylcyclotetrasiloxane (PT4). The remaining solid was dried in vacuo to obtain PT3 as a white solid; yield: 3.89 g
(4.58 mmol, 32.3%). The obtained PT3 was a mixture of cis- and trans isomers (cis/trans = 1/3 (n/n)).

'H NMR (600 MHz, CDCl3): 6. 7.62-7.55 (m, 6H, oo-position of the phenyl group), 7.53-7.45 (m, 6H, oo-
position of the tolyl group), 7.42-7.35 (m, 3H, p-position of the phenyl group), 7.31-7.24 (m, 6H, m-position of
the phenyl group), 7.14-7.08 (m, 6H, m-position of the tolyl group), 2.33g, 2.334, 2.32 (three s peaks, 9H, -CHj).
BC{'H} NMR (151 MHz, CDCI3): 6 140.31 (tolyl 4-position), 134.44 (tolyl 2,6-positions), 134.31 (phenyl 1-
position), 134.37 (phenyl 2,6-positions), 130.59 (tolyl 1-position), 130.22 (phenyl 4-position), 128.55 (tolyl 3,5-
positions), 127.68 (phenyl 3,5-positions), 21.63 (-CH3). Si{'H} NMR (119 MHz, CDCl;): § —33.71 (cis- and
trans-PT3). HRMS (ESI in 2-propanol) calcd. for [C39H3605Si13Na]” [M+Na]* 659.1864, found 659.1864.

Isolation of 1,3,5 7-tetraphenyl—1 3,5,7-tetra-p-tolylcyclotrisiloxane (PT4)

urd U afo  algo
O, % O Qg 7D o ,9@ o

@@@ @os. @OS. @@@ dos.

PT4 cis,cis,cis-PT4 cis,cis,trans-PT4 cis, trans, cis-PT4 trans, trans, trans-PT4

O—Q’
g m

PT4 was isolated from the crude reaction mixture in the synthesis of PT3. The crude product was a mixture of
PT3, PT4, and other oligomers of phenyl(p-tolyl)siloxane. The extract of the crude reaction mixture in
Et,0O/hexane = 1/9 (v/v) contained PT4 and a small amounts of PT3 and other oligomers. This fraction was further
extracted with hexane. The fraction insoluble in hexane was a white solid, which was almost pure PT4 containing

a slight amount of PT3.

'H NMR (600 MHz, CDCl5): 6. 7.47-7.41 (m, 6H, o-position of the phenyl group), 7.37-7.32 (m, 6H, o-
position of the tolyl group), 7.33-7.28 (m, 3H, p-position of the phenyl group), 7.18-7.11 (m, 6H, m-position of
the phenyl group), 7.01-6.95 (m, 6H, m -position of the tolyl group), 2.34-2.292 (2.31y, 2.315, 2.31,, 2.30g, 2.30;)
(multiple s peaks, 9H, -CH3). BC{'H} NMR (151 MHz, CDCls): § 139.79+139.76 (tolyl 4-position), 134.87
(phenyl 1-position), 134.44 (phenyl 2,6-positions), 134.38+134.36+134.34 (tolyl 2,6-positions), 131.08 (tolyl 1-
position), 129.79+129.75 (phenyl 4-position), 128.35+128.32 (tolyl 3,5-positions), 127.49+127.47 (phenyl 3,5-
positions), 21.58 (-CHj). ¢ —42.85 (cis,cis,cis-, cis,cis,trans-, cis,trans,cis-, and trans,trans,trans-PT4 are

overlapping). HRMS (ESI in 2-propanol) calcd. for [Cs;H4sNO4SizsNa]t [M+Na]* 871.2522 found 871.2526.



Polymerization of PT3

Q E\NH R'
|
O8O b
1
O O R3 1 1
HO + " PG , ) )
(Initiator) (Catalyst) HO*{Si—O+H (E"d-cappmg) R2—Si—oJ[Si—o+Si—R2
_ i AV agent Ls b
(1 equiv) — <n> — e R <R
T3 Solvent One-pot
" Room ' . end capping
( onomer) temperature Silanol-terminated End-capped PPTS
(X equiv) PPTS

