Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2021

Supporting Information

for

Unlocking the potential of furan-based poly(ester amide)s: An investigation of crystallization, molecular dynamics and degradation kinetics of novel poly(ester amide)s based on renewable poly(propylene furanoate)

Lazaros Papadopoulos, Panagiotis A. Klonos, Marcel Kluge, Alexandra Zamboulis, Zoe Terzopoulou, Dimitra Kourtidou, Andreas Magaziotis, Konstantinos Chrissafis, Apostolos Kyritsis, Dimitrios N. Bikiaris, Tobias Robert*

^aDepartment of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece

^b Department of Physics, National Technical University of Athens, Zografou Campus, GR-15780, Athens, Greece

^cFraunhofer Institute for Wood Research – Wilhelm-Klauditz-Institut WKI, Bienroder Weg 54E, 38108 Braunschweig, Germany

^d Laboratory of X-ray, Optical Characterization and Thermal Analysis, Physics Department, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece

*Corresponding author: tobias.robert@wki.fraunhofer.de

Synthesis of the amido diol

In brief, 1,4-diaminobutane was placed in a three-necked flask, equipped with a cooler and a mechanical stirrer, and dissolved in 2-propanol (200 mL mol⁻¹). Then, ε -caprolactone (2 equivalents) dissolved in 2-propanol (50 mL mol⁻¹) was slowly added to the diamine solution using a pump (0.6 mL/min). Stirring was continued overnight at room temperature. The resulting white pasty product was diluted with acetone and then washed several times with the same solvent to remove residual monomers and potentially formed oligomeric byproducts by (homo)polymerization of the lactone. It was further purified by recrystallization from methanol and acetone and then dried under reduced pressure, whereby the respective product was obtained as a white powder.

Figure S1: ¹H spectra of all the synthesized copolymers, along with the homopolymers.

PPF

¹H NMR (500 MHz, DMSO-d⁶/TFA) δ 7.25 (s, 2H), 4.52 (t, *J*=6.0 Hz, 4H), 2.23 (m, 2H). ¹³C NMR (126 MHz, DMSO-d⁶/TFA) δ 159.9, 145.7, 119.1, 62.5, 26.2.

PEA 75-25

¹H NMR (500 MHz, DMSO-d⁶/TFA) δ 7.22-7.20 (s, 2H), 4.48 (br, 2.8H), 4.32 (br, 1.2H), 3.43 (br, 1.2H), 2.58 (m, 1.2H), 2.20 (m, 1.4H), 1.71-1.61 (m, 3.6H), 1.42 (s, 1.2H). ¹³C NMR (126 MHz, DMSO-d⁶/TFA) δ 178.7, 160.2, 160.1, 159.9, 145.8, 145.7, 145.6, 145.5, 119.1, 118.9, 65.7, 62.5, 52.1, 40.7, 32.8, 26.4, 26.2, 24.2, 23.9, 23.8.

PEA 70-30

¹H NMR (500 MHz, DMSO-d⁶/TFA) δ 7.22-7.20 (s, 2H), 4.49 (t, *J* = 5.6 Hz, 2.6H), 4.32 (t, *J* = 6.2 Hz, 1.4H), 3.43 (br, 1.4H), 2.58 (m, 1.4H), 2.20 (m, 1.3H), 1.71-1.61 (m, 4.3H), 1.43 (m, 1.4H). ¹³C NMR (126 MHz, DMSO-d⁶/TFA) δ 178.7, 160.2, 160.1, 159.9, 145.8, 145.7, 145.6, 145.5, 119.1, 118.9, 65.7, 62.5, 40.7, 32.8, 26.4, 26.2, 24.2, 23.9, 23.8.

PEA 65-35

¹H NMR (500 MHz, DMSO-d⁶/TFA) δ 7.28-7.26 (s, 2H), 4.55 (t, *J* = 5.6 Hz, 2.3H), 4.38 (t, *J* = 6.1 Hz, 1.7H), 3.49 (br, 1.7H), 2.63 (m, 1.7H), 2.26 (m, 1.1H), 1.71-1.67 (m, 5.1H), 1.48 (m, 1.7H).

