Supporting information

Yttrium-catalyzed Heteroatom-assisted Terpolymerization of *ortho*-Alkoxystyrene, Isoprene and Butadiene with High Regio- and Stereoselectivity

Legends

Table S1. Terpolymerization of oMOS, BD and IP with 250/500/250 in 1 min

Figure S1. ¹H NMR spectrum of poly(*o*MOS-IP-BD) (entry 2, Table 1) (400 MHz, C₂D₂Cl₄, 100 °C)

Figure S2. ¹H NMR spectrum of poly(*o*MOS-IP-BD) (entry 4, Table 1) (400 MHz, C₂D₂Cl₄, 100 °C)

Figure S3. ¹H NMR spectrum of poly(*o*MOS-IP-BD) (entry 5, Table 1) (400 MHz, C₂D₂Cl₄, 100 °C)

Figure S4. ¹H NMR spectrum of poly(*o*MOS-IP-BD) (entry 6, Table 1) (400 MHz, C₂D₂Cl₄, 100 °C)

Figure S5. ¹H NMR spectrum of poly(*o*EOS-IP-BD) (entry 8, Table 1) (400 MHz, C₂D₂Cl₄, 100 °C)

Figure S6. ¹H NMR spectrum of poly(*o*MOS-IP-BD) isolated in 1 min (400 MHz, C₂D₂Cl₄, 100 °C)

(entry 1, Table S1)

Figure S7. ¹H NMR spectrum of poly(*o*MOS) (entry 2, Table 2) (400 MHz, C₂D₂Cl₄, 100 °C)

Figure S8. ¹H NMR spectrum of poly(*o*EOS) (entry 5, Table 2) (400 MHz, C₂D₂Cl₄, 100 °C)

Figure S9. ¹H NMR spectrum of poly(*o*EOS-IP-BD) for uniaxial extension experiments (500 MHz, CDCl₃, 25 °C)

Figure S10. ¹H NMR spectrum of PBD (500 MHz, CDCl₃, 25 °C)

Figure S11. ¹H NMR spectrum of PIP (500 MHz, CDCl₃, 25 °C)

Figure S12. ¹H NMR spectrum of poly(BD-IP) (500 MHz, CDCl₃, 25 °C)

Figure S13. ¹³C NMR spectrum of poly(*o*MOS-IP-BD) (entry 2, Table 1) (100 MHz, $C_2D_2Cl_4$, 100 °C) Figure S14. ¹³C NMR spectrum of poly(*o*MOS-IP-BD) (entry 4, Table 1) (100 MHz, $C_2D_2Cl_4$, 100 °C) Figure S15. ¹³C NMR spectrum of poly(*o*MOS-IP-BD) (entry 5, Table 1) (100 MHz, $C_2D_2Cl_4$, 100 °C) Figure S16. ¹³C NMR spectrum of poly(*o*MOS-IP-BD) (entry 6, Table 1) (100 MHz, $C_2D_2Cl_4$, 100 °C) Figure S17. ¹³C NMR spectrum of poly(*o*EOS-IP-BD) (entry 8, Table 1) (100 MHz, $C_2D_2Cl_4$, 100 °C) Figure S18. ¹³C NMR spectrum of poly(*o*EOS-IP-BD) (entry 8, Table 1) (100 MHz, $C_2D_2Cl_4$, 100 °C) (entry 1, Table S1)

Figure S19. ¹³C NMR spectrum of polystyrene (entry 1, Table 2) (100 MHz, C₆D₄Cl₂, 100 °C)

Figure S20. ¹³C NMR spectrum of poly(*o*MOS) (entry 2, Table 2) (100 MHz, C₂D₂Cl₄, 100 °C)

Figure S21. ¹³C NMR spectrum of poly(*o*EOS) (entry 5, Table 2) (100 MHz, C₂D₂Cl₄, 100 °C)

Figure S22. ¹³C NMR spectrum of poly(*o*EOS-IP-BD) for uniaxial extension experiments (500 MHz, CDCl₃, 25 °C)