A typical polymerization of PT3 was conducted as follows. PT3 (120 mg, 188 umol), dry THF (706 uL), and a
THF solution of HO (1/99 (v/v), 33.9 uL, 18.8 umol) were added to a vial with a screw cap under an argon
atmosphere. A toluene solution of TMnPG (100 mg mL™!, 10.6 pL, 7.54 pmol) was added to initiate the
polymerization at ambient temperature (~25 °C). After 21 h of stirring, pyridine (10.0 uL, 124 umol, 6.6 equiv) as
a hydrochloric acid scavenger and ViSiMe,Cl (10.2 uL, 73.9 umol, 3.9 equiv) as an end-capping agent were
added to the mixture. The end-capping reaction was continued for 20 h at ambient temperature. The reaction
mixture was dropped directly into MeCN (4 mL) to reprecipitate the generated PPTS. The precipitate was further
washed with MeCN (4 mL) three times. The residue was dried in vacuo to obtain a,m-bis[dimethyl(vinyl)silyl]-
terminated PPTS (46.7 mg, 37.5%, M,nvr = 6.58 kg mol™!, (X;) = 30.1, Dy = 1.11,) as a white solid. The 'H
NMR spectrum of the products is shown in Fig. S3.

The polymerizations using other solvents and other end-capping agents (Table 1) were conducted using similar

procedures.
The polymerizations initiated by silanols (Table 2 and 3) were conducted with similar procedures using silanols,
such as MeD4OH, Ph;SiOH, Me;SiOH, and PDMS-(OH), instead of the THF solution of H,O and various

chlorosilanes as end-capping agents.

Polymerization of PT3 initiated by lithium trimethylsilanolate (Me;SiOLi) (Table 2, entry 4)

R1
R?-8i=Cl
RS R!
O
@;s« 7O o) —leof Lol
—sli—oO Li 3 —sh—o-fs—o{—u (Endaczﬁ?ng) —SII—O'{SI—O+%I—R2
(}nitiator) ! Rl 0nge pot o
(1 equiv) Q D;y THF end capping
PT3 temp‘;‘r’;‘:ure Propagating End-capped PPTS
(Monomer) PPTS
(X equiv)

PT3 (120 mg, 188 pmol) and dry THF (572 pL) were added to a vial with a screw cap under an argon
atmosphere. A THF solution of Me;SiOLi (13.6 mg mL™!, 133 pL, 18.8 umol) was added to initiate the
polymerization at ambient temperature (22-25 °C). After 21 days (504 h) of stirring, pyridine (10.0 puL, 124 umol,
6.6 equiv) as a hydrochloric acid scavenger and ViSiMe,Cl (10.2 uL, 73.9 umol, 3.9 equiv) as an end-capping
agent were added to the mixture. The end-capping reaction was continued for 20 h at ambient temperature. The

product was analyzed without further purification.



Synthesis of block copolymers of PPTS and PDMS (Table 3)
Polymerization of PT3 using PDMS-(OH), as a macroinitiator (Table 3, entries 1 and 2)

\ \
/ + HoJ[sl— + RS / R?-Si— o s|—R2
M (66 eauiv) (105 equ) <m> <m>
PDMS-(OH), -
[
(1 equiv) One-pot
Dry THF end capping
PT3 (20 equiv) Room temperature PPTS-b-PDMS-b-PPTS

[PT3] = 0.27 mol L

A toluene solution of TMnPG (100 mg mL~!, 6.7 uL, 4.7 umol, 0.40 equiv) was added to a solution of PT3
(151 mg, 236 pumol, 20 equiv) and PDMS-(OH), (68.9 mg, 11.8 umol, M,xur = 5.79 kg mol!, (X, p) = 77.9, 1.0
equiv) in dry THF (741 pL) in a glass vial under an argon atmosphere to initiate the polymerization at ambient
temperature (24-26 °C). During the polymerization, an aliquot of the reaction mixture (~70 uL) was taken and
mixed with a small amount of benzoic acid. The aliquot was analyzed using '"H NMR to determine the conversion
of the monomer and using SEC to analyze the molar-mass distribution of the crude product. After 16.3 h, dry
pyridine (10.0 pL, 124 umol, 10.5 equiv) was added as a hydrochloric acid scavenger, and AllylSiMe,CI (10.0 pL,
8.9 mg, 66 umol, 5.6 equiv) was added to end-cap the propagating polymers. The end-capping reaction was
continued for more than 12 h at room temperature to ensure quantitative end-capping. The reaction mixture was
dropped directly into MeCN (4 mL) to reprecipitate the generated PPTS. The precipitate was further washed with
MeCN (4 mL) three times. The residue was dried in vacuo to obtain a,m-bis[allyldimethylsilyl]-terminated PPTS-
b-PDMS-b-PPTS (131.4 mg, 58.5% yield, M,nvr = 16.9 kg mol™!, (X, p/X,p1) = 77.9/51.2, By = 1.15,4) as a white
solid.

