Surfactant-free emulsion polymerization of vinylidene fluoride mediated by RAFT/MADIX reactive poly(ethylene glycol) polymer chains

Mathieu Fuentes-Exposito,^a Sébastien Norsic,^a Thibaut Février,^a Pierre-Yves Dugas,^a Salima Boutti,^b Samuel Devisme,^c Anthony Bonnet,^b Franck D'Agosto^{a,*} Muriel Lansalot^{a,*}

^a Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5128, Catalysis, Polymerization, Processes and Materials (CP2M), 43 Bd du 11 Novembre 1918, 69616 Villeurbanne, France

^b Centre de Recherche Rhône-Alpes (CRRA), Rue Henri Moissan - CS 42063, 69491 Pierre-Bénite Cedex, France

^c Centre de recherche, développement, applications et technique de l'ouest (Cerdato), 13 route de Launay – 27470 Serquigny, France

E-mail: <u>muriel.lansalot@univ-lyon1.fr</u>, <u>franck.dagosto@univ-lyon1.fr</u>

<u>Characterization of PEG-X - $M_{n,SEC} = 2300 \text{ g mol}^{-1}$ </u>

Figure S1. ¹H NMR spectrum of PEG-X obtained after functionalization of commercial poly(ethylene glycol) methyl ether (PEG-OH, $M_n \approx 2000 \text{ g mol}^{-1}$) with a xanthate chain end (512 scans, CDCl₃).

Figure S2. Molar mass distribution of PEG-X ($M_{n,SEC} = 2300 \text{ g mol}^{-1}$) by SEC analysis in THF. PS standards are used for the calibration.

<u>Characterization of PEG-X - $M_{n,SEC} = 1300 \text{ g mol}^{-1}$ </u>

Figure S3. ¹H NMR spectrum of PEG-X obtained after functionalization of commercial poly(ethylene glycol) methyl ether (PEG-OH, $M_n \approx 750 \text{ g mol}^{-1}$) with a xanthate chain end (512 scans, CDCl₃).

Figure S4. Molar mass distribution of PEG-X ($M_{n,SEC} = 1300 \text{ g mol}^{-1}$) by SEC analysis in THF. PS standards are used for the calibration.

<u>Characterization of X-PEG-X - M_{n,SEC} = 3420 g mol⁻¹</u>

Figure S5. ¹H NMR spectrum of X-PEG-X obtained after functionalization of commercial α,ω dihydroxy poly(ethylene glycol) (HO-PEG-OH, $M_n \approx 2050$ g mol⁻¹) with xanthate chain ends (512 scans, CDCl₃). Starred peaks correspond to solvent impurities.

Figure S6. Molar mass distribution of X-PEG-X ($M_{n,SEC} = 3420 \text{ g mol}^{-1}$) by SEC analysis in THF. PS standards are used for the calibration.

Kinetic studies performed with PEG-OH and PEG-X

As one can see in Figure S7, both kinetics show a steady polymerization rate, slightly lower in the case of PEG-X, probably as a result of a slightly lower KPS/PEG ratio (2.5 *vs* 2.2). This confirms that the snapshot we provided is indeed a good indication of the kinetics.

Figure S7. Evolution of the solids content *versus* time for the kinetic studies conducted with PEG-OH (black circles) and PEG-X (open circles) with n = 44. T = 80 °C; P = 30 bar. The same molar amounts of PEG were used in the 2 studies ($n_{PEG-OH} = n_{PEG-X}$), corresponding to the following weight ratios: KPS/PEG-OH = 2.5; KPS/PEG-X = 2.2. Please note that each point corresponds to one experiment, and that the experiment at 4 h for PEG-OH is L01 in Table 1.

Calibration curves used for the surface tension measurements

Figure S8. Calibration curves for surface tension measurements made on selected PEG-OH and PEG-X solutions in water (full blue cicles) and surface tension measurement for L01 and L03 (full green circle).

Thermal properties of PVDF

Exp. ^a	Stabilizer		KPS/ Stabilizer ^b	SC ° (%)	T _c (°C) ^d	T _m (°C) ^d	Xc (%) ^d
	Name	n ^a	_	. /		` <i>`</i>	
L01	PEG-OH	44	2.5	11.2	130	168	44.9
L02	-	-	-	7.8	-	-	-
L03	PEG-X	44	2.5	10.4	130	169	44.6
L04	PEG-SH	44	2.5	8.1	130	170	48.6
L05	PEG-X	44	1.25	2.4	125	154	30.6
L06			5	14.4	130	167	49.3
L07	PEG-X	15	2.5	10.4	129	168	48.1
L08			6.7	15.9	129	165	44.7
L09	X-PEG-X	44	2.5	8.5	132	169	46.4
L10	PEG-OH	44	2.5	7.6	123	167	47.7
L11	PEG-X	44	2.5	6.8	131	168	41.4

Table S1. Thermal properties of the PVDF polymers obtained by emulsion polymerization of VDF performed with various-PEG based macromolecules

^a See Table 1 for detailed experimental conditions and latex characterization. ^b Weight ratio; ^c Solids content taking into account all the non-volatile species (including stabilizer and PVDF). ^d Determined by DSC after the second heating.