Figure S23. ¹³C NMR spectrum of PBD (500 MHz, CDCl₃, 25 °C)

Figure S24. ¹³C NMR spectrum of PIP (500 MHz, CDCl₃, 25 °C)

Figure S25. DEPT 135 spectrum of PIP (500 MHz, CDCl₃, 25 °C)

Figure S26. HSQC spectrum of PIP (500 MHz, CDCl₃, 25 °C)

Figure S27. GPC curve of poly(*o*MOS-IP-BD) (entry 2, Table 1)

Figure S28. GPC curve of poly(*o*MOS-IP-BD) (entry 3, Table 1)

Figure S29. GPC curve of poly(*o*MOS-IP-BD) (entry 4, Table 1)

Figure S30. GPC curve of poly(*o*MOS-IP-BD) (entry 5, Table 1)

Figure S31. GPC curve of poly(*o*MOS-IP-BD) (entry 6, Table 1)

Figure S32. GPC curve of poly(*o*EOS-IP-BD) (entry 7, Table 1)

Figure S33. GPC curve of poly(*o*EOS-IP-BD) (entry 8, Table 1)

Figure S34. GPC curve of poly(*o*MOS-IP-BD) isolated in 1 min (entry 1, Table S1)

Figure S35. GPC curve of poly(*o*EOS-IP-BD) for uniaxial extension experiments

Figure S36. DSC curve of poly(*o*MOS-IP-BD) (entry 2, Table 1)

Figure S37. DSC curve of poly(*o*MOS-IP-BD) (entry 3, Table 1)

Figure S38. DSC curve of poly(*o*MOS-IP-BD) (entry 4, Table 1)

Figure S39. DSC curve of poly(*o*MOS-IP-BD) (entry 5, Table 1)

Figure S40. DSC curve of poly(*o*MOS-IP-BD) (entry 6, Table 1)

Figure S41. DSC curve of poly(*o*EOS-IP-BD) (entry 7, Table 1)

Figure S42. DSC curve of poly(*o*EOS-IP-BD) (entry 8, Table 1)

Figure S43. DSC curve of poly(*o*MOS-IP-BD) isolated in 1 min (entry 1, Table S1)

Figure S44. DSC curve of polystyrene (entry 1, Table 2)

Figure S45. DSC curve of poly(*o*MOS) (entry 2, Table 2)

Figure S46. DSC curve of poly(*o*MOS) (entry 3, Table 2)

Figure S47. DSC curve of poly(*o*EOS) (entry 5, Table 2)

Figure S48. DSC curve of poly(*o*EOS-IP-BD) for uniaxial extension experiments

Table S2. Selected ¹³C NMR (CDCl₃, 500 MHZ, 25 °C) chemical shifts of poly(*o*MOS-IP-BD) (entry

3, Table 1)

Table S3. Selected ¹³C NMR (CDCl₃, 500 MHZ, 25 °C) chemical shifts of poly(*o*EOS-IP-BD) (entry

3, Table 1)

Calculation for activation energies of homopolymerizing oMOS and oEOS

Entry	Cat	oAOS	oAOS:IP:BD	Time/ min	Conv. (%)	oAOS ^[b] (mol%)	IP ^[b] (mol%)	BD ^[b] (mol%)	$M_{\rm n}^{\rm [c]} \times 10^{-4}$	PDI ^[c]	$T_{g}^{[d]}$ (°C)
1	2	oMOS	250:500:250	1	16.0	76.5	0	23.5	3.62	1.1	66.6/-
[a] Conditions: Cat 5 μ mol, [oAOSt+IP+BD]/[Cat]/[Ph ₃ C][B(C ₆ F ₅) ₄]=1000:1:1 (mol/mol), T = 13											
°C, Toluene 1 mL. [b] Measured by ¹ H NMR and ¹³ C NMR in C ₂ D ₂ Cl ₄ at 100 °C. [c] Determined by											
(GPC in THF at 40 °C against polystyrene standard. [d] Determined by DSC.										

