Triply-responsive OEG-based microgels and hydrogels: Regulation of swelling ratio, volume phase transition temperatures and mechanical properties

Dongdong Lu,^{‡a,*} Mingning Zhu,^{‡a} Jing Jin^a and Brian R. Saunders^{a,*}

^a Department of Materials, University of Manchester, MSS Tower, Manchester,

M1 3BB, U.K.

‡ These authors contributed equally to this work and are co-first authors

Corresponding authors:

Dongdong Lu: dongdong.lu@manchester.ac.uk/dongdong.lu10@gmail.com

Brian R. Saunders: brian.saunders@manchester.ac.uk

Figure S1. Potentiometric titration data for the MG-*x*MAA and functionalised MG-*x*MAA-*y*GMA dispersions. The apparent pK_a values were obtained from the pH corresponding to 50% neutralisation.

Figure S2. The size distributions of TEM for MG-9MAA (A), MG-19MAA (B), MG-

45MAA (C).

Figure S3. TEM images for (A) MG-8MAA-1.0GMA, (B) MG-16MAA-2.5GMA
and (C) MG-32MAA-13GMA. DLS size distributions for (D) MG-8MAA-1.0GMA,
(E) MG-16MAA-2.5GMA and (E) MG-32MAA-13GMA. The dispersion used in (D)
- (F) had a pH 5.4 and the temperature was 60 °C.

Figure S4. The change ratio of $d_z (\Delta d_z)$ vs. MAA content of all MGs. $\Delta d_z = (d_{z \text{ (pH 7.4)}} - d_{z \text{ (pH 5.0)}}) / d_{z \text{ (pH 5.0)}}$.

Figure S5. (A) Zeta potential (ζ) plotted as a function of z-average diameter (d_z) from the data shown in Figures 2A and 2B. **(B)** Variation of the gradients of the lines of best fit from (A) with MAA content of the MGs.

Figure S6. Strain-sweep **(A)** and frequency-sweep **(B)** rheology data for the concentrated MG-8MAA-1.0GMA. The frequency used in (A) is 1.0 H_Z and the strain used in (B) is 1.0%. The MG concentration and pH were 14% and 7.4, respectively.

Figure S7. Pore size distributions for DX MG-16MAA-2.5GMA (**A**) and DX MG-32MAA-13GMA (**B**) from Figure 5A and Figure 5B, respectively.

Figure S8. tan δ *vs.* frequency (A) and tan δ *vs.* strain (B) for DX MGs. tan $\delta = G''/G'$. The strain used in (A) is 1.0% and the frequency used in (B) is 1.0 H_z.

Figure S9. (A) SEM image of DX MG-32MAA-13GMA/Fe³⁺. The scale bar is 2 μ m and the average pore size is 0.31 μ m. **(B)** Pore size distribution for the gel.

Figure S10. Frequency-sweep rheology data for the DX MG-32MAA-13GMA immersed into ionic solution of (A) NaCl, (B) MgCl₂, (C) AlCl₃, (D) FeCl₃. The strain used for all figure is 1.0%

Supplementary tables

MGs	MEO ₂ MA / wt.%	MAA / wt.%	EGD / wt.%
MG-9MAA	96.5	2.4	1.1
MG-19MAA	91.3	7.5	1.2
MG-45MAA	75.4	23.3	1.3

Table S1 Comonomer formulations used to prepare the MGs^a

^{*a*} The values given are with respect to monomer. Note that the amount of MAA given

in the code for the MGs is mol.% based on the titration data from Table S2.

MGs	MEO ₂ MA	MAA /	EGD/	GMA /	pK _a ^c	d_{TEM}	d_z /nm ^e
	/ mol%	mol% a	mol%	mol% ^b		/nm ^d	(pH 5.4, 60°C)
MG-9MAA	89.8	9.3	1.0	-	5.7	66 (8)	73 (0.03)
MG-19MAA	80.0	18.9	1.0	-	6.0	67 (8)	70 (0.06)
MG-45MAA	54.5	44.5	1.0	-	6.0	88 (9)	102 (0.01)
MG-8MAA-1.0GMA	89.7	8.3	1.0	1.0	5.9	65 (7)	72 (0.07)
MG-16MAA-2.5GMA	80.1	16.4	1.0	2.5	6.0	67(6)	71 (0.05)
MG-32MAA-13GMA	54.4	31.7	1.0	12.9	6.1	82 (7)	91 (0.03)

Table S2 Composition and properties of the MGs studied

^{*a*} Determined from potentiometric titration data. ^{*b*} Calculated using the difference of the MAA content before and after functionalisation. ^{*c*}Apparent pK_a value determined from potentiometric titration data. ^{*d*} The numbers in brackets are the standard deviation. ^{*e*} The numbers in brackets are the PDI values.