Supporting Information

Facile fabrication of robust gel poly(ionic liquid) electrolytes via bases treatment at room temperature

Chongrui Zhang[#], Yong Zhang[#], Qiang Zhao^{*}, Zhigang Xue^{*}

Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China. E-mail addresses: zhaoq@hust.edu.cn (Q. Zhao); zgxue@mail.hust.edu.cn (Z. Xue). #These authors contributed equally to this work.

> а 1) 200 °C, 6 h High energy consumption 2 CF₃SO₃H, r. t., 24 h Corrosive, difficult to remove 3 NH₃, r. t., 6 h Mild, simple to operate 50 wt% IL GPE-IL-5 b Acetone ③ Room temperature 1 Thermal ②No crosslinking crosslinking crosslinking

Figure S1. a) Schematic preparation of GPE-IL-5 via different methods including thermal annealing, CF_3SO_3H catalysis and ammonia annealing, respectively; b) Photographs of the membranes treated by heat, acid and ammonia, respectively before and after soaking in acetone. Please note: CF_3SO_3H vaporizes quickly, and dissolves the GPE-IL-5 precursor, yielding no membranes.

Figure S2. ¹H NMR spectrum of CMVImBr monomer.

Figure S3. ¹H NMR spectrum of PCMVImTFSI.

Figure S4. a) Photographs of GPE-IL-8 before and after NH_3 vapor treatment, b) storage modulus (G') and loss modulus (G") of GPE-IL-8 before and after NH_3 treatments as a function of sweeping frequency.

Figure S5. (a) Stress-strain curves of PCMVImTFSI membranes treated in NH₃ vapor for varied time. (b) Effect of NH₃ annealing time on fracture strength and elongation at break of PCMVImTFSI membranes.

Figure S6. ATR-FTIR spectra of the PCMVImTFSI membranes without any treatment (black line) and with NH_3 treatment for 2 days (red line) and 0.1 M NaOH treatment for 2 days (blue line).

Figure S7. (a) Photographs of membranes made from PCMVImX (X = Br, TFSI, BF_{4} -, PF_{6}^{-} and Bph_{4}^{-}). (b) Photograph of poly(ionic liquid) containing triazolium cation (PCMVTzTFSI) (NH₃ treated). Please note: these membranes are insoluble in DMF or DMSO. (c,d) ATR-FTIR spectra of PCMVImX (X = Br, TFSI⁻, BF_{4}^{-} , PF_{6}^{-} and Bph_{4}^{-}) before and after NH₃ treatment. (e) ATR-FTIR spectra of PCMVTzTFSI (the cation is triazolium) before and after NH₃ treatment.

Figure S8. (a) Chemical structure of a copolymer (P_{co}) containing 20 mol% nitrile monomer. (b) The photograph of P_{CO} (NH₃ treated) membrane immersed in DMF (note: the membrane is insoluble in DMF). (c) Stress-strain curves of P_{co} membrane before and after NH₃ treatment.

Figure S9. a) Effect of ammonia treatment time on fracture strength and elongation at break of GPE-IL-5; b) Effect of heat treatment time on fracture strength and elongation at break of GPE-IL-5.

Figure S10. (a) Actual IL content of GPE-IL-5 with different NH₃ treatment time; (b) Actual IL content of GPE membranes with different IL content (IL is extracted by ethanol, and the actual IL content is calculated by mass change).

Figure S11. Stress-strain curves of GPE-IL-5 membrane treated with heat (200 °C) and NH₃ vapor, respectively.

Figure S12. Cyclic tension of GPE-IL-5 with NH₃ treatment at a strain of 10%.

Figure S13. SAXS curves of GPE-IL-X (X = 4-8) (beam size: 0.8×0.8 mm²; pixel size: 0.172×0.172 mm²; wavelength: 0.134144 nm; angle of incidence: 0.2 degree).