Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2021

Gradient Copolymer Prepared from

Alternating Ring-Opening Metathesis of Three Monomers

Francis O. Boadi and Nicole S. Sampson*

Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States

*To whom correspondence should be addressed: Nicole.sampson@stonybrook.edu

Contents

Table S1. Molar feed ratios used to monitor kinetics of 1a-alt-2 and 1b-alt-2 gradient copolymerization.3
Table S2. Parameters determined for 1a-alt-2 and 1b-alt-2 in gradient copolymerization of 1a, 1b, and 2.
Table S3 . mean sequence length (μ) of each monomer and probability of finding x sequence $N_{1a-2}(x)$ and $N_{1b-2}(x)$
Fig. S1 ¹ H NMR (CDCl ₃) spectrum of monomer 1a with side chain protons assigned
Fig. S2 ¹ H NMR spectrum (top) with side chain protons assigned and ¹³ C NMR spectrum (bottom) of monomer 1b
Fig. S3 ¹ H NMR (CDCl ₃) spectrum of precipitated poly(1a-alt-2) ₂₀ , P1
Fig. S4 ¹ H NMR (CDCl ₃) spectrum of precipitated poly(1b- <i>alt</i> -2) ₂₀ , P2
Fig. S5 ¹ H NMR (CDCl ₃) spectrum of precipitated diblock copolymer, P3
Fig. S6 ¹ H NMR (CDCl ₃) spectrum of precipitated hexablock copolymer, P4
Fig. S7 ¹ H NMR (CDCl ₃) spectrum of precipitated gradient copolymer, P5
Fig. S8 GPC chromatograms of copolymers P1-P5
Fig. S9 Multi-step synthesis of hexablock copolymer P4 prepared by sequential addition
Fig. S10 ROM of 1a shows second-order kinetics with half-life of 21 min
Fig. S11 ROM of 1b shows second-order kinetics with half-life of 59 min
Fig. S12 ¹ H NMR showing the kinetics of ROM reactivity of 1a with 3 17
Fig. S13 ¹ H NMR showing the kinetics of ROM reactivity of 1b with 3
Fig. S14 Data from Table S2 fit to the Jaacks model (ref. 3). Reactivity ratios are $r_{1a\&2} = 2.25$, $r_{1b\&2} = 0.4419$
Fig. S15 Sequence-length distributions of the 1a - <i>alt</i> - 2 / 1b - <i>alt</i> - 2 copolymer, $f_1 = 0.5$. x is the number of sequence-length of 1a - <i>alt</i> - 2 / 1b - <i>alt</i> - 2 unit. (N ₁) x and (N ₂)x is the probability of 1a - <i>alt</i> - 2 and 1b - <i>alt</i> - 2 unit in 1a - <i>alt</i> - 2 / 1b - <i>alt</i> - 2 copolymer, respectively
Fig. S16 Gradient microstructure of copolymer P5 shown by ¹ H-NMR (A) and the distribution plot (B) 21

Fig. S17 ¹ H NMR (CDCl ₃) spectrum of poly(1a - <i>alt</i> - 2) ₁₀ -grad-(1b - <i>alt</i> - 2) ₁₀ precipitated at 20 min during reaction (thus DP = 10)
Fig. S18 ¹ H NMR (CDCl ₃) spectrum of poly(1a- alt -2) ₁₀ -grad-(1b- alt -2) ₁₀ precipitated at 50 min during reaction (thus DP = 14)
Fig. S19 . ¹ H NMR (CDCl ₃) spectrum of poly($1a$ - alt - 2) ₁₀ -grad-($1b$ - alt - 2) ₁₀ precipitated at 90 min during reaction (thus DP = 16)
Fig. S20 . ¹ H NMR (CDCl ₃) spectrum of poly($1a$ - <i>alt</i> - 2) ₁₀ -grad-($1b$ - <i>alt</i> - 2) ₁₀ precipitated at 120 min during reaction (thus DP = 18)
Fig. S21. ¹ H NMR (CDCl ₃) spectrum of poly($1a-alt-2$) ₁₀ -grad-($1b-alt-2$) ₁₀ precipitated at 180 min during reaction (thus DP = 20)
Fig. S22 . ¹ H NMR (CDCl ₃) spectrum of poly($1a$ - alt - 2) ₁₀ -grad-($1b$ - alt - 2) ₁₀ at 10 min during reaction (thus DP = 5)
Fig. S23. Differential scanning calorimetry of polymers P1-P5
Fig. S24. Thermogravimetric (TGA, left) and derivative thermogravimetry (DTG, right) analysis of polymers P1-P5
Fig. S26. Representative SEM images of polymer films prepared from (A) chloroform, (B) 2-propanol 31
Fig. S27. Intensity distribution dynamic light scattering profiles of polymers P1-P5 in chloroform 32
Fig. S28. Intensity distribution dynamic light scattering profiles of polymers P1-P5 in 2-propanol 32
References