The polymerization shown in Table 3, entry 2 was coducted using PDMS-(OH), (125 mg, 11.8 pmol, M, nmr =
10.6 kg mol!, (X, p) = 142.9) and NaphSiMe,Cl in a similar manner.

The "H NMR spectra of the products are shown in Fig. S10 and S11.



Two-stage copolymerizations of D3 and PT3 (Table 3, entry 3)

Q raw,
Yoy O\“/\/ @ 2 ‘S"C' O © b ©

o0 + HO TMnPG sl— s.— +s|
(4.0 equiv) 117equw)

A\ (1 equiv) (0.40 equiv) PT3 ( 20 equiv)
D3 —:> ;= One-pot g
(25 equiv) i
THF end capping

[D3] = 0.27 mol L™ PPTS-b-PDMS-b-PPTS

Room Temperature

A THF solution of TMnPG (100 mg mL~!, 8.0 uL, 5.7 umol, 0.40 equiv) was added to a solution of D3 (78.8
mg, 354 pmol, 25 equiv) and a THF solution of H,O (1/99 (v/v), 25.5 uL, 14.2 umol, 1.0 equiv) in dry THF (1.19
mL) in a glass vial under an argon atmosphere to initiate the polymerization at room temperature (24-26 °C).
During the polymerization, an aliquot of the reaction mixture (~40 pL) was taken and mixed with a small amount
of benzoic acid. The aliquot was analyzed using 'H NMR to determine the conversion of the monomer and using
SEC to analyze the molar-mass distribution of the crude product. During the first stage of the polymerization, 25
wt% of the reaction mixture was removed to check the progress of the polymerization. After 63.3 h, PT3 (135 mg,
212 pmol, 20 equiv) in dry THF (589 mg, 663 pL) was added to the reaction mixture. The second stage of the
polymerization was continued for 29.9 h. Dry pyridine (10.0 pL, 124 pmol, 11.7 equiv) was added as a
hydrochloric acid scavenger, and NaphSiMe,Cl (9.4 mg, 42 pmol, 4.0 equiv) was added to end-cap the
propagating polymers. The end-capping reaction was allowed to proceed for 15 h at room temperature to ensure
quantitative end-capping. The reaction mixture was then directly reprecipitated into MeCN (4 mL). The
precipitate was further washed with MeCN (4 mL) three times. The residue was dried in vacuo to obtain o,w-
bis[dimethyl(1-naphthyl)silyl]-terminated triblock PPTS-6-PDMS-b-PPTS (120 mg, 60.5% yield, My nmr = 15.7
kg mol™! (outer block: (X,,p/Xn,pTlouter = 25.35/1.15; inner block: (X,p)inmer = 64.7), Dy = 1.104) as a white solid.
The 'H NMR spectrum of the product is shown in Fig. S11 (the sampling was conducted four times in this

polymerization).



Determination of the number-average degree of polymerization ({(X,)) and M,xwr of the
polysiloxane using 'H NMR spectroscopy
The M, (M,,nmr) values of the synthesized polysiloxanes were determined using 'H NMR spectroscopy.

The index ‘Y’ of (X, y) is defined as:
PT = phenyl(p-tolyl)siloxane units;

D = dimethylsiloxane units;

The integral values of peak x in the 'H NMR spectra are written as 1.

For symmetrically terminated PPTS (Table 1): The peaks in Fig. 2 and S1-5 were used for the calculation.

Xapr? = (Lae/3)/ e/ 12))

Mg = 212.324, p1) + Micrminal
(0,w-bis[allyldimethylsilyl] groups: Mieimina = 214.46, a,0-bis[dimethyl(vinyl)silyl] groups: Miemmina = 186.40,
a,0-bis(dimethylsilyl) groups: Mieimina = 134.33, a,0-bis[(bromomethyl)dimethylsilyl] groups: Miemina = 320.17,
a,0-bis[dimethyl(ethynyl)silyl] groups: Miermina = 182.37)

For PPTS-(OH), (Table 1): The peaks in Fig. S1 were used for the calculation.
<Xn,PT) = (Iafe / 3) / (Icfe / 18)
Mn,NMR = 212.32<Xn,p'r> +18.016

