Supporting Information

Living Polymerization of Naturally Renewable Butyrolactone-based

vinylidenes Mediated by Frustrated Lewis Pair

Yun Bai, Huaiyu Wang, Jianghua He^* and Yuetao Zhang^*

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin

University, Changchun, Jilin, 130012, China

Table of Contents

^{*} Corresponding author. E-mails: <u>hjh2015@jlu.edu.cn</u>; <u>ytzhang2009@jlu.edu.cn</u>

1. Materials, reagents, and methods
2. Isolation of adduct
3. Stoichiometric NMR Reaction
NMR Reaction of P(NI'Pr)'Pr ₂ with (BHT) ₂ Al'Bu·MMBL in a 1:1 ratio9
NMR Reaction of P(NI'Pr)Ph ₂ with (BHT) ₂ Al'Bu·MMBL in a 1:1 ratio10
4. Acidity of different Lewis acids measured through Gutmann-Beckett method12
5. Selected polymerization results12
6. MALDI-TOF MS spectra of low MW PMMBL sample14
MALDI-TOF MS spectra of low MW PMMBL sample produced by P(NI'Pr)Ph ₂ /(BHT)Al'Bu ₂
MALDI-TOF MS spectra of low MW PMMBL sample produced by $P(NI'Pr)Ph_2/AI(C_6F_5)_315$
MALDI-TOF MS spectra of low MW PMMBL sample produced by P(NI [/] Pr)Ph ₂ /(BHT) ₂ AlMe 16
MALDI-TOF MS spectra of low MW PMMBL sample produced by P(NI'Pr)Ph ₂ /(BHT) ₂ Al'Bu 17
7. Chain extension experiments by P(NI ⁱ Pr)Ph ₂ /(BHT) ₂ Al ⁱ Bu19
8. Copolymerization catalyzed by P(NI ⁱ Pr)Ph ₂ /(BHT) ₂ Al ⁱ Bu FLP19
9. DSC of polymer samples obtained with P(NI'Pr)Ph ₂ /(BHT) ₂ Al'Bu FLP23
10. Kinetics experiments23
11. X-ray diffraction data24
12.References

1. Materials, reagents, and methods

All syntheses and manipulations of air- and moisture-sensitive materials were carried out in

flamed Schlenk-type glassware on a dual-manifold Schlenk line, a high-vacuum, or an argonfilled glovebox. Toluene, benzene and THF were refluxed over sodium/potassium alloy distilled under nitrogen atmosphere; hexane and CH₂Cl₂ were refluxed over CaH₂ distilled under nitrogen atmosphere. All solvents were stored over molecular sieves 4 Å. Benzene-*d*₆ and CD₂Cl₂ was dried over molecular sieves 4 Å. NMR spectra were recorded on a Bruker Avance II 500 (500 MHz, ¹H; 125 MHz, ¹³C; 471 MHz, ¹⁹F; 202 MHz, ³¹P) instrument at room temperature. Chemical shifts for ¹H and ¹³C spectra were referenced to internal solvent resonances and are reported as parts per million relative to SiMe₄, whereas ¹⁹F NMR spectra were referenced to external CFCl₃. Air sensitive NMR samples were conducted in Teflonvalve sealed J. Young-type NMR tubes.

Methyl methacrylate (MMA) was purchased from J&K and purified through process that MMA was first degassed and dried over CaH₂ overnight, followed by vacuum distillation. Further purification of MMA involved titration with tri(*n*-octyl)aluminum (Strem Chemicals) to a yellow end point,¹ followed by distillation under reduced pressure. y-methyl- α methylene- γ -butyrolactone (MMBL) and α -methylene- γ -butyrolactone (MBL) and 2-Ethoxyethyl methacrylate (EEMA) was purchased from TCI and dried over CaH₂ overnight, followed by vacuum distillation. All purified monomers were stored in brown bottles inside a glovebox freezer at -30 °C. Boron trichloride (1.0 M solution in hexanes) were purchased M solution in hexanes), chlorodiisopropylphosphine, from Titan. *n*-BuLi (2.5 chlorodiphenylphosphine, chlorodi-tert-butyl phosphine, 2-bromomesitylene, bromopentafluorobenzene, phosphorus trichloride, 3-hydroxy-2-butanone, 1,3diisopropylthiourea and azidotrimethylsilane were purchased from Energy Chemical. Trimethylaluminum, triethylaluminum, triisobutylaluminium and 2,6-di-tert-butyl-4methylphenol was purchased from J&K. Tris(pentafluorophenyl)borane, B(C₆F₅)₃, was prepared according to literature procedures.²⁻³ $Al(C_6F_5)_3$, as a (toluene)_{0.5} adduct, or in its unsolvated form, was prepared by ligand exchange reactions between $B(C_6F_5)_3$ and AIMe₃ or AlEt₃ (for preparation of the unsolvated form)⁴⁻⁶ (Extra caution should be exercised when handling these materials, especially the unsolvated AI(C₆F₅)₃, due to its thermal and shock sensitivity!). Literature procedures were employed for the preparation of the following

3

compounds: N,N'-diisopropylimidazolin-2-imine (NI'Pr)H, ⁷⁻⁸ N-(diisopropylphosphanyl)-1,3diisopropyl-4,5-dimethyl-1,3-dihydro-2*H*-imidazol-2-imine (P(NI'Pr)[/]Pr₂),⁹ methyl bis(2,6-di-^tBu-4-methylphenoxy)aluminum ((BHT)₂AlMe),¹⁰ isobutyl bis(2,6-di-^tBu-4methylphenoxy)aluminum ((BHT)₂Al[/]Bu), ¹¹ diisobutyl (2,6-di-^tBu-4methylphenoxy)aluminum ((BHT)Al[/]Bu₂)¹¹ and Al(C₆F₅)₃·MMBL.¹² The P(NI[/]Pr)^tBu₂, P(NI[/]Pr)Ph₂, P(NI[/]Pr)Mes₂ and P(NI[/]Pr)(C₆F₅)₂ were synthesized based on the previous literature.¹³

General Polymerization Procedures. Polymerizations were performed in 20 mL glass reactors inside the glovebox for ambient temperature (ca. 25 °C) runs. In a typical polymerization procedure, a predetermined amount of a Lewis acid (LA) (2 equiv.), such as $(BHT)_2AI'Bu \cdot MMBL$, was first dissolved in 250 μ L of MMBL and CH_2Cl_2 inside a glovebox. The polymerization was started by rapid addition of $P(NI'Pr)R_2$ solution (1 equiv.) via a gastight syringe to the above mixture under vigorous stirring, After the measured time interval, a 0.2 mL aliquot was taken from the reaction mixture via pipet and quickly quenched into a 4-mL vial containing 0.6 mL of undried "wet" CDCl₃ stabilized by 250 ppm of BHT-H; the quenched aliquots were later analyzed by ¹H NMR to obtain the percent monomer conversion data. After the polymerization was stirred for the stated reaction time then the reactor was taken out of the glovebox, and the reaction was quenched by addition of 5 mL of 5% HCl-acidified methanol. The quenched mixture was isolated by filtration and dried in a vacuum oven at 50 °C to a constant weight.