1 /					
Entry	Feed ratio	1a	1b	2	G3
	1a /1b	mmol/ mg/ volume (μL)	mmol/mg/volume	mmol/ μL	mmol/ μL
			(μL)		
1	0.9/0.1	0.185/35.8/138	0.0206/ 5.5/ 12.1	0.206 / 20	0.0103/
					36.3
2	0.8/ 0.2	0.165 / 31.9 / 123	0.0412 / 11.0 / 24.2	0.206 / 20	
3	0.7/ 0.3	0.144 / 27.8 / 107	0.0618 / 16.5 / 36.4	0.206 / 20	11
4	0.6/ 0.4	0.124 / 23.9 / 92	0.0824 / 22.0 / 48.5	0.206 / 20	11
5	0.5/0.5	0.103 / 19.9 / 77	0.103 / 27.5 / 60.6	0.206/20	11
6	0.4/ 0.6	0.0824 / 15.9 / 61	0.124 / 33.0 / 72.8	0.206 / 20	11
7	0.3/0.7	0.0618 / 11.9 / 46	0.144 / 38.5 / 85	0.206 / 20	11
8	0.2/0.8	0.0412 / 7.96 / 31	0.165 / 44.1 / 97	0.206 / 20	11
9	0.1/ 0.9	0.0206 / 3.98 / 15.3	0.185 / 49.4 / 109	0.206 / 20	11

Table S1. Molar feed ratios used to monitor kinetics of 1a-alt-2 and 1b-alt-2 gradientcopolymerization.

ID , and	. . .										
entry	F_{1a}^{a}	<i>F</i> _{1a-2} ^b	<i>F</i> _{1b-2} ^b	Z _{1a} ^c	Z _{1b} ^c	Z ^d	F ^e	G ^f	H ^g	η ^h	ξ ⁱ
1	0.9	0.961	0.039	0.766	0.392	2.918	24.64	8.099	2.892	2.642	0.944
2	0.8	0.919	0.081	0.658	0.387	2.192	11.34	4.719	2.360	1.863	0.932
3	0.7	0.894	0.106	0.585	0.332	2.179	8.433	3.410	1.775	1.751	0.911
4	0.6	0.842	0.158	0.5	0.271	2.192	5.329	1.974	1.108	1.541	0.865
5	0.5	0.744	0.256	0.753	0.518	1.916	2.906	0.995	0.792	1.031	0.821
6	0.4	0.656	0.344	0.532	0.342	1.814	1.906	0.500	0.579	0.664	0.770
7	0.3	0.412	0.588	0.791	0.399	3.074	0.701	-0.100	0.074	- 0.394	0.300
8	0.2	0.258	0.742	0.813	0.458	2.737	0.348	-0.238	0.046	- 1.086	0.211
9	0.1	0.055	0.945	0.816	0.51	2.373	0.058	-0.397	0.010	- 2.165	0.056

Table S2. Parameters determined for 1a-alt-2 and 1b-alt-2 in gradient copolymerization of 1a, 1b, and 2.

