Electronic Supplementary Information

Extremely Tough and Healable Elastomer Realized via

Reducing the Crystallinity of Rigid Domain

Chong Xing, Haomin Wu, Ruichun Du, Qiuhong Zhang* and Xudong Jia*

Materials

Hexamethylene diisocyanate (HDI), poly (tetrahydrofuran) (PTMG, M_n = 1000 g/mol) and dibutyltin dilaurate (DBTDL) were purchased from Sigma-Aldrich. 2,2-Bis (hydroxymethyl) propionic acid (DMPA) was purchased form J&K. **Anhydrous** FeCl₃, ZnCl₂ and CuCl₂ were purchased from Alfa Aesar. *N*,*N*-dimethyl Formamide (DMF) was purchased from Shanghai Titan Chemistry Co., Ltd.. HDI, PTMG and DMPA should be dried at 85 °C in vacuum oven for 12h before used, DMF was distilled and preserved with 4A molecular sieve.

Synthesis of metal ion-carboxyls coordinated PU

DBTDL catalyst (5 µL) was dropped into a mixture of dried HDI (12 mmol, 2.016 g) and dried PTMG (M_n = 1000, 6 mmol, 6.0 g) at 55 °C with argon protection to synthesize the prepolymer. After reaction for 1.5h, the temperature rose to 70 °C and a mixture of DMPA (0.804 g, 6 mmol) and **anhydrous** FeCl₃, ZnCl₂ or CuCl₂ (0-1.5mmol, the detail amount could be found in **Table S1**.) was dissolved in distilled DMF and added to the prepolymer. After a 15-60min stirring (**FePU/CuPU** 15-30min, **ZnPU** ~60min), the viscous mixture was degassed and then transferred into a polytetrafluoroethylene plate and cured for 12h at 70 °C.

Characterizations

The tensile tests were performed by stretching dumbbell samples with a rate of 50 mm/min under ambient atmosphere (23±2 °C) on an INSTRON 5944 machine. For self-healing test, the sample was cut into two pieces and then contacted with each other in 30 s, and then cured at 60±5 °C (40±10% RH). The fracture tests were carried out by using classical single-edge test and the calculation of fracture toughness (G_c) was expressed by following equation:

$$G_c = \frac{2\pi\alpha W_c}{\sqrt{\lambda_c}}$$

where α is the notch length, λ_c is the stretch ratio of notched samples, W_c is the strain energy calculated by integration of stress-strain curve of origin samples until λ_c . The detail data could be seen in **Table S2**, the W_0 in **Table S2** is the toughness which calculated by integration of stress-strain curve of origin samples.

The ITC titration was carried out using a GE ITC200 instrument, samples were

prepared in a solution of anhydrous methanol at 25 °C.

DMA tests were performed on a DMA Q800, samples were performed from -80 to 150 °C with a 0.2% strain, 10Hz. The fourier transform infrared spectra (FTIR) were recorded on a TENSOR27 spectrophotometer (ATR mode, scanned from 4000 to 400 cm⁻¹).

The SAXS measurement was carried out using Beamine 4-2 at Stanford Synchrotron Radiation Lightsource (SSRL) of SLAC National Accelerator Laboratory (SLAC). The incident x-ray beam with an energy of 15 keV was used.

The XRD measurement was performed from a BRUKER D8 ADVANCE diffractometer with a Cu K α X-ray source (λ = 1.540598 Å). The morphologies of polyurethane samples were observed by transmission electron microscopy (TEM) (JEM-2100), the sample was prepared by dropping diluted mixture of prepolymer and chain extender on bronze net and then cured at 70 °C for 12h.

Figure S1. The ITC titration curve of the DMPA mixed with $ZnCl_2$, FeCl₃ and CuCl₂ in anhydrous methanol at 25 °C.

Figure S2. The detail synthetic route of Neat PU, FePU, ZnPU and CuPU.

Figure S3. (a) FT-IR spectrum of Neat PU, FePU-6, FePU-8 and FePU-10 (b) Detail FT-IR spectrum of crystalline peak related to hard segment in Neat PU, FePU-6, FePU-8 and FePU-10. (c) FT-IR spectrum of Neat PU, ZnPU-6, ZnPU-8 and ZnPU-10. (d) Detail FT-IR spectrum of amide I region of Neat PU, ZnPU-6, ZnPU-6, ZnPU-8 and ZnPU-10. (e) FT-IR spectrum of Neat PU, CuPU-4, CuPU-6 and CuPU-8. (f) Detail FT-IR spectrum of amide I region of Neat PU, CuPU-4, CuPU-4, CuPU-6 and CuPU-8.

Figure S4. XRD of Neat PU, FePU-6 and FePU-8.

Figure S5. Stress-strain curves for a) Neat PU b) FePU-6 c) FePU-8 d) FePU-10 in single-edge test.

Figure S6. Stress-strain curves for a) ZnPU-6 b) ZnPU-8 c) ZnPU-10 d) CuPU-4. e) CuPU-6 and f) CuPU-8 in single-edge test.

Figure S7. (a) The stress-strain curve in cycle tensile test of **FePU-8**. (b) The stress-strain curve in cycle tensile test of **ZnPU-8**. (c) The stress-strain curve in cycle tensile test of **CuPU-6**. (d) Energy dissipation in 1-10 cycles of **ZnPU-8** (blue), **FePU-8** (orange) and **CuPU-6** (green).

Figure S8. The stress-strain curve of hurt (a) ZnPU-6 (b) ZnPU-8 (c) ZnPU-10 (d) CuPU-4 (e) CuPU-6 (f) CuPU-8 after 24h self-healing at room temperature (blue) and 60 °C (red), the black line was their origin stress-strain curve.