Table S1. Terpolymerization of oMOS, BD and IP with 250/500/250 in 1 min

Figure S1. ¹H NMR spectrum of poly(*o*MOS-IP-BD) (entry 2, Table 1) (400 MHz, C₂D₂Cl₄, 100 °C)

Figure S2. ¹H NMR spectrum of poly(*o*MOS-IP-BD) (entry 4, Table 1) (400 MHz, C₂D₂Cl₄, 100 °C)

Figure S3. ¹H NMR spectrum of poly(*o*MOS-IP-BD) (entry 5, Table 1) (400 MHz, C₂D₂Cl₄, 100 °C)

Figure S4. ¹H NMR spectrum of poly(*o*MOS-IP-BD) (entry 6, Table 1) (400 MHz, C₂D₂Cl₄, 100 °C)

Figure S5. ¹H NMR spectrum of poly(*o*EOS-IP-BD) (entry 8, Table 1) (400 MHz, C₂D₂Cl₄, 100 °C)

Figure S6. ¹H NMR spectrum of poly(*o*MOS-IP-BD) isolated in 1 min (400 MHz, C₂D₂Cl₄, 100 °C)

(entry 1, Table S1)

Figure S7. ¹H NMR spectrum of poly(*o*MOS) (entry 2, Table 2) (400 MHz, C₂D₂Cl₄, 100 °C)

Figure S8. ¹H NMR spectrum of poly(*o*EOS) (entry 5, Table 2) (400 MHz, C₂D₂Cl₄, 100 °C)

Figure S9. ¹H NMR spectrum of poly(*o*EOS-IP-BD) for uniaxial extension experiments (500 MHz,

CDCl₃, 25 °C)

Figure S10. ¹H NMR spectrum of PBD (500 MHz, CDCl₃, 25 °C)

Figure S11. ¹H NMR spectrum of PIP (500 MHz, CDCl₃, 25 °C)

Figure S12. ¹H NMR spectrum of poly(BD-IP) (500 MHz, CDCl₃, 25 °C)

Figure S13. ¹³C NMR spectrum of poly(*o*MOS-IP-BD) (entry 2, Table 1) (100 MHz, C₂D₂Cl₄, 100 °C)

Figure S14. ¹³C NMR spectrum of poly(*o*MOS-IP-BD) (entry 4, Table 1) (100 MHz, C₂D₂Cl₄, 100 °C)

Figure S15. ¹³C NMR spectrum of poly(*o*MOS-IP-BD) (entry 5, Table 1) (100 MHz, C₂D₂Cl₄, 100 °C)

Figure S16. ¹³C NMR spectrum of poly(*o*MOS-IP-BD) (entry 6, Table 1) (100 MHz, C₂D₂Cl₄, 100 °C)

Figure S17. ¹³C NMR spectrum of poly(*o*EOS-IP-BD) (entry 8, Table 1) (100 MHz, C₂D₂Cl₄, 100 °C)

Figure S18. ¹³C NMR spectrum of poly(*o*MOS-IP-BD) isolated in 1 min (100 MHz, C₂D₂Cl₄, 100 °C)

(entry 1, Table S1)

Figure S19. ¹³C NMR spectrum of polystyrene (entry 1, Table 2) (100 MHz, C₆D₄Cl₂, 100 °C)

Figure S20. ¹³C NMR spectrum of poly(*o*MOS) (entry 2, Table 2) (100 MHz, C₂D₂Cl₄, 100 °C)

Figure S21. ¹³C NMR spectrum of poly(*o*EOS) (entry 5, Table 2) (100 MHz, C₂D₂Cl₄, 100 °C)

Figure S22. ¹³C NMR spectrum of poly(*o*EOS-IP-BD) for uniaxial extension experiments (500 MHz,

CDCl₃, 25 °C)

Figure S23. ¹³C NMR spectrum of PBD (500 MHz, CDCl₃, 25 °C)

Figure S24. ¹³C NMR spectrum of PIP (500 MHz, CDCl₃, 25 °C)

Figure S25. DEPT 135 spectrum of PIP (500 MHz, CDCl₃, 25 °C)