^a Molar feed ratio of **1a**. ^bMolar fraction of **1a-2** in copolymer determined by ¹H NMR spectroscopy. ^cMonomer conversion determined by ¹H NMR spectroscopy, ^dZ = log(1– ζ_{1a})/log (1– ζ_{1b}), ^eF = F_{1a}/F_{1b} , ^fG' = (F-1)/Z where, ^gH' = F/Z², ^h η = G'/(H'+ α) where α = (H'max H'min)^{0.5}, ⁱ ξ = H'/(H'+ α).

Table S3. mean sequence length (μ) of each monomer and probability of finding *x* sequence $N_{1a-2}(x)$ and $N_{1b-2}(x)$

entry	\mathbf{f}_{1a}	f_{1b}	Mean sequence	Mean sequence	N 1a-2 (1):	N 1a-2 (2) :	N _{1a-2} (3):
			length μ _{1a-2}	length µ _{1b-2}	N _{1b-2} (1)	N _{1b-2} (2)	N _{1b-2} (3)
1	0.9	0.1	20.5	1.04	nd ^a	nd	nd
2	0.8	0.2	9.68	1.09	nd	nd	nd
3	0.7	0.3	6.06	1.15	nd	nd	nd
4	0.6	0.4	4.26	1.25	nd	nd	nd
5	0.5	0.5	3.17	1.37	.32 / .74	.21 / .20	.15 / .05
6	0.4	0.6	2.45	1.56	nd	nd	nd
7	0.3	0.7	1.93	1.86	.52 / .54	.25 / .25	.12 / .11
8	0.2	0.8	1.54	2.48	nd	nd	nd
9	0.1	0.9	1.24	4.33	nd	nd	nd

^a"nd" stands for not determined.

$$\mu_{1a-2} = 1 + r_{1a-2} (f_{1a} / f_{1b}), \ \mu_{1b-2} = 1 + r_{1b-2} (f_{1a} / f_{1b})$$

$$N_{1a-2}(x) = P_{11}^{(x-1)} \cdot (1 - P_{11}); N_{1b-2}(x) = P_{22}^{(x-1)} \cdot (1 - P_{22})$$

$$P_{11} = r_{1a-2} / (r_{1a-2} + (f_{1b} / f_{1a}); P_{22} = r_{1b-2} / (r_{1b-2} + (f_{1a} / f_{1b}),$$

Fig. S1 1 H NMR (CDCl₃) spectrum of monomer **1a** with side chain protons assigned.

Fig. S2 ¹H NMR spectrum (top) with side chain protons assigned and ¹³C NMR spectrum (bottom) of monomer 1b.

Fig. S3 ¹H NMR (CDCl₃) spectrum of precipitated poly(1a-alt-2)₂₀, P1.

Fig. S4 ¹H NMR (CDCl₃) spectrum of precipitated poly(1b-alt-2)₂₀, P2.

Fig. S5 1 H NMR (CDCl₃) spectrum of precipitated diblock copolymer, P3.

Fig. S6 1 H NMR (CDCl₃) spectrum of precipitated hexablock copolymer, P4.

Fig. S7 1 H NMR (CDCl₃) spectrum of precipitated gradient copolymer, P5.

Fig. S8 GPC chromatograms of copolymers P1-P5.

Fig. S9 Multi-step synthesis of hexablock copolymer P4 prepared by sequential addition. A_1 and B_1 refer to $(1a-alt-2)_4$ and $(1b-alt-2)_4$ respectively. A_2 and B_2 refer to $(1a-alt-2)_3$ and $(1b-alt-2)_3$ respectively.

Fig. S10 ROM of 1a shows second-order kinetics with half-life of 21 min.

Fig. S11 ROM of 1b shows second-order kinetics with half-life of 59 min.