Sample	n(HDI) / mmol	n(PTMG-1000) /	n(DMPA) /	n(metal				
ID		mmol	mmol	salt) /				
				mmol				
Neat PU	12	6	6	0				
FePU-3	12	6	6	2				
FePU-4	12	6	6	1.5				
FePU-6	12	6	6	1				
FePU-8	12	6	6	0.75				
FePU-10	12	6	6	0.6				
ZnPU-6	12	6	6	1				
ZnPU-8	12	6	6	0.75				
ZnPU-10	12	6	6	0.6				
CuPU-4	12	6	6	1.5				
CuPU-6	12	6	6	1				
CuPU-8	12	6	6	0.75				

 Table S1. The dosage of each raw material applied in Neat PU and various metal ion-carboxyls coordinated PU.

,					
Sample	<i>W</i> ₀ / MJ·m⁻	α/mm	<i>W</i> _c / MJ·m⁻	$\lambda_{ m c}$	<i>G</i> _c ∕ kJ·m⁻
ID	3		3		2
Neat PU	81.38	2.00	0.085	1.28	0.948
FePU-6	127.02	2.00	7.36	7.12	34.7
FePU-10	185.15	1.00	27.96	13.65	47.5
ZnPU-6	108.31	2.00	18.692	8.65	79.8
ZnPU-8	83.04	2.00	32.14	16.04	97.8
ZnPU-10	43.65	2.00	22.79	21.21	62.2
CuPU-4	16.49	1.00	5.3176	11.27	9.95
CuPU-6	77.82	2.00	41.21	22.70	106.3
CuPU-8	41.26	2.00	11.87	5.60	38.73

Table S2. The toughness (W_0) and fracture toughness (G_c) of **Neat PU**, **FePUs**, **ZnPUs** and **CuPUs**.

Table S3. Comparison of toughness with other self-healing material in previous literatures ^[1-14].

Sample Name	Stress / MPa	Toughness /	Reference
		MJ·m °	
FePU-8	18.36	228.86	This work
PDM-2.5	29	121.8	1
Cu-DOU-CPU	14.8	87	2
PI-xNa	7	70	3
PPGTD-IDA	4.83	65.49	4
IP-SS	6.76	26.9	5
PEG-DE-CAT-DAB	21.9	22	6
PEIs	4.4	12	7
CB[8] based	0.5	11	8
networks			
HBPs	1.9	10	9
U-PDMS	1.11	7.14	10
P(DA-co-BA)	3.5	6.8	11
PSeD-U20-12h	2.42	4.59	12
Fe-Hpdca-PDMS	0.23	3.8	13
PDMS-PtL	0.3	3.4	14

References

M. Jing, X. Liu, L. Wei, K. Wu and Q. Fu, *Mater. Horiz.*, 2021, **8**, 267-275.
 L. Zhang, Z. Liu, X. Wu, Q. Guan, S. Chen, L. Sun, Y. Guo, S. Wang, J. Song, E. M. Jeffries, C. He, F.-L. Qing, X. Bao, Z. You, *Adv. Mater.*, 2019, 1901402-1901509.

3 Y. Miwa, J. Kurachi, Y. Kohbara, S. Kutsumizu, *Commun. Chem.*, 2018, **1**, 5.

4 D. Wang, J. Xu, J. Chen, P. Hu, Y. Wang, W. Jiang, J. Fu, *Adv. Funct. Mater.*, 2019, 1907109-1907122.

5 S. Kim, H. Jeon, S. Shin, S. Park, J. Jegal, S. Y. Hwang, D. X. Oh, J. Park, *Adv. Mater.*, 2018, **30**, 1705145-1705152.

6 E. Filippidi, T. R. Cristiani, C. D. Eisenbach, J. H. Waite, J. N.

Israelachvili, B. K. Ahn, M. T. Valentine, *Science*, 2017, **358**, 502-505.

A. Susa, R. K. Bose, A. M. Grande, S. van der Zwaag, S. J. Garcia, ACS *Appl. Mater. Inter.*, 2016, **8**, 34068-34079.

8 J. Liu, C. S. Y. Tan, Z. Yu, N. Li, C. Abell, O. A. Scherman, *Adv. Mater.*, 2017, **29**, 1605325.

9 Y. Chen, A. M. Kushner, G. A. Williams, Z. Guan, *Nat. Chem.*, 2012, **4**, 467-472.

10 P. Cao, B. Li, T. Hong, J. Townsend, Z. Qiang, K. Xing, K. D. Vogiatzis, Y. Wang, J. W. Mays, A. P. Sokolov, T. Saito, *Adv. Funct. Mater.*, 2018, **28**, 1800741.

J. Li, H. Ejima, N. Yoshie, ACS Appl. Mater. Inter., 2016, 8, 19047-19053.
 S. Chen, L. Sun, X. Zhou, Y. Guo, J. Song, S. Qian, Z. Liu, Q. Guan, E. Meade Jeffries, W. Liu, Y. Wang, C. He, Z. You, Nat. Commun., 2020, 11, 1107

13 C. Li, C. Wang, C. Keplinger, J.-L. Zuo, L. Jin, Y. Sun, P. Zheng, Y. Cao, F. Lissel, C. Linder, X. You, Z. Bao, *Nat. Chem.*, 2016, **8**, 618-624.

14 J. Mei, X. Jia, J. Lai, Y. Sun, C. Li, J. Wu, Y. Cao, X. You, Z. Bao, *Macromol. Rapid Commun.*, 2016, **37**, 1667-1675.