Figure S26. HSQC spectrum of PIP (500 MHz, CDCl₃, 25 °C)

Figure S27. GPC curve of poly(*o*MOS-IP-BD) (entry 2, Table 1)

Figure S28. GPC curve of poly(*o*MOS-IP-BD) (entry 3, Table 1)

Figure S29. GPC curve of poly(*o*MOS-IP-BD) (entry 4, Table 1)

Figure S30. GPC curve of poly(*o*MOS-IP-BD) (entry 5, Table 1)

Figure S31. GPC curve of poly(*o*MOS-IP-BD) (entry 6, Table 1)

Figure S32. GPC curve of poly(*o*EOS-IP-BD) (entry 7, Table 1)

Figure S33. GPC curve of poly(*o*EOS-IP-BD) (entry 8, Table 1)

Figure S34. GPC curve of poly(*o*MOS-IP-BD) isolated in 1 min (entry 1, Table S1)

Figure S35. GPC curve of poly(oEOS-IP-BD) for uniaxial extension experiments

Figure S36. DSC curve of poly(*o*MOS-IP-BD) (entry 2, Table 1)

Figure S37. DSC curve of poly(*o*MOS-IP-BD) (entry 3, Table 1)

Figure S38. DSC curve of poly(*o*MOS-IP-BD) (entry 4, Table 1)

Figure S39. DSC curve of poly(*o*MOS-IP-BD) (entry 5, Table 1)

Figure S40. DSC curve of poly(*o*MOS-IP-BD) (entry 6, Table 1)

Figure S41. DSC curve of poly(*o*EOS-IP-BD) (entry 7, Table 1)

Figure S42. DSC curve of poly(*o*EOS-IP-BD) (entry 8, Table 1)

Figure S43. DSC curve of poly(*o*MOS-IP-BD) isolated in 1 min (entry 1, Table S1)

Figure S44. DSC curve of polystyrene (entry 1, Table 2)

Figure S45. DSC curve of poly(*o*MOS) (entry 2, Table 2)

Figure S46. DSC curve of poly(*o*MOS) (entry 3, Table 2)

Figure S47. DSC curve of poly(*o*EOS) (entry 5, Table 2)

Figure S48. DSC curve of poly(oEOS-IP-BD) for uniaxial extension experiments

Chemical shift	Assignment	Chemical shift	Assignment
16.05/16.13	trans-1,4-PIP	31.28	<u><i>cis</i>-4,1</u> -3,4(PIP)
17.58	PIP	31.51	<i>cis</i> -4,1- <u>3,4</u> (PIP)
18.62	3,4-PIP	31.89	PIP-PBD
23.45	cis-1,4-PIP	32.07	PIP
25.84	PIP-PBD	32.22	cis-1,4-PIP
26.34	<u>cis-1,4</u> -4,3(PIP)	32.38	<i>cis</i> -1,4- <u>4,3(</u> PIP)
26.40	cis-1,4-PIP	32.81/32.89	PIP
26.50	trans-1,4-PIP	34.30	1,2-PBD
27.41	cis-1,4-PBD	35.82	PIP
27.56	PIP-PBD	37.85	PIP
27.71	PIP-PBD	40.07	trans-1,4-PIP
27.77	PIP-PBD	43.75	1,2-PBD
27.99	PIP-PBD	44.79	PIP
28.34	PIP	45.10	PIP

Table S2. Selected ¹³C NMR (CDCl₃, 500 MHZ, 25 °C) chemical shifts of poly(*o*MOS-IP-BD) (entry

3,	Table	1)	
ς,	1 4010	1)	

29.86	3,4-PIP	47.13	PIP-PBD
30.02	PIP	47.42	PIP
30.61/30.70	PIP	47.93	3,4-PIP

Table S3. Selected ¹³C NMR (CDCl₃, 500 MHZ, 25 °C) chemical shifts of poly(*o*EOS-IP-BD) (entry

3, Table 1)