Polymer Characterizations. For P(M)MBL and copolymers, polymer weight-average molecular weight (M_w) and molecular weight distributions ($\mathcal{D} = M_w/M_n$) were measured by gel permeation chromatography (GPC) coupled with a Wyatt DAWAN 8+ light scattering (LS) detector at 35 °C and a flow rate of 1 mL/min, with DMF (HPLC grade, containing 50 mmol/L LiBr) as an eluent on a Waters 1515 instrument equipped with Waters 4.6×30 mm guard column and three Waters WAT054466, WAT044226, WAT044223 columns (Polymer Laboratories: linear range of molecular weight = 500 - 4×10⁶), or gel permeation chromatography (GPC) analyses were performed on a Waters 1515 instrument equipped with a guard column MIXED 7.5×50 mm PL column and two MIXED-C 7.5X300 columns and a differential refractive index detector using DMF (HPLC grade, containing 50 mmol/L LiBr) as

the eluent at 35 °C and a flow rate of 1 mL/min. The differential refractive index (DRI) increment (dn/dc) value of 0.0844 mL/g was used for PMMBL and 0.0981 for PMBL. For PMMA, number-average molecular weight (M_n) and $D = M_w/M_n$ were measured by the GPC instrument calibrated with 10 PMMA standards, and chromatograms were processed with Waters Breeze 2 software.

Glass transition temperatures (T_g) of the polymers were measured by differential scanning calorimetry (DSC) on a Q20, TA Instruments. Polymer samples were first heated to 240 °C at 20 °C/min, equilibrated at this temperature for 2 min, then cooled to -60 °C at 20 °C/min, held at this temperature for 2 min, and then reheated to 240 °C at 20 °C/min. All T_g values were obtained from the second scan, after the removal of the thermal history.

The isolated low-MW polymer samples were analyzed by matrix-assissted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF MS); the experiment was performed on a Bruker Autoflex speed TOF/TOF mass spectrometer in linear, positive ion, reflector mode using a Nd:YAG laser at 355nm and 25 KV accelerating voltage. A thin layer of 1% CF₃COONa solution was first deposited on the target plate, followed by 0.6 μL of both sample and matrix (trans-2-[3-(4-tertbutylphenyl)-2-methyl-2-propylidene]malonitrile (DCTB), 20 mg/mL in THF). External calibration was done using a peptide calibration mixture (4-6 peptides) on a spot adjacent to the sample. The raw data were processed in the FlexAnalysis software.

2. Isolation of adduct.

Isolation of (BHT)₂**AIMe·MMBL** (BHT)₂AIMe·MMBL Adduct was prepared and isolated as a white powder in 85% yield (504mg) using the same procedure as described for the preparation of Al(C_6F_5)₃·MMBL.¹² ¹H NMR (500 MHz, Benzene- d_6) δ 7.24 (s, 4H, Ar-H), 6.33 (t, J = 3Hz, 1H, =CH), 5.00 (t, J = 2.5Hz, 1H, =CH), 3.77 (m, 1H, OCH), 2.33 (s, 6H, 2*Me*Ar), 1.69 (s, 36H, 2^tBuAr), 0.55 (d, J = 6.5 Hz, 3H, CH₃), 0.07 (s, 3H, AlMe). ¹³C NMR (126 MHz, Benzene-

*d*₆) δ 177.3, 155.2, 139.0, 138.9, 133.8, 130.2, 126.3, 125.3, 82.5, 35.5, 33.1, 32.1, 21.5, 20.6 ppm.

Figure S1. ¹H NMR spectrum of (BHT)₂AIMe·MMBL (Benzene-*d*₆, 500 MHz).

Figure S2. ¹³C NMR spectrum of (BHT)₂AlMe⋅MMBL (Benzene-*d*₆, 125 MHz).

Isolation of (BHT)₂**A***l*^{*i*}**Bu·MMBL** (BHT)₂**A***l*^{*i*}**Bu**·MMBL Adduct was prepared and isolated as a white powder in 85% yield (540mg) using the same procedure as described for the preparation of Al(C₆F₅)₃·MMBL. ¹H NMR (500 MHz, Benzene-*d*₆) δ 7.25 (s, 4H, Ar-H), 6.46 (s, 1H, =CH), 5.04 (s, 1H, =CH), 3.81 (m, 1H, OCH), 2.31 (s, 6H, 2*Me*Ar), 2.13 (m, 1H, CH₂CH(CH₃)₂), 1.68 (s, 36H, 2^{*i*}BuAr), 1.15 (d, *J* = 6.0Hz, 6H, CH₂CH(CH₃)₂), 0.76 (m, 2H, CH₂CH(CH₃)₂), 0.58 (d, *J* = 6.5 Hz, 3H, CH₃). ¹³C NMR (126 MHz, Benzene-*d*₆) δ 177.0, 154.8, 138.4, 133.5, 129.7, 126.0, 125.0, 82.0, 35.2, 32.9, 31.8, 28.6, 28.4, 25.7, 25.2, 21.1, 20.2, 14.0 ppm.

Figure S3. ¹H NMR spectrum of $(BHT)_2Al'Bu \cdot MMBL$ (Benzene- d_6 , 500 MHz).

Figure S4. ¹³C NMR spectrum of (BHT)₂Al^{*i*}Bu·MMBL (Benzene-*d*₆, 125 MHz).

3. Stoichiometric NMR Reaction

NMR Reaction of P(NI'Pr)'Pr2 with (BHT)2AI'Bu·MMBL in a 1:1 ratio

In an argon-filled glovebox, a Teflon-valve-sealed J. Young-type NMR tube was charged with 3.11 mg (0.01 mmol) of P(NI'Pr)'Pr₂ and 0.3 mL of C₆D₆. A 0.3 mL C₆D₆ solution of (BHT)₂Al'Bu·MMBL (6.40 mg, 0.01 mmol) was slowly added to this tube via pipet at room temperature. The mixture was allowed to react for 15 min at room temperature before the NMR spectra were recorded, which showed the clean formation of the zwitterion **1**. ¹H NMR (500 MHz, Benzene-*d*₆) δ 7.29 (s, 4H, Ar-H), 4.36 (m, 1H, OCH), 4.31 (m, 2H, 2NCH(CH₃)₂), 2.99 (dd, *J* = 15.5Hz, 11Hz, 1H, PCH₂), 2.88 (dd, *J* = 15.5Hz, 11Hz, 1H, PCH₂), 2.53 (m, 1H, CH₂CH(CH₃)₂), 2.39 (s, 6H, 2*M*eAr), 2.37 (dd, *J* = 11.5Hz, 8Hz, 1H, CH₂), 2.01 (dd, *J* = 11.5Hz, 8Hz, 1H, CH₂), 1.83 (s, 36H, 2^{*i*}BuAr), 3.20(d, *J* = 10Hz, 2H, PCH₂), 1.57 (s, 6H, *Me*C=C*Me*), 1.41 (d, *J* = 6.5Hz, 6H, CH₂CH(CH₃)₂), 1.27 (d, *J* = 6.5 Hz, 3H, OCHCH₃), 0.92-1.02 (m, 2H, CH₂CH(CH₃)₂), 0.92-1.02 (m, 12H, PCH(CH₃)₂), 0.92-1.02 (m, 12H, NCH(CH₃)₂). ³¹P NMR (202Hz, Benzene-*d*₆) δ 37.2 ppm (m).