For asymmetrically terminated PPTS (Table 2): The peaks in Fig. S6—S8 were used for the calculation.
(0~(1,1,3,3,5,5,7,7,7-nonamethyltetrasiloxy))-w-hydrodimethylsilyl-terminated PPTS, Miemina = 370.81, Fig. S6)

Kopr) = oo/ 3) 1 (Us) 6 + (Ip/6 + Iy/6 + Iy/6 + I/9)) / 5)
MmNMR = 212-32(Xn,PT) + Merminal

(a-triphenylsilyl-w-hydrodimethylsilyl-terminated PPTS, Mieina = 334.57, Fig. S7)
<Xn,PT) = (Iafe/?’) / ((Id+ld’)/6))
MmNMR = 212-32(Xn,PT) + Merminal

(a-trimethylsilyl-o-hydrodimethylsilyl-terminated PPTS, Meimina = 148.35, Fig. S8)
<Xn,PT) =2 (Iafe / Ie)
MmNMR = 212-32(Xn,PT) + Merminal

For PPTS-b-PDMS-b-PPTS with a,m-bis(allyldimethylsilyl) groups (Table 3, entry 1): The peaks in Fig. S9-S11
were used for the calculation.

Xopr) = {ToctTn)/3} / (I/ 12)



Xop) = (Ton /6) / It/ 12)
MmNMR = 74154(Xn,D) + 212.32<Xn’p'r> + Merminal =

(0,w-bis(allyldimethylsilyl) groups: Miemina = 214.46, o,w-bis(dimethyl(1-naphthyl)silyl) groups: Miemina =

386.64)



TH NMR spectra and molar-mass distributions of the products
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Fig. S1. '"H NMR spectrum (600 MHz, in CDCl;), molar-mass distribution, and MALDI-TOF MS spectra
(measured in linear mode using DCTB as the matrix and TFAAg as the cationization agent) of o,®-
bissilanol-terminated PPTS (PPTS-(OH),, M, xmr = 8.49 kg mol™!, (X, pp) = 39.9, Dy = 1.125). (Integral values, /.
.=18.0,1,.=119.8373)

The MALDI-TOF MS spectrum showed two series of molecular ion peaks assigned to PPTS-(OH), and its

dimer possibly generated by the elimination of 2 benzene molecules. The latter was generated on the ionization of

the sample.
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(Integral values, Iy=12.0, I,.. = 153.5673)

In the MALDI-TOF MS spectrum, PPTS-(H), was observed as that of which Si-H bonds were converted to Si-

OH bonds on the ionization.
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In the MALDI-TOF MS spectrum, PPTS-(CCH), was detected as a dimer with one additional oxygen atom. The

original PPTS-(CCH), possibly dimerized and connected with an oxygen atom to form a furan ring on the

ionization.
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(measured in linear mode using DCTB as the matrix and TFAAg as the cationization agent) of a-
(1,1,3,3,5,5,7,7,7-nonamethyltetrasiloxy)-w-hydrodimethylsilyl-terminated PPTS (M, xmr = 6.32 kg mol ™!, (X, pr)
=28.0, Dy = 1.11y). (Integral values, Iy= 6.2747, Iy = 6.0559, I, = 5.5905, Iy, = 5.6981, [; = 8.3352)

In the MALDI-TOF MS measurement, the terminal Si-H bonds were converted to Si-OH bonds on the
ionization. The spectrum revealed that the product contains PPTS with one more and one less dimethylsiloxy unit
(MeD5-PPTS-OH and MeD3-PPTS-OH, respectively), which indicated that the intermolecular transfer of a

terminal hydroxysiyl group (Scheme S1c) occurred between MeD4OH in the initial stages of the polymerization.
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(measured in linear mode using DCTB as the matrix and TFAAg as the cationization agent) of a-
triphenylsilyl-w-hydrodimethylsilyl-terminated PPTS (M,xvr = 5.326 kg mol™!, (X,p) = 23.2, Dy = 1.114).
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In the MALDI-TOF MS measurement, the terminal Si-H bonds were converted to Si-OH bonds on ionization.
The spectrum revealed that the product contains a small smount of PPTS with two dimethyl(hydro)siloxy groups,
which should be generated by the polymerization initiated by a trace amount of water generated from a

condensation of Ph3;SiOH (Scheme S1d).
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Fig. S8. '"H NMR spectrum (600 MHz, in CDCl3), molar-mass distribution, and MALDI-TOF MS spectra
(measured in linear mode using DCTB as the matrix and TFAAg as the cationization agent) of a-
trimethylsilyl-o-hydrodimethylsilyl-terminated PPTS (M,nmr = 11.1 kg mol™!, (X,pp) = 51.4, Dy = 1.18;).
(Integral values, 1,.. = 154.1866, Ir=8.3019, Iy = 6.4654)