Chemical shift	Assignment	Chemical shift	Assignment
15.03	PoEOS	31.89	PIP-PBD
16.05/16.13	trans-1,4-PIP	32.07	PIP
17.58	PIP	32.22	cis-1,4-PIP
18.62	3,4-PIP	32.38	<i>cis</i> -1,4- <u>4,3</u> (PIP)
23.45	cis-1,4-PIP	32.81/32.89	PIP
25.40	PoEOS-PIP/PBD	33.87	PoEOS-PIP/PBD
25.84	PIP-PBD	34.30	1,2-PBD
26.34	<u><i>cis</i>-1,4</u> -4,3(PIP)	34.45	PoEOS-PIP/PBD
26.40	cis-1,4-PIP	35.82	PIP
26.50	trans-1,4-PIP	37.85	PIP
27.41	cis-1,4-PBD	38.64	PoEOS-PIP/PBD
27.56	PIP-PBD	40.07	PIP
27.71	PIP-PBD	40.61	PoEOS
27.77	PIP-PBD	43.75	1,2-PBD
27.99	PIP-PBD	44.79	PIP
28.34	PIP	45.10	PIP
29.86	3,4-PIP	47.13	PIP-PBD
30.02	PIP	47.42	PIP
30.61/30.70	PIP	47.93	3,4-PIP
31.28	<u><i>cis</i>-4,1</u> -3,4(PIP)		
31.51	<i>cis</i> -4,1- <u>3,4</u> (PIP)		

Calculation for activation energies of homopolymerizing oMOS and oEOS

First of all, we carried out the homopolymerization of *o*MOS (0.268g) in 1.2 mL toluene (*V*) using complex **2** (2.5 μ nol) activated with [Ph₃C][B(C₆F₅)₄] (2.5 μ nol) at 30 °C (*T*₁ = 303K) and 63 °C (*T*₂ = 336K) for 2 mins (Δt) respectively. The reaction was terminated by addition of a small amount methanol and poured into ethanol (50 mL) to precipitate. The polymers (*m*₁= 0.1177g and *m*₂= 0.2257g) were collected by filtration, and dried under vacuum at 40 °C to constant weights.

 $v_1 = \frac{\Delta C_1}{\Delta t} = k_1 [oMOS]^X [Cat]^y$, wherein v_1 is the polymerization rate; ΔC_1 is the concentration of polymer; Δt is the time for polymerization; k_1 is polymerization rate constant; [oMOS]and[Cat] are concentrations of monomer and catalyst; x and y are orders of reaction.

For the time (Δt) , volume of toluene (V), and $[oMOS]^{X}[Cat]^{y}$ are same in two polymerizations at different temperatures,

$$ln\frac{k_1}{k_2} = \frac{E_a}{R} \left(\frac{T_1 - T_2}{T_1 \times T_2} \right) = ln\frac{v_1}{v_2} = ln\frac{\Delta C_1}{\Delta C_2} = ln\frac{m_1/V}{m_2/V} = ln\frac{m_1}{m_2}, \text{ wherein } R \text{ is the gas constant, 8.314 J/(mol \cdot k).}$$
$$E_a = R \times \left(\frac{T_1 \times T_2}{T_1 - T_2} \right) \times ln\frac{m_1}{m_2} = 8.314 \times \left(\frac{303 \times 336}{303 - 336} \right) \times ln\frac{0.1177}{0.2257} kJ/mol = 16.7 kJ/mol$$

The homopolymerizations of *o*EOS (0.296g) were carried out in toluene ($V^{*} = 1.4 \text{ mL}$) using complex **2** (2.5 µnol) activated with [Ph₃C][B(C₆F₅)₄] (2.5 µnol) at 30 °C ($T_{1}^{*} = 303$ K) and 60 °C ($T_{2}^{*} = 333$ K) for 4 mins (Δt^{*}) respectively. Finally, we obtained 0.0030g (m_{1}^{*}) and 0.0750g (m_{2}^{*}) polymers. According to the similar calculation process for homopolymerization of *o*MOS, we obtained the activation energy of homopolymerizing oEOS ($E_{a}^{*} = 120.7 \text{ kJ/mol}$).