Fig. S12 ¹H NMR showing the kinetics of ROM reactivity of 1a with 3

Fig. S13 ¹H NMR showing the kinetics of ROM reactivity of 1b with 3

Fig. S14 Data from Table S2 fit to the Jaacks model (ref. 3). Reactivity ratios are $r_{1a\&2} = 2.25$, $r_{1b\&2} = 0.44$

With Jaacks model, reactivity ratios are estimated based on the assumption of ideal copolymerization, thus $r_1 x r_2 = 1$

 $d[M_1] / d[M_2] = r_1 ([M_1] / [M_2])$

 $[M_1] / [M_{1,0}] = ([M_2] / [M_{2,0}])^{r1}$

 $Log([M_1] / [M_{1,0}]) = r_1 log([M_2] / [M_{2,0}])$

Fig. S15 Sequence-length distributions of the 1a-alt-2/1b-alt-2 copolymer, $f_1 = 0.5$. x is the number of sequence-length of 1a-alt-2/1b-alt-2 unit. $(N_1)_x$ and $(N_2)_x$ is the probability of 1a-alt-2 and 1b-alt-2 unit in 1a-alt-2/1b-alt-2 copolymer, respectively.

Fig. S16 Gradient microstructure of copolymer P5 shown by 1 H-NMR (A) and the distribution plot (B).

Fig. S17 ¹H NMR (CDCl₃) spectrum of poly(1a-alt-2)₁₀-grad-(1b-alt-2)₁₀ precipitated at 20 min during reaction (thus DP = 10). **10H and 2H are the expected number of protons.**

Fig. S18 ¹H NMR (CDCl₃) spectrum of poly(**1a**-*alt*-**2**)₁₀-grad-(**1b**-*alt*-**2**)₁₀ precipitated at 50 min during reaction (thus DP = 14). **10H and 2H are the expected number of protons.**

Fig. S19. ¹H NMR (CDCl₃) spectrum of poly(1a-alt-2)₁₀-grad-(1b-alt-2)₁₀ precipitated at 90 min during reaction (thus DP = 16). **10H and 2H are the expected number of protons.**

Fig. S20. ¹H NMR (CDCl₃) spectrum of poly(1a-a/t-2)₁₀-grad-(1b-a/t-2)₁₀ precipitated at 120 min during reaction (thus DP = 18). **10H and 2H are the expected number of protons**.

Fig. S21. ¹H NMR (CDCl₃) spectrum of poly(1a-a/t-2)₁₀-grad-(1b-a/t-2)₁₀ precipitated at 180 min during reaction (thus DP = 20). **10H and 2H are the expected number of protons**.

Fig. S22. ¹H NMR (CDCl₃) spectrum of poly(1a-alt-2)₁₀-grad-(1b-alt-2)₁₀ at 10 min during reaction (thus DP = 5). **10H and 2H are the expected number of protons**.

Fig. S23. Differential scanning calorimetry of polymers P1-P5.

Fig. S24. Thermogravimetric (TGA, left) and derivative thermogravimetry (DTG, right) analysis of polymers **P1-P5**.

Fig. S25. Representative water contact angle images for polymers **P1-P5** and control (thus silicon wafer without polymer).

Fig. S26. Representative SEM images of polymer films prepared from (A) chloroform, (B) 2-propanol.

Fig. S27. Intensity distribution dynamic light scattering profiles of polymers P1-P5 in chloroform.

Fig. S28. Intensity distribution dynamic light scattering profiles of polymers P1-P5 in 2-propanol.

References

- 1. Tüdos, F.; Kelen, T.; Földes-berezsnich, T.; Turcsányi, B., Analysis of Linear Methods for Determining Copolymerization Reactivity Ratios. Iii. Linear Graphic Method for Evaluating Data Obtained at High Conversion Levels. *J. Macromol. Sci. A* **1976**, *10* (8), 1513-1540.
- 2. Brar, A. S.; Sunita; Satyanarayana, C. V. V., Microstructure Determination of Styrene-Butyl Acrylate Copolymers by Nmr Spectroscopy. *Polym. J.* **1992**, *24* (9), 879-887.
- 3. Gleede, T.; Markwart, C. J.; Huber, N.; Rieger, E.; Wurm, R. F., Competitive Copolymerization: Access to Aziridine Copolymers with Adjustable Gradient Strengths. *Macromolecules* **2019**, 52, 9703-9714.