¹³C NMR (126 MHz, DMSO-d⁶/TFA) δ 178.7, 160.2, 160.1, 159.9, 145.8, 145.7, 145.6, 145.5, 119.1, 118.9, 65.7, 62.5, 40.7, 32.8, 26.4, 26.2, 24.2, 23.9, 23.8.

PEA 60-40

¹H NMR (500 MHz, DMSO-d⁶/TFA) δ 7.26-7.24 (s, 2H), 4.49 (t, *J* = 5.2 Hz, 2.1H), 4.36 (t, *J* = 5.9 Hz, 1.9H), 3.47 (br, 1.9H), 2.62 (m, 1.9H), 2.24 (m, 1H), 1.75-1.65 (m, 5.7H), 1.46 (m, 1.9H). ¹³C NMR (126 MHz, DMSO-d⁶/TFA) δ 178.7, 160.1, 159.9, 145.8, 145.7, 145.6, 145.5, 119.1, 118.9, 65.7, 62.5, 40.7, 32.8, 26.4, 26.2, 24.2, 23.9, 23.8.

PEA 50-50

¹H NMR (500 MHz, DMSO-d⁶/TFA) δ 7.22-7.20 (s, 2H), 4.49 (br, 1.7H), 4.32 (br, 2.3H), 3.43 (br, 2.3H), 2.58 (m, 2.3H), 2.20 (m, 0.8H), 1.72-1.62 (m, 6.9H), 1.42 (m, 2.3H). ¹³C NMR (126 MHz, DMSO-d⁶/TFA) δ 178.7, 160.2, 160.1, 160.0, 145.8, 145.7, 145.6, 145.5, 119.1, 118.9, 65.7, 62.5, 40.7, 32.8, 26.4, 26.2, 24.2, 23.9, 23.8.

PEA 25-75

¹H NMR (500 MHz, DMSO-d⁶/TFA) δ 7.20-7.18 (s, 2H), 4.47 (br, 0.7H), 4.30 (br, 3.3H), 3.41 (br, 3.3H), 2.57 (m, 3.3H), 2.19 (m, 0.3H), 1.69-1.60 (m, 9.9H), 1.40 (m, 3.3H). ¹³C NMR (126 MHz, DMSO-d⁶/TFA) δ 178.7, 160.2, 145.7, 119.1, 118.9, 65.7, 62.5, 40.7, 32.8, 26.4, 24.2, 23.9, 23.8.

PEA 0-100

¹H NMR (500 MHz, DMSO-d⁶/TFA) δ 7.24 (s, 2H), 4.36 (t, *J* = 6.2 Hz, 4H), 3.46 (br, 4H), 2.61 (m, 4H), 1.74-1.65 (m, 12H), 1.46 (m, 4H). ¹³C NMR (126 MHz, DMSO-d⁶/TFA) δ 178.8, 160.3, 145.8, 119.0, 65.8, 40.8, 32.9, 26.5, 24.3, 23.9, 23.8.

Figure S2: ¹³C spectra of all the synthesized copolymers, along with the homopolymers. Quadruplet peaks centered at approximately 113.5 and 160.8 ppm are due to TFA- d_1 .

Figure S3: A) Magnified ¹³C NMR spectra of the 60/40 P(PF-ADF) copolymer in the region 145.4-145.8 ppm. B) Possible triads in the synthesized poly(ester amides).

Figure S4: PLM photographs from cold crystallization of the materials

Table S1: Calculated values of the kinetic parameters of PPF, PEA 0-100 and PEA 50-50 copolymer, obtained from the model fitting kinetic analysis.

