Synthesis and Characterization of Amide-bridged Colorless Polyimide Films with Low CTE and High Optical Performance for Flexible OLED Displays

Zhenghui Yanga,b, Haiquan Guo*, Chuanqing Kanga,b and Lianxun Gaoa

a State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.

b University of Science and Technology of China, Hefei 230026, China.

E-mail: hguo@ciac.ac.cn

Contents

Figure S1. Mass spectrum of AMDA.

Figure S2. 1H NMR spectrum of AMDA.

Figure S3. 13C NMR spectrum of AMDA.

Figure S4. Mass spectrum of IAMDA.

Figure S5. 1H NMR spectrum of IAMDA.

Figure S6. 13C NMR spectrum of IAMDA.

Figure S7. Mass spectrum of p-DAMDA.

Figure S8. 1H NMR spectrum of p-DAMDA.

Figure S9. 13C NMR spectrum of p-DAMDA.

Figure S10. TMA curves and XRD pattern of PAHP/TFDB.

Figure S11. UV-Vis spectra of copolyimide films based on 6FDA/AMDA/TFDB.

Figure S12. DMA curves of copolyimide films based on 6FDA/AMDA/TFDB.

Figure S13. TGA curves of copolyimide films based on 6FDA/AMDA/TFDB.

Figure S14. WAXD patterns of as-synthesized cPI films.

Figure S15. Stress-strain curves of as-synthesized cPI films.

Figure S16. FTIR spectra of dianhydride monomers.
1. Structure characterization of dianhydride monomer. (1HNMR, 13CNMR, MS)

Figure S1. Mass spectrum of AMDA.

Figure S2. 1H NMR spectrum of AMDA.
Figure S3. 13C NMR spectrum of AMDA.

Figure S4. Mass spectrum of IAMDA.
Figure S5. 1H NMR spectrum of IAMDA.

Figure S6. 13C NMR spectrum of IAMDA.
Figure S7. Mass spectrum of p-DAMDA.

Figure S8. 1H NMR spectrum of p-DAMDA.
2. The inherent viscosity and molecular weight of cPIs.

Table S1 The inherent viscosity and molecular weight of cPI films.

| Polyimide | \(\eta_{\text{inh}} \) (dL g\(^{-1}\))
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AMDA/TFDB</td>
<td>1.93</td>
</tr>
<tr>
<td>IAMDA/TFDB</td>
<td>1.80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Polyimide</th>
<th>(M_n) (10(^4) g mol(^{-1}))</th>
<th>(M_w) (10(^4) g mol(^{-1}))</th>
<th>PDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMDA/TFDB</td>
<td>25.5</td>
<td>36.0</td>
<td>1.40</td>
</tr>
<tr>
<td>IAMDA/TFDB</td>
<td>22.1</td>
<td>32.9</td>
<td>1.48</td>
</tr>
</tbody>
</table>

\(a \) Measured at a concentration of 0.5 g dL\(^{-1}\) in DMAc at 30 °C.

\(b \) Measured in DMF by GPC.

Table S2 The inherent viscosity of poly (amic acid)s for insoluble cPI films.

<table>
<thead>
<tr>
<th>Poly (amic acid)</th>
<th>AMDA/t-CHDA</th>
<th>p-DAMDA/TFDB</th>
<th>IAMDA/t-CHDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\eta_{\text{inh}}) (dL g(^{-1}))</td>
<td>1.20</td>
<td>0.56</td>
<td>0.94</td>
</tr>
</tbody>
</table>

\(a \) Measured at a concentration of 0.5 g dL\(^{-1}\) in DMAc at 30 °C.

![Figure S10](image)

Figure S10. (a) dimension change of PAHP/TFDB as a function of temperature; (b) XRD pattern of PAHP/TFDB.

Table S3 Optical and thermal properties of Co-PIs.

<table>
<thead>
<tr>
<th>Polymer</th>
<th>Molar ratio of AMDA/6FDA/TFDB</th>
<th>(\lambda_{\text{cut-off}}) (nm)</th>
<th>(T_{550\text{nm}}) (%)</th>
<th>YI</th>
<th>Haze</th>
<th>(T_d\text{5%}) (°C)</th>
<th>(T_g) (°C)</th>
<th>CTE (ppm K(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>6FDA/TFDB</td>
<td>0:100:100</td>
<td>346</td>
<td>90</td>
<td>2.46</td>
<td>0.54</td>
<td>540</td>
<td>342</td>
<td>56</td>
</tr>
<tr>
<td>Co-PI-1</td>
<td>25:75:100</td>
<td>383</td>
<td>89</td>
<td>3.44</td>
<td>0.67</td>
<td>523</td>
<td>353</td>
<td>47</td>
</tr>
<tr>
<td>Co-PI-2</td>
<td>50:50:100</td>
<td>388</td>
<td>88</td>
<td>3.20</td>
<td>0.39</td>
<td>515</td>
<td>358</td>
<td>36</td>
</tr>
<tr>
<td>Co-PI-3</td>
<td>75:25:100</td>
<td>391</td>
<td>87</td>
<td>3.37</td>
<td>0.52</td>
<td>508</td>
<td>348</td>
<td>19</td>
</tr>
<tr>
<td>Co-PI-4</td>
<td>85:15:100</td>
<td>393</td>
<td>87</td>
<td>4.11</td>
<td>0.56</td>
<td>506</td>
<td>340</td>
<td>15</td>
</tr>
<tr>
<td>AMDA/TFDB</td>
<td>100:0:100</td>
<td>386</td>
<td>87</td>
<td>4.29</td>
<td>0.71</td>
<td>502</td>
<td>333</td>
<td>5.2</td>
</tr>
</tbody>
</table>
Figure S11. UV-Vis spectra of co-PI films.

Figure S12. Tanδ value of cPI films as a function of temperature.

Figure S13. TGA curves of cPI films.
Figure S14. WAXD patterns of cPI films.

Figure S15. The stress-strain curves of cPI films.

Figure S16. FTIR spectra of dianhydride monomers: (a) AMDA; (b) IAMDA; (c) p-DAMDA.