Figure S5. ¹H NMR spectrum for the reaction of $P(NI'Pr)'Pr_2$ with $(BHT)_2AI'Bu \cdot MMBL$. (500 MHz, Benzene- d_6).

50 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -2. δ(ppm)

Figure S6. ³¹P NMR spectrum for the reaction of $P(NI'Pr)'Pr_2$ with $(BHT)_2AI'Bu \cdot MMBL$. (202 MHz, Benzene- d_6).

NMR Reaction of P(NI'Pr)Ph₂ with (BHT)₂Al'Bu·MMBL in a 1:1 ratio

In an argon- filled glovebox, a Teflon-valve-sealed J. Young-type NMR tube was charged with 3.79 mg (0.01 mmol) of P(NI'Pr)Ph₂ and 0.3 mL of C₆D₆. A 0.3 mL C₆D₆ solution of (BHT)₂Al'Bu·MMBL (6.40 mg, 0.01 mmol) was slowly added to this tube via pipet at room temperature. The mixture was allowed to react for 15 min at room temperature before the NMR spectra were recorded, which showed the clean formation of the zwitterion **2**. ¹H NMR (500 MHz, Benzene-*d*₆) δ 7.53-7.56 (m, 2H, P-Ph), 7.46-7.50 (m, 2H, P-Ph), 7.31 (s, 4H, Ar-H), 7.07-7.10 (m, 6H, P-Ph), 4.30 (m, 1H, OCH), 4.30 (m, 2H, 2NCH(CH₃)₂), 3.95 (dd, *J* = 16Hz, 12Hz, 1H, PCH₂), 3.67 (dd, *J* = 16Hz, 12Hz, 1H, PCH₂), 2.58 (m, 1H, CH₂CH(CH₃)₂), 2.38 (s, 6H, 2MeAr), 2.12 (dd, *J* = 12.5Hz, 9.5Hz, 1H, CH₂), 1.84 (dd, *J* = 12.5Hz, 9.5Hz, 1H, CH₂), 1.84 (s, 36H, 2'BuAr), 1.50 (s, 6H, MeC=CMe), 1.42 (d, *J* = 6.5Hz, 6H, CH₂CH(CH₃)₂), 1.12 (d, *J* = 6.0 Hz, 3H, OCHCH₃), 0.85 (d, *J* = 7Hz, 6H, NCH(CH₃)₂), 0.81 (d, *J* = 7Hz, 6H, NCH(CH₃)₂). ³¹P NMR (202Hz, Benzene-*d*₆) δ 9.9 ppm (m).

Figure S7. ¹H NMR spectrum for the reaction of $P(NI'Pr)Ph_2$ with $(BHT)_2AI'Bu \cdot MMBL$. (500 MHz, Benzene- d_6).

Figure S8. ³¹P NMR spectrum for the reaction of $P(NI'Pr)Ph_2$ with $(BHT)_2Al'Bu \cdot MMBL$. (202 MHz, Benzene- d_6).

4. Acidity of different Lewis acids measured through Gutmann-Beckett method

The relative Lewis acidities were determined by dividing the change in chemical shift of the triethylphsophine oxide resonance upon binding to the electron–deficient aluminum catalyst relative to $Al(C_6F_5)_3$, similar to determining the Lewis Acidity of electron–deficient boron catalyst relative to $B(C_6F_5)_3$ by the Gutmann–Beckett method ^{14,15}. In a glove box, aluminum catalyst (0.025 mmol) was added to a 0.5 mL C_6D_6 solution of Et₃PO (0.025 mmol/0.5 mL, 0.05 M) in a 4-mL NMR tube. The reaction mixture was monitored by ³¹P NMR spectroscopy after 30 min at room temperature.

Aluminum Catalvst	³¹ P{ ¹ H} NMR	$\bigtriangleup \delta$ values relative to	Relative Lewis Acidity	
	(δ/ppm)	free Et ₃ PO (δ /ppm)	(%)	
$AI(C_6F_5)_3$	73.5	28.0	100%	
(BHT)₂AIMe	69.5	24.0	86%	
(BHT)₂Al ⁱ Bu	69.4	23.9	85%	
(BHT)Al ⁱ Bu ₂	66.3	20.8	74%	

Table S1. Acidity of different Lewis acids measured through Gutmann–Beckett method

5. Selected polymerization results

Table S2. (M)MBL Polymerization by P(NIⁱPr)R₂-based LPs.^a

Run	LB	LA	М	[M]:[LA]:[LB]	Т	conv. ^b	M_{n}^{c}	<i>M</i> _w ^c	Т
					(min)	(%)	(kg·mol⁻¹)	(kg·mol⁻¹)	
1	P(NI'Pr) ⁱ Pr ₂	(BHT) ₂ Al ⁱ Bu•MMBL	MMBL	400:2:1	90	100	105	112	1.07
2	P(NI [/] Pr) ^t Bu ₂	(BHT)₂Al ⁱ Bu•MMBL	MMBL	400:2:1	720	100	234.6	338	1.44
3	P(NI [/] Pr)Mes ₂	(BHT)₂Al ⁱ Bu•MMBL	MMBL	400:2:1	1440	100	208	300	1.44
4	$P(NI'Pr)(C_6F_5)_2$	(BHT)₂Al [/] Bu•MMBL	MMBL	400:2:1	1440	0			
5	P(NI'Pr)Ph ₂	(BHT)Al ⁱ Bu ₂ •MMA	MMBL	200:2:1	1	100	32.1	33.4	1.04
6	P(NI'Pr)Ph ₂	(BHT)Al ⁱ Bu ₂ •MMA	MMBL	200:2:1	1				
			MMBL	200:2:1	1	100	54.9	60	1.09
7	P(NI'Pr)Ph ₂	AI(C ₆ F ₅) ₃ •MMBL	MMBL	200:2:1	1	100	36.5	43.8	1.2
8	P(NI'Pr)Ph ₂	AI(C ₆ F ₅) ₃ •MMBL	MMBL	200:2:1	1				
			MMBL	200:2:1	1	100	267/16.9 ^d	371/25	1.39/1.47
9	P(NI'Pr)Ph ₂	(BHT)₂AlMe•MMBL	MMBL	200:2:1	2	100	24.2	24.9	1.03
10	P(NI'Pr)Ph ₂	(BHT)₂AlMe•MMBL	MMBL	200:2:1	2				
			MMBL	200:2:1	2	100	39.1	40.7	1.04
11	P(NI [/] Pr)Ph ₂	(BHT) ₂ AIMe•MMBL	MMBL	200:2:1	2				
			MBL	200:2:1	2	100	48.5	52.8	1.09

^{*a*} Conditions: carried out in dichloromethane at RT; $[M]_0 = 0.936 \text{ M}$. ^{*b*} Monomer conversions measured by ¹H NMR. ^{*c*} Absolute molecular weight (M_w) measured by GPC using a light scattering detector. Number-average molecular weight (M_n) is calculated from M_w/\mathcal{D} . ^{*d*} Bimodal distribution.

