Supporting Information for:

Biocompatible Graft Copolymers from Bacterial Poly(γ-Glutamic Acid) and Poly(Lactic Acid)

Cristiana L. Zaccaria, Valeria Cedrati, Andrea Nitti, Enrica Chiesa, Antxon Martinez de Ilarduya, Monserrat Garcia-Alvarez, Massimiliano Meli, Giorgio Colombo, Dario Pasini

Table of Contents

1. Additional graphs and Figures	S2		
2. Characterization of New Compounds	<i>S9</i>		

Figure S1. Monitoring the formation of polymer 4c. Top: normalized GPC traces. The peak at retention time ca. 20 min corresponds to unreacted lactide monomer. Bottom: linear relationship between conversion and number average M_n , first order nature of the kinetics, and the narrow resulting dispersities.

Figure S2. IR spectra of copolymers 12a-c; 15c.

Figure S3. Expanded regions of the ¹³C-NMR spectra of (a) polymer 12a, (b) polymer 12b,
(c) polymer 12c with increasing length of PLA side chains and (d) polymer 15c.

Figure S4. TGA traces (a) and derivative curves (b) of PLA grafted γ -PGA samples 12a-c and 15c.

Figure S5. First scan DSC traces of PLA grafted γ -PGA samples 12a-c and 15c recorded at

10 °C/min.

Figure S6. Peaks deconvolution of WAXS diffractogram using PeakFit 4.6 software.

Figure S7. GPC traces of polymer12b (top) and 15c (bottom)

Figure S8. The time evolution of the radius of gyration from MD simulations for the PLA-PGA copolymers. Left: n=1, m=5; Right: n=5, m=5 (see Figure 5 in the main text for reference)

Figure S9. AFM images of copolymers (from top to bottom): 12b; 12c; 12a.

Sample	TGAª			DSC		
				T (°C) and ΔH (J·g ⁻¹)		
	°T _d	$^{\rm max}T_{\rm d}$	W	$T_{g}^{b} / \Delta H^{b}$	$T_{\rm m}{}^{\rm b}/\Delta H^{\rm b}$	$T_{\rm g}^{\rm c}$
	(°C)	(°C)	(%)	5		-
Polymer 12a	270	305	16	56 / 13.1	-	45
Polymer 12b	280	316	16	51 / 11.0	-	41
Polymer 12c	275	325	11	55 / 9.7	108 /4.7	46
Polymer 15c	270	336	7	59/16.4	118 / 8.1	47

Table S1. Thermal parameters of Polymers 12a-c and 15c.

^a Thermal stability of under nitrogen atmosphere. ${}^{o}T_{d}$ the onset decomposition temperature for 5 % weight loss. ${}^{max}T_{d}$ the maximum rate decomposition temperature and W the remaining weight at 600 °C. ^b First heating scan recorded at 10 °C·min⁻¹. ^c 2nd heating scan recorded at 20 ° C·min⁻¹.

Copies of NMR Spectra for Polymers.

Polymer 6a.

1HNMR.14.fid CZ6 dopo lavaggio CDCl3

¹³C NMR (CDCl₃, 75 MHz)

Polymer 7a

Polymer 8a

Polymer 9a

¹H and ¹³C NMR of **12a** sample in DMSO- d_6

¹H and ¹³C NMR of **12c** sample in DMSO- d_6

¹H and ¹³C NMR of **13a** sample in DMSO- d_6

¹H and ¹³C NMR of **15c** sample in DMSO- d_6