Sample	Activation energy (kJ/mol)	Pre- exponential factor (log A)	Reaction order (n)	log K _{cat}	Contribution	R ²
			PPF			
1 st reaction mechanism- reaction model Cn Step A→B	175.1	11.49	0.57	0.69	0.332	0.99997
2 nd reaction mechanism- reaction	196.3	12.95	1.42	0.77	0.668	_

model Cn Step B→C							
PEA 0-100							
1 st reaction mechanism- reaction model Cn Step A→B	135.1	8.67	1.61	0.01	0.307		
2 nd reaction mechanism- reaction model Cn Step B→C	182.8	12.42	1.52	0.23	0.43	0.99995	
3 rd reaction mechanism- reaction model Cn Step D-→E	238.5	15.16	1.28	0.01	0.263		
PEA 50-50							
1 st reaction mechanism- reaction model Fn Step A→B	128.6	9.81	2.33	-	0.091		
2 nd reaction mechanism- reaction model Cn Step B→C	151.1	10.09	1.54	0.01	0.727	0.9999	
3 rd reaction mechanism- reaction model Cn Step D→E	231.7	14.83	1.58	0.01	0.182		

Figure S5: Total ion chromatographs

Figure S6: Comparative BDS isothermal plots of the imaginary part of ε'' versus frequency at -60 °C, showing effects on local mobility, i.e. on β_i , γ_i and δ_i processes recorded for *i*=PPF or PEA. The inset scheme described the origins of β_{PPF} process.

Table S2: Possible compounds resulting from the pyrolysis of the materials.

Poly(amido diol	Poly(propylene diol amido	M	Possible
furanoate)	furanoate) diol furanoate) 50/50		product

R _t (min)		R _t (min)				
370 °C	450 °C	370 °C	450 °C			
-	0.44	-	-	44	CO, or acotaldobydo	
-	1.16	1.17	1.16	44		
-	1.24	-	1.23	58	acetone (??)	
-	1.37	-	-	68		
-	4.39	-	4.40	126		
-	-	6.76	6.74	152		
6.93	6.92	6.94	6.94	114		
9.62	-	-	-	281		
-	-	10.28	10.28	184	H ₂ N H	
-	10.36	-	-	281	о он	
-	-	10.75	10.74	170		
11.79	-	-	-	281		
12.78	-	-	-	207	Not identified	
14.56	14.58	14.59	14.61	207		
14.79	-	-	-	253		
15.32	-	-	-	281	Not identified	
-	-	17.32	17.31	264		
18.92	-	18.94	-	276		
19.71	19.74	19.76	19.78	279		
20.51	20.52	20.55	20.55	277		
20.59	20.60	20.61	20.62	280	N N N N N N N N N N N N N N N N N N N	
-	-	20.69	-	338		
-	-	20.87	20.85	322		

20.93	20.94	20.99	20.98	279	
-	-	21.05	-	278	Not identified
21.09	21.17	21.18	-	280	
-	-	-	21.19	294	
21.49	21.52	21.57	21.58	278	Not identified
21.54	-	-	-	355	HO CONTRACTOR
21.68	21.70	21.73	21.72	280	HO N N
-	-	22.01	22.00	348	
22.20	-	-	-	298	
22.33	-	22.36	-	324	
-	-	-	22.37	444	Not identified
22.50	-	-	-	343	Not identified
-	-	23.82	23.81	378	Not identified
23.89	23.84	-	-	298	
-	24.20	-	-	357	Not identified
24.30	-	-	-	298	№ № № № № № № № № № № № № № № № № № №
-	-	25.45	-	355	Not identified
-	26.66	-	-	394	N O O O O H
26.70	-	-	-	357	° → o → b → b → b → b → b → b → b → b → b
-	-	27.49	27.49	392	Not identified
28.06	28.12	28.38	28.23	392	
28.65	-	29.02	28.87	390	N N N N N N N N N N N N N N N N N N N
-	28.67	-	-	429	Not identified

29.07	29.01	29.15	-	392	
-	-	29.27	29.66	432	HO~~O~~~OH