Figure S9. GPC traces for PMMBL samples obtained from chain extension experiments by $P(NI'Pr)Ph_2/(BHT)AI'Bu_2$ (left) and $P(NI'Pr)Ph_2/AI(C_6F_5)_3 LPs$ (right).

Figure S10. GPC traces for (left) PMMBL samples obtained from chain extension experiments by $P(NI'Pr)Ph_2/(BHT)_2AIMe$ and (right) diblock copolymer produced from the sequential block copolymerization of MMBL and MBL by $P(NI'Pr)Ph_2/(BHT)_2AIMe$.

run	LA	M:LA:	Time	conv. ^b	M_n^c	<i>M</i> w ^c	MWD ^c	I * ^d
		P(NI ⁱ Pr)Ph ₂	(min)	(%)	(kg/mol)	(kg·mol⁻¹)		(%)
1 ^A	(BHT)₂Al ⁱ Bu	400:2:1	90	100	47.5	54.7	1.15	94
2 ^B	(BHT) ₂ Al [/] Bu	400:2:1	90	100	47.4	54.3	1.15	94

Table S3. MMBL polymerization by different activation procedures^a

^{*a*}Condition: carried out in dichloromethane at RT; $[M]_0 = 0.936$ M. ^{*b*}Monomer conversions measured by ¹H NMR. ^{*c*} Absolute molecular weight (M_w) measured by GPC using a light scattering detector. Number-average molecular weight (M_n) is calculated from M_w/D . ^{*d*} Initiator efficiency (I^*)% = M_n (calcd)/ M_n (exptl) × 100, where M_n (calcd) = [MW(MMBL)] × ([MMBL]_0/[I]_0) (conversion) + MW of chain-end groups, A: premixed LA and monomer to preactivate monomer first; B: the premixed LA and LB first, followed by the addition of monomer.

Figure S11. GPC traces of PMMBL obtained from the polymerization performed using different activation procedures.

6. MALDI-TOF MS spectra of low MW PMMBL sample

MALDI-TOF MS spectra of low MW PMMBL sample produced by P(NI'Pr)Ph₂/(BHT)Al'Bu₂

Figure S12. MALDI-TOF MS spectrum of the low-MW PMMBL sample produced by $P(NI'Pr)Ph_2/(BHT)AI'Bu_2$ in dichloromethane at RT.

Figure S13. Plot of m/z values from Figure S12 vs the number of MMBL repeat units (n).

 $P(NI'Pr)Ph_2/AI(C_6F_5)_3$ in dichloromethane at RT.

Figure S15. Plot of m/z values from Figure S14 vs the number of MMBL repeat units (n).

Figure S16. MALDI-TOF mass spectrum of the low-MW PMMBL sample produced by $P(NI'Pr)Ph_2/(BHT)_2AIMe$ in dichloromethane at RT.

Figure S17. Plot of m/z values from Figure S16 vs the number of MMBL repeat units (n).

 $P(NI'Pr)Ph_2/(BHT)_2AI'Bu$ in dichloromethane at RT.

Figure S19. Plot of m/z values from Figure S18 vs the number of MMBL repeat units (n).

Scheme S1. Possible backbiting chain-termination pathways that compete with chain propagation in the polymerization of MMBL by the $P(NI'Pr)R_2$ -based Lewis pair.

7. Chain extension experiments by P(NI'Pr)Ph₂/(BHT)₂Al'Bu

-	run	M1/M2/M3	Conv. ^b	M_n^c	M_{w}^{c}	D^c	I * ^d
			(%)	(kg·mol⁻¹)	(kg·mol⁻¹)		(%)
	1	200MMBL	>99	26.2	27.5	1.05	85
	2	200/200MMBL	>99	45.3	48.5	1.07	99
	3	200/200/200MMBL	>99	73.2	79.1	1.08	92

Table S4 chain-extension experiments by P(NIⁱPr)Ph₂/(BHT)₂AlⁱBu^a

^{*a*} Conditions: carried out in dichloromethane at RT; $[M]_0 = 0.936 \text{ M}$. ^{*b*} Monomer conversions measured by ¹H NMR ^{*c*} Absolute molecular weight (M_w) measured by GPC using a light scattering detector. Number-average molecular weight (M_n) is calculated from M_w/D . ^{*d*} Initiator efficiency (I^*)% = M_n (calcd)/ M_n (exptl) × 100, where M_n (calcd) = [MW(MMBL)] × ([MMBL]_0/[I]_0) (conversion) + MW of chain-end groups.

8. Copolymerization catalyzed by P(NI'Pr)Ph₂/(BHT)₂Al'Bu FLP

Run	M1/M2	Conv. ^b	M_n^c	<i>M</i> _w ^c	Ðc
		(%)	(kg·mol⁻¹)	(kg·mol⁻¹)	
1	200MMBL	>99	26.2	27.5	1.05
2 ^{<i>d</i>}	200MMBL+200MBL	MMBL:100			
		MBL:100	50.9	52.5	1.03
3	200MMBL/200MBL	MMBL:100			
		MBL:100	45.8	48.1	1.05
4	200MMBL/200MBL/200MMBL	MMBL:100			
		MBL:100			
		MMBL:100	65.7	69.7	1.06

Table S5. Copolymerization of MMBL and MBL by P(NI^{*i*}Pr)Ph₂/(BHT)₂Al^{*i*}Bu FLP.^{*a*}

^{*a*} Conditions: carried out in dichloromethane at RT; $[M]_0 = 0.936 \text{ M}$. ^{*b*} Monomer conversions measured by ¹H NMR ^{*c*} Absolute molecular weight (M_w) measured by GPC using a light scattering detector. Number-average molecular weight (M_n) is calculated from M_w/D . ^{*d*} MMBL and MBL was added at the same time.