In the MALDI-TOF MS measurement, the terminal Si-H bonds were converted to Si-OH bonds. The ratio of
the desired PPTS (Me;Si-PPTS-SiMe,H) and the undesired PPTS (PPTS-(SiMe;H),) could not be determined

from the observed spectrum, because the peaks due to the two polymers were overlapping.
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a macroinitiator (Table 3, entry 1, M, xmr = 16.9 kg mol ™!, (X, p/Xopr) = 77.9/51.2, Dy = 1.15,). (Integral values, Iy= 12.0, I, «+1x , = 135.9821, I, =446.8303)
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Fig. S10. "H NMR spectrum (600 MHz in CDCl;) and molar-mass distribution of the product of the polymerization of PT3 using PDMS-(OH), (X, p} = 142.9, Dy; = 1.16,)
as a macroinitiator (Table 3, entry 2, M, nur = 18.9 kg mol™!, (X, p/X, pr) = 143/37.4, Dy = 1.173). (Integral values, Iy= 12.0, I, o+, = 160.9674, I,., = 405.0483)
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Fig. S11. '"H NMR spectrum (600 MHz in CDCl;) and molar-mass distribution of the product of the two-stage copolymerization of D3 and PT3 using water as the initiator
and TMnPG as the catalyst (Table 3, entry 3, M, xnmr = 16.4 kg mol ™!, (X, /X, pr) = 67.5/53.7, Dy = 1.104). (Integral values, Iy= 12.0, I, .+, = 111.1666, I, = 847.4166)
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Fig. S12. Photographs of samples A (PPTS-(Allyl),), B (PPTS-(Allyl),), C (PPTS-b-PDMS-b-PPTS), and D (PPTS-b6-PDMS-b-PPTS) on aluminium pans during TGA
(under a N, flow (200 mL min™"), heating rate = 10 °C min™"). The photographs show the correlation between the appearance of the samples and the transitions to a liquid-

crystalline state (7.) and the exothermic transition temperature (7.y,) observed in DSC on the first heating.
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Scheme S1. Possible and plausible elementary reactions in the polymerization of cyclotrisiloxanes using water or

a silanol as the initiator and a strong organic base as the catalyst.5’



Determination of the conversion of PT3 to PPTS and PT4 in the polymerizations of PT3.
The conversion of PT3 to PPTS and PT4 was calculated by followng equations.
Conv(to PPTS) = Ipprs/ (Ipr3 + Iprs + Ipprs)
Conv(to PT4) = Ipr4/ (Ipr3 + Iprs + Ipprs)

The values of Ipr3, Iprs, and Ipprs are the integral values between 2.345—2.32; ppm, 2.32,-2.29¢ ppm, and 2.29,—
2.10 ppm, respectively.

PT3

Fig. S13. 'H NMR spectra (600 MHz, in CDCl3) of the reaction mixture in the polymerization of PT3 using water
as an initiator and TMnPG as a catalyst (black). The spectra of PT3, PT4, and PPTS-(OH); are also shown.



Progress of the polymerization of PT3 at —20 °C (Table 1, entry 2).
The polymerization almost did not proceed even after 21 h of reaction due to the low solubility of PT3 and the
generated oligomers in THF at a low temperature. The samples obtained at 1.5 h and 21 h showed similar 'H

NMR spectra as shown in Fig. S14.

PT3

PT3

Toluene from
the solution of TMNnPG

1.5'h
21h

24 23 22
5 /ppm

Fig. S14. "H NMR spectra (600 MHz, in CDCls) of PT3 (orange) and the reaction mixture in the polymerization
of PT3 using water as an initiator and TMnPG as a catalyst at =20 °C (Table 1, entry 2; red (obtained at 1.5 h )
and black (obtained at 21 h)).



Progress of the polymerization of PT3 catalyzed by tBuP(pyrr) (Table 1, entry 7).

PPTS

Crude products
obtained using
tBuP (pyrr);

TMnPG

T
2.4

21
5 /ppm

Fig. S15. 'H NMR spectra (600 MHz, in CDCl;) of the crude products obtained in the polymerization of PT3
catalyzed by rBuP;(pyrr) (black, 5.2 h, conv. to PPTS = 26.2% and PT4 = 45.4%) and TMnPG (red, 24 h, conv. to

PPTS = 76.3% and PT4 = 18.1%) with [PT3]o/[H,O]¢/[catalyst]o = 10/1/0.40 and [PT3], = 0.27 mol™' at room
temperature.