Figure S20. GPC traces of homopolymer (black), random copolymer (red) by $(BHT)_2Al^{i}Bu/P(Nl^{i}Pr)Ph_2$ in dichloromethane, where $[MMA]_0 = 0.936$ M.

run	M1/M2/M3	Solvent	Conv. ^b	M_n^c	Ðc
			(%)	(kg·mol⁻¹)	
1	200MMA	TOL	100	31.8	1.09
2	200/200MMA	TOL	100	54.6	1.07
3	200/200/200MMA	TOL	100	76.4	1.07
4	100MMA	DCM	100	13.0	1.25
5	100MMA/100MMBL	DCM	MMA:100		
			MMBL:100	26.0	1.17
6	100MMBL	DCM	100	18.3	1.05
7	100MMBL/100MMA	DCM	MMBL:100	n.d	n.d
			MMA:0		
8 ^d	200MMA+200MBL	DCM	MMBL:100	n.d	n.d
			MMA:0		
9	100EEMA	TOL	100	16.2	1.18
10	100EEMA/100MMBL	TOL	EEMA:100		
			MMBL:100	28.0	1.15

Table S6. Copolymerization of MMA, EEMA and MMBL by P(NI^{*i*}Pr)Ph₂/(BHT)₂Al^{*i*}Bu FLP.^{*a*}

^{*a*} Conditions: carried out in dichloromethane or toluene at RT; $[M]_0 = 0.936 \text{ M}$. ^{*b*} Monomer conversions measured by ¹H NMR ^{*c*} M_n and \mathcal{D} determined by GPC relative to PMMA standards in DMF. n.d.=not determined. ^{*d*} MMA and MMBL was added at the same time.

Figure S21. GPC traces for PMMA samples obtained from chain extension experiments by $P(NI'Pr)Ph_2/(BHT)_2AI'Bu$ in toluene, where $[MMA]_0 = 0.936$ M (Left) and homopolymer, diblock copolymer produced from the sequential block copolymerization of MMA and MMBL by $P(NI'Pr)Ph_2/(BHT)_2AI'Bu$ in dichloromethane at RT (Right).

Figure S22. GPC traces of homopolymer, diblock copolymer produced from the sequential block copolymerization of EEMA and MMBL by $P(NI'Pr)Ph_2/(BHT)_2AI'Bu$ in toluene at RT.

Figure S23. The aliquot of the polymerization for run7 in Table S6. (500 MHz, Chloroform-*d*).

Figure S24. The aliquot of the polymerization for run8 in Table S6. (500 MHz, Chloroform-d).

9. DSC of polymer samples obtained with P(NI'Pr)Ph₂/(BHT)₂Al'Bu FLP

Figure S25. DSC of diblock PMMA-*b*-PMMBL copolymer produced by P(NI[']Pr)Ph₂/(BHT)₂Al[']Bu

Figure S26. DSC of diblock PEEMA-*b*-PMMBL copolymer produced by P(NI'Pr)Ph₂/(BHT)₂Al'Bu

10. Kinetics experiments

Polymerization Kinetics. Kinetic experiments were carried out in a stirred glass reactor at ambient temperature (*ca.* 25 °C) inside an argon-filled glovebox using the polymerization procedure already described above, with fixed 1:2 [P(NI'Pr)Ph₂]₀/[(BHT)₂Al'Bu]₀ ratio and

[MMBL]₀ at 0.936 M, where [P(NI[/]Pr)Ph₂]₀ = 1.17, 2.34, 4.68, and 9.36 mM in 5 mL mixture solutions. At appropriate time intervals, 0.2 mL aliquots were withdrawn from the reaction mixture using syringe and quickly quenched into 4 mL septum-sealed vials containing 0.6 mL of undried "wet" CDCl₃ mixed with 250 ppm BHT-H. The quenched aliquots were analyzed by ¹H NMR for determining the ratio of [MMBL]_t at a given time *t* to [MMBL]₀, [MMBL]_t/[MMBL]₀. apparent rate constants (K_{app}) were extracted from the slopes of the best fit lines to the plots of [MMBL]_t/[MMBL]₀ vs time. In the second set of kinetic experiments, with a fixed [MMBL]₀/[P(NI[/]Pr)Ph₂]₀ / [(BHT)₂Al[/]Bu]₀ = 400:1:2, 400:1:3, 400:1:4 and 400:1:5. [MMBL]₀ was fixed at 0.936 M for all polymerization, where [P(NI[/]Pr)Ph₂]₀= 2.34mM and [(BHT)₂Al[/]Bu]₀ = 4.68, 7.02, 9.36, 11.7 mM in 5 mL mixture solutions. The rest of the procedure was same as the described above.

11. X-ray diffraction data

Single crystals were quickly covered with a layer of Paratone-N oil (Exxon, dried and degassed at 120°C/10⁻⁶ Torr for 24 h) after decanting the mother liquor. A crystal was then mounted on a thin glass fiber and transferred into the cold nitrogen stream of a Bruker APEX-II CCD diffractometer. The structures were solved by direct methods and refined using the Bruker SHELXTL program library by full-matrix least squares on *F2* for all reflections (*SHELXTL*, Version 6.12; Bruker Analytical X-ray Solutions: Madison, WI, 2001). The structure was refined by full-matrix least-squares on *F2* for all reflections. All non-hydrogen atoms were refined with anisotropic displacement parameters, whereas hydrogen atoms were included in the structure factor calculations at idealized positions (Sheldrick, G. M. *Acta Crystallogr., Sect. A.* **1990**, *46*, 467–473 & **2008**, *64*, 112–122.).

Figure S27. X-ray crystal structure of $P(NI'Pr)'Pr_2-MMBL-(BHT)_2AI'Bu$. Hydrogen atoms are omitted for clarity and ellipsoids drawn at 30% probability.

Compound	P(NI'Pr)'Pr ₂ -MMBL-(BHT) ₂ Al'Bu
empirical formula	$C_{60}H_{100}AIN_3O_4P$
MW	985.37
wavelength, Å	0.71073
crystal system	Monoclinic
space group	P2(1)/n
<i>a,</i> Å	19.437(2)
<i>b,</i> Å	15.0322(18)
<i>c,</i> Å	20.796(2)
α , deg	90
<i>в,</i> deg	91.599(3)
γ, deg	90
V, Å ³	6073.8(11)
Z	4
D _{calc} , g cm ⁻³	1.078
μ, mm ⁻¹	0.104
F(000)	2164
crystal size, mm	0.08 x 0.07 x 0.06
ϑ range, deg	1.414 - 26.371
limiting indices	-24≤h≤20,

Table S7. Crystal Data and Structure Refinement for P(NI'Pr)'Pr2-MMBL-(BHT)2Al'Bu

	-18≤ <i>k</i> ≤17,
	-25≤ / ≤16
refins collected	34143
independent reflns	12334
	[<i>R</i> (int) = 0.1361]
absorption correction	None
data/restraints/para's	12334 / 45 / 680
goodness-of-fit on F ²	0.946
final R indices	<i>R</i> 1 = 0.0794
[>2ơ()] ^[a]	wR2 = 0.1690
R indices (all data) [a]	<i>R</i> 1 = 0.2091
	wR2 = 0.2213
peak _{max} /hole _{min} (e Å ⁻³)	0.373 / -0.318
$[a] R1 = \Sigma F_o - F_c /\Sigma F_o ; w$	$R2 = \{\Sigma[w(F_o^2 - F_c^2)^2] / \Sigma[w(F_o^2)^2]\}^{1/2}$

P(1)-N(1)	1.588(3)	C(28)-H(28)	0.9300	
P(1)-C(6)	1.816(4)	C(28)-C(29)	1.392(6)	
P(1)-C(7)	1.797(4)	C(29)-C(35)	1.539(6)	
P(1)-C(10)	1.816(4)	C(30)-C(31)	1.519(6)	
Al(1)-O(1)	1.801(3)	C(30)-C(32)	1.540(6)	
Al(1)-O(3)	1.754(3)	C(30)-C(33)	1.540(6)	
Al(1)-O(4)	1.747(3)	C(31)-H(31A)	0.9600	
Al(1)-C(54)	1.990(4)	C(31)-H(31B)	0.9600	
O(1)-C(1)	1.323(5)	C(31)-H(31C)	0.9600	
O(2)-C(1)	1.386(5)	C(32)-H(32A)	0.9600	
O(2)-C(4)	1.466(5)	C(32)-H(32B)	0.9600	
O(2)-C(4A)	1.463(4)	C(32)-H(32C)	0.9600	
O(3)-C(24)	1.347(5)	C(33)-H(33A)	0.9600	
O(4)-C(39)	1.360(4)	C(33)-H(33B)	0.9600	
N(1)-C(13)	1.332(5)	C(33)-H(33C)	0.9600	
N(2)-C(13)	1.338(5)	C(34)-H(34A)	0.9600	
N(2)-C(14)	1.473(5)	C(34)-H(34B)	0.9600	
N(2)-C(17)	1.419(5)	C(34)-H(34C)	0.9600	
N(3)-C(13)	1.368(5)	C(35)-C(36)	1.527(6)	
N(3)-C(19)	1.403(5)	C(35)-C(37)	1.521(6)	
N(3)-C(21)	1.472(5)	C(35)-C(38)	1.534(6)	
C(1)-C(2)	1.329(6)	C(36)-H(36A)	0.9600	
C(2)-C(3)	1.518(5)	C(36)-H(36B)	0.9600	
C(2)-C(6)	1.479(6)	C(36)-H(36C)	0.9600	
C(3)-H(3AA)	0.9700	C(37)-H(37A)	0.9600	
C(3)-H(3AB)	0.9700	C(37)-H(37B)	0.9600	
C(3)-H(3BC)	0.9700	C(37)-H(37C)	0.9600	
C(3)-H(3BD)	0.9700	C(38)-H(38A)	0.9600	

C(3)-C(4)	1.538(5)	C(38)-H(38B)	0.9600
C(3)-C(4A)	1.532(5)	C(38)-H(38C)	0.9600
C(4)-H(4)	0.9800	C(39)-C(40)	1.415(5)
C(4)-C(5)	1.538(5)	C(39)-C(44)	1.425(5)
C(5A)-H(5AA)	0.9600	C(40)-C(41)	1.405(5)
C(5A)-H(5AB)	0.9600	C(40)-C(45)	1.527(6)
C(5A)-H(5AC)	0.9600	C(41)-H(41)	0.9300
C(5A)-C(4A)	1.534(5)	C(41)-C(42)	1.381(6)
C(6)-H(6A)	0.9700	C(42)-C(43)	1.382(6)
С(6)-Н(6В)	0.9700	C(42)-C(49)	1.512(6)
C(7)-H(7A)	0.9800	C(43)-H(43)	0.9300
С(7)-Н(7В)	0.9800	C(43)-C(44)	1.397(5)
C(7)-C(8)	1.536(4)	C(44)-C(50)	1.544(6)
C(7)-C(9)	1.517(4)	C(45)-C(46)	1.546(6)
C(7)-C(9A)	1.526(5)	C(45)-C(47)	1.545(6)
C(8)-H(8A)	0.9600	C(45)-C(48)	1.526(6)
C(8)-H(8B)	0.9600	C(46)-H(46A)	0.9600
C(8)-H(8C)	0.9600	C(46)-H(46B)	0.9600
C(9)-H(9A)	0.9600	C(46)-H(46C)	0.9600
С(9)-Н(9В)	0.9600	C(47)-H(47A)	0.9600
C(9)-H(9C)	0.9600	C(47)-H(47B)	0.9600
C(10)-H(10)	0.9800	C(47)-H(47C)	0.9600
C(10)-C(11)	1.527(6)	C(48)-H(48A)	0.9600
C(10)-C(12)	1.527(6)	C(48)-H(48B)	0.9600
C(11)-H(11A)	0.9600	C(48)-H(48C)	0.9600
C(11)-H(11B)	0.9600	C(49)-H(49A)	0.9600
C(11)-H(11C)	0.9600	C(49)-H(49B)	0.9600
C(12)-H(12A)	0.9600	C(49)-H(49C)	0.9600
C(12)-H(12B)	0.9600	C(50)-C(51)	1.537(5)
C(12)-H(12C)	0.9600	C(50)-C(52)	1.535(5)
C(14)-H(14)	0.9800	C(50)-C(53)	1.525(5)
C(14)-C(15)	1.517(6)	C(51)-H(51A)	0.9600
C(14)-C(16)	1.520(6)	C(51)-H(51B)	0.9600
C(15)-H(15A)	0.9600	C(51)-H(51C)	0.9600
C(15)-H(15B)	0.9600	C(52)-H(52A)	0.9600
C(15)-H(15C)	0.9600	C(52)-H(52B)	0.9600
C(16)-H(16A)	0.9600	C(52)-H(52C)	0.9600
C(16)-H(16B)	0.9600	C(53)-H(53A)	0.9600
C(16)-H(16C)	0.9600	C(53)-H(53B)	0.9600
C(17)-C(18)	1.494(6)	C(53)-H(53C)	0.9600
C(17)-C(19)	1.335(6)	C(54)-H(54A)	0.9700
C(18)-H(18A)	0.9600	C(54)-H(54B)	0.9700
C(18)-H(18B)	0.9600	C(54)-C(55)	1.541(6)
C(18)-H(18C)	0.9600	C(55)-H(55)	0.9800