PT3 + PT4
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Fig. S16. SEC traces of the crude products obtained in the polymerization of PT3 catalyzed by BuP;(pyrr) (black,

5.2 h, conv. to PPTS = 26.2% and PT4 = 45.4%) and TMnPG (red, 24 h, conv. to PPTS = 76.3% and PT4 =
18.1%) with [PT3]o/[H,O]o/[catalyst]y = 10/1/0.40 and [PT3]o = 0.27 mol ™! at room temperature.



Progress of the polymerization of PT3 initiated by Me;SiOLi (Table 2, entry 4).

The polymerization was conducted as decribed in the section of ‘Polymerization of PT3 initiated by lithium
trimethylsilanolate (Me3;SiOLi)’. After 21 days (504 h) from the initiation, we observed the 'H NMR spectrum of
the crude product mixed with excess amounts of chlorodimethyl(vinyl)silane and pyridine. The conversion of PT3
to PPTS reached 26.2%, while that to PT4 was 0% as determined from the "H NMR spectrum of the crude product
shown in the following figure (Fig. S17). The (X, pr) and M, xmr Were determined to be 10.7 and 2.49 kg mol ™.
The Py, of the crude product was not calculated, because the SEC trace of the polymeric product was overlapping

with the signal due to PT3 (Fig. S18).

|
Derivatives of //—Slu—C|

THF — TMS
Fla PPTS
\
| |
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Table 2, Terminal
entry 4 ‘ Oligomers structures
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Fig. S17. "H NMR spectra (600 MHz, in CDCl;) of (top) PPTS-(Vi), (Mynmr = 6.58 kg mol ™, (X, pr) = 30.1, Py
= 1.11;) and (bottom) the reaction mixture in the polymerization of PT3 using lithium trimethylsilanolate as an
initiator and chlorodimethyl(vinyl)silane as an end-capping agent (Table 2, entry 4). The siganal due to PT4 was

not observed.
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Fig. S18. Molar-mass distribution of the crude product obtained at 21 days (504 h) from the initiation in the ROP
of PT3 using lithium trimethylsilanolate (Me;SiOLi) as the initiator and a [PT3]¢/[Me;SiOLi], ratio of 10/1 in
THF at room temperature (Table 2, entry 4; (X, pr) = 10.7).



Change in molar-mass distributions of PPTS before and after the reprecipitation in MeCN.
These data are measured only for the polymerizations shown in Table 1, entry 5; Table 2 entry 3; and Table 3,

entry 3. Unlike the result of the polymerization shown in Table 1, entry 1 and Fig 1, the molar-mass distributions

of the three polymers just slightly changed as shown in Fig. S17. The amounts of PPTS with relative molar mass

of up to 4000 were reduced by the reprecipitation, while that of PPTS-b-PDMS-b-PPTS with relative molar mass
of up to 6000 was reduced.
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Fig. S19. Change in the molar-mass distributions of the PPTS and PPTS-b-PDMS-b-PPTS before and after

reprecipitation in MeCN. (top) PPTS shown in Table 1, entry 5; (middle) PPTS shown in Table 2, entry 1; and
(bottom) PPTS-H-PDMS-b-PPTS shown in Table 3, entry 2.



Thermogravimetric analysis of PPTS using alumina pans
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Fig. S20. Thermogravimetric results for PPTS, PPTS-5-PDMS-H-PPTS, and PDMS in aluminium and
alumina pans. Samples A (PPTS-(Allyl),, Mynmr = 7.17 kg mol!, Dy = 1.085), B (PPTS-(Allyl),, M, nmr
= 13.6 kg mol™!, By = 1.15;; Table 1, entry 4), C (PPTS-6-PDMS-b-PPTS, (X, p/X,pr) = 77.9/51.2; Table
3, entry 1), D (PPTS-5-PDMS-b-PPTS, (X, p/Xnpr? = 143/37.4; Table 3, entry 2), E (o,w-bis(silanol)-
terminated PPTS, M,xur = 8.75 kg mol™!, Dy = 1.124; Fig. S1), and F (a,w-bis[dimethyl(vinyl)silyl]-
terminated PDMS, M, nmr = 6.22 kg mol!, (X, p) = 81.4, Dy = 1.094).
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