C(19)-C(20)	1.508(6)	C(55)-C(56)	1.528(6)
C(20)-H(20A)	0.9600	C(55)-C(57)	1.528(6)
C(20)-H(20B)	0.9600	C(56)-H(56A)	0.9600
C(20)-H(20C)	0.9600	C(56)-H(56B)	0.9600
C(21)-H(21)	0.9800	C(56)-H(56C)	0.9600
C(21)-C(22)	1.520(6)	C(57)-H(57A)	0.9600
C(21)-C(23)	1.533(6)	C(57)-H(57B)	0.9600
C(22)-H(22A)	0.9600	C(57)-H(57C)	0.9600
C(22)-H(22B)	0.9600	C(58)-H(58)	0.9300
C(22)-H(22C)	0.9600	C(58)-C(59)	1.359(4)
C(23)-H(23A)	0.9600	C(58)-C(60)#1	1.324(8)
C(23)-H(23B)	0.9600	C(59)-H(59)	0.9300
C(23)-H(23C)	0.9600	C(59)-C(60)	1.374(5)
C(24)-C(25)	1.436(6)	C(60)-H(60)	0.9300
C(24)-C(29)	1.413(6)	C(5)-H(5A)	0.9600
C(25)-C(26)	1.392(6)	C(5)-H(5B)	0.9600
C(25)-C(30)	1.541(6)	C(5)-H(5C)	0.9600
C(26)-H(26)	0.9300	C(4A)-H(4A)	0.9800
C(26)-C(27)	1.382(6)	C(9A)-H(9AA)	0.9600
C(27)-C(28)	1.380(6)	C(9A)-H(9AB)	0.9600
C(27)-C(34)	1.502(6)	C(9A)-H(9AC)	0.9600
N(1)-P(1)-C(6)	113.51(19)	C(31)-C(30)-C(32)	111.5(4)
N(1)-P(1)-C(7)	112.2(2)	C(31)-C(30)-C(33)	107.1(4)
N(1)-P(1)-C(10)	105.7(2)	C(32)-C(30)-C(25)	110.0(4)
C(6)-P(1)-C(10)	108.8(2)	C(33)-C(30)-C(25)	111.4(4)
C(7)-P(1)-C(6)	107.8(2)	C(33)-C(30)-C(32)	106.1(4)
C(7)-P(1)-C(10)	108.7(2)	C(30)-C(31)-H(31A)	109.5
O(1)-Al(1)-C(54)	107.88(17)	C(30)-C(31)-H(31B)	109.5
O(3)-Al(1)-O(1)	103.40(14)	C(30)-C(31)-H(31C)	109.5
O(3)-Al(1)-C(54)	115.84(17)	H(31A)-C(31)-H(31B)	109.5
O(4)-Al(1)-O(1)	105.17(14)	H(31A)-C(31)-H(31C)	109.5
O(4)-Al(1)-O(3)	114.06(15)	H(31B)-C(31)-H(31C)	109.5
O(4)-Al(1)-C(54)	109.57(16)	C(30)-C(32)-H(32A)	109.5
C(1)-O(1)-Al(1)	126.9(3)	С(30)-С(32)-Н(32В)	109.5
C(1)-O(2)-C(4)	104.5(4)	С(30)-С(32)-Н(32С)	109.5
C(1)-O(2)-C(4A)	105.4(4)	H(32A)-C(32)-H(32B)	109.5
C(24)-O(3)-Al(1)	163.4(3)	H(32A)-C(32)-H(32C)	109.5
C(39)-O(4)-Al(1)	172.1(3)	H(32B)-C(32)-H(32C)	109.5
C(13)-N(1)-P(1)	135.0(3)	С(30)-С(33)-Н(33А)	109.5
C(13)-N(2)-C(14)	123.1(3)	C(30)-C(33)-H(33B)	109.5
C(13)-N(2)-C(17)	109.4(3)	C(30)-C(33)-H(33C)	109.5
C(17)-N(2)-C(14)	127.1(4)	H(33A)-C(33)-H(33B)	109.5
C(13)-N(3)-C(19)	108.4(4)	H(33A)-C(33)-H(33C)	109.5

C(13)-N(3)-C(21)	123.0(3)	H(33B)-C(33)-H(33C)	109.5
C(19)-N(3)-C(21)	128.1(4)	C(27)-C(34)-H(34A)	109.5
O(1)-C(1)-O(2)	114.5(4)	C(27)-C(34)-H(34B)	109.5
O(1)-C(1)-C(2)	130.9(4)	C(27)-C(34)-H(34C)	109.5
C(2)-C(1)-O(2)	114.6(4)	H(34A)-C(34)-H(34B)	109.5
C(1)-C(2)-C(3)	107.4(4)	H(34A)-C(34)-H(34C)	109.5
C(1)-C(2)-C(6)	124.9(4)	H(34B)-C(34)-H(34C)	109.5
C(6)-C(2)-C(3)	127.2(4)	C(36)-C(35)-C(29)	110.6(4)
C(2)-C(3)-H(3AA)	111.7	C(36)-C(35)-C(38)	106.1(4)
C(2)-C(3)-H(3AB)	111.7	C(37)-C(35)-C(29)	111.0(4)
C(2)-C(3)-H(3BC)	111.4	C(37)-C(35)-C(36)	111.4(4)
C(2)-C(3)-H(3BD)	111.4	C(37)-C(35)-C(38)	105.3(4)
C(2)-C(3)-C(4)	100.3(4)	C(38)-C(35)-C(29)	112.2(4)
C(2)-C(3)-C(4A)	102.1(4)	C(35)-C(36)-H(36A)	109.5
H(3AA)-C(3)-H(3AB)	109.5	C(35)-C(36)-H(36B)	109.5
H(3BC)-C(3)-H(3BD)	109.2	C(35)-C(36)-H(36C)	109.5
C(4)-C(3)-H(3AA)	111.7	H(36A)-C(36)-H(36B)	109.5
C(4)-C(3)-H(3AB)	111.7	H(36A)-C(36)-H(36C)	109.5
C(4A)-C(3)-H(3BC)	111.4	H(36B)-C(36)-H(36C)	109.5
C(4A)-C(3)-H(3BD)	111.4	C(35)-C(37)-H(37A)	109.5
O(2)-C(4)-C(3)	104.1(4)	C(35)-C(37)-H(37B)	109.5
O(2)-C(4)-H(4)	112.7	C(35)-C(37)-H(37C)	109.5
O(2)-C(4)-C(5)	103.7(10)	H(37A)-C(37)-H(37B)	109.5
C(3)-C(4)-H(4)	112.7	H(37A)-C(37)-H(37C)	109.5
C(3)-C(4)-C(5)	110.3(5)	H(37B)-C(37)-H(37C)	109.5
C(5)-C(4)-H(4)	112.7	C(35)-C(38)-H(38A)	109.5
H(5AA)-C(5A)-H(5AB)	109.5	C(35)-C(38)-H(38B)	109.5
H(5AA)-C(5A)-H(5AC)	109.5	C(35)-C(38)-H(38C)	109.5
H(5AB)-C(5A)-H(5AC)	109.5	H(38A)-C(38)-H(38B)	109.5
C(4A)-C(5A)-H(5AA)	109.5	H(38A)-C(38)-H(38C)	109.5
C(4A)-C(5A)-H(5AB)	109.5	H(38B)-C(38)-H(38C)	109.5
C(4A)-C(5A)-H(5AC)	109.5	O(4)-C(39)-C(40)	120.2(4)
P(1)-C(6)-H(6A)	107.9	O(4)-C(39)-C(44)	119.6(4)
P(1)-C(6)-H(6B)	107.9	C(40)-C(39)-C(44)	120.2(4)
C(2)-C(6)-P(1)	117.6(3)	C(39)-C(40)-C(45)	124.0(4)
C(2)-C(6)-H(6A)	107.9	C(41)-C(40)-C(39)	117.5(4)
C(2)-C(6)-H(6B)	107.9	C(41)-C(40)-C(45)	118.4(4)
H(6A)-C(6)-H(6B)	107.2	C(40)-C(41)-H(41)	118.2
P(1)-C(7)-H(7A)	105.1	C(42)-C(41)-C(40)	123.6(4)
P(1)-C(7)-H(7B)	101.4	C(42)-C(41)-H(41)	118.2
C(8)-C(7)-P(1)	110.8(3)	C(41)-C(42)-C(43)	117.0(4)
C(8)-C(7)-H(7A)	105.1	C(41)-C(42)-C(49)	121.2(4)
C(8)-C(7)-H(7B)	101.4	C(43)-C(42)-C(49)	121.7(4)
C(9)-C(7)-P(1)	119.0(4)	С(42)-С(43)-Н(43)	118.1

C(9)-C(7)-H(7A)	105.1	C(42)-C(43)-C(44)	123.7(4)
C(9)-C(7)-C(8)	110.7(3)	C(44)-C(43)-H(43)	118.1
C(9A)-C(7)-P(1)	126.0(8)	C(39)-C(44)-C(50)	124.0(3)
C(9A)-C(7)-H(7B)	101.4	C(43)-C(44)-C(39)	117.6(4)
C(9A)-C(7)-C(8)	111.6(4)	C(43)-C(44)-C(50)	118.4(4)
C(7)-C(8)-H(8A)	109.5	C(40)-C(45)-C(46)	113.4(4)
C(7)-C(8)-H(8B)	109.5	C(40)-C(45)-C(47)	110.3(4)
C(7)-C(8)-H(8C)	109.5	C(47)-C(45)-C(46)	106.0(4)
H(8A)-C(8)-H(8B)	109.5	C(48)-C(45)-C(40)	110.0(4)
H(8A)-C(8)-H(8C)	109.5	C(48)-C(45)-C(46)	106.6(4)
H(8B)-C(8)-H(8C)	109.5	C(48)-C(45)-C(47)	110.3(4)
C(7)-C(9)-H(9A)	109.5	C(45)-C(46)-H(46A)	109.5
C(7)-C(9)-H(9B)	109.5	C(45)-C(46)-H(46B)	109.5
C(7)-C(9)-H(9C)	109.5	C(45)-C(46)-H(46C)	109.5
H(9A)-C(9)-H(9B)	109.5	H(46A)-C(46)-H(46B)	109.5
H(9A)-C(9)-H(9C)	109.5	H(46A)-C(46)-H(46C)	109.5
H(9B)-C(9)-H(9C)	109.5	H(46B)-C(46)-H(46C)	109.5
P(1)-C(10)-H(10)	107.7	C(45)-C(47)-H(47A)	109.5
C(11)-C(10)-P(1)	111.4(3)	C(45)-C(47)-H(47B)	109.5
C(11)-C(10)-H(10)	107.7	C(45)-C(47)-H(47C)	109.5
C(12)-C(10)-P(1)	111.2(3)	H(47A)-C(47)-H(47B)	109.5
C(12)-C(10)-H(10)	107.7	H(47A)-C(47)-H(47C)	109.5
C(12)-C(10)-C(11)	110.9(4)	H(47B)-C(47)-H(47C)	109.5
C(10)-C(11)-H(11A)	109.5	C(45)-C(48)-H(48A)	109.5
C(10)-C(11)-H(11B)	109.5	C(45)-C(48)-H(48B)	109.5
C(10)-C(11)-H(11C)	109.5	C(45)-C(48)-H(48C)	109.5
H(11A)-C(11)-H(11B)	109.5	H(48A)-C(48)-H(48B)	109.5
H(11A)-C(11)-H(11C)	109.5	H(48A)-C(48)-H(48C)	109.5
H(11B)-C(11)-H(11C)	109.5	H(48B)-C(48)-H(48C)	109.5
C(10)-C(12)-H(12A)	109.5	C(42)-C(49)-H(49A)	109.5
C(10)-C(12)-H(12B)	109.5	C(42)-C(49)-H(49B)	109.5
C(10)-C(12)-H(12C)	109.5	C(42)-C(49)-H(49C)	109.5
H(12A)-C(12)-H(12B)	109.5	H(49A)-C(49)-H(49B)	109.5
H(12A)-C(12)-H(12C)	109.5	H(49A)-C(49)-H(49C)	109.5
H(12B)-C(12)-H(12C)	109.5	H(49B)-C(49)-H(49C)	109.5
N(1)-C(13)-N(2)	126.9(4)	C(51)-C(50)-C(44)	110.2(3)
N(1)-C(13)-N(3)	125.3(4)	C(52)-C(50)-C(44)	110.2(3)
N(2)-C(13)-N(3)	107.3(3)	C(52)-C(50)-C(51)	111.0(3)
N(2)-C(14)-H(14)	106.5	C(53)-C(50)-C(44)	112.5(3)
N(2)-C(14)-C(15)	112.5(4)	C(53)-C(50)-C(51)	106.2(4)
N(2)-C(14)-C(16)	111.5(4)	C(53)-C(50)-C(52)	106.7(3)
C(15)-C(14)-H(14)	106.5	C(50)-C(51)-H(51A)	109.5
C(15)-C(14)-C(16)	112.8(4)	C(50)-C(51)-H(51B)	109.5
C(16)-C(14)-H(14)	106.5	C(50)-C(51)-H(51C)	109.5

C(14)-C(15)-H(15A)	109.5	H(51A)-C(51)-H(51B)	109.5
C(14)-C(15)-H(15B)	109.5	H(51A)-C(51)-H(51C)	109.5
C(14)-C(15)-H(15C)	109.5	H(51B)-C(51)-H(51C)	109.5
H(15A)-C(15)-H(15B)	109.5	C(50)-C(52)-H(52A)	109.5
H(15A)-C(15)-H(15C)	109.5	C(50)-C(52)-H(52B)	109.5
H(15B)-C(15)-H(15C)	109.5	C(50)-C(52)-H(52C)	109.5
C(14)-C(16)-H(16A)	109.5	H(52A)-C(52)-H(52B)	109.5
C(14)-C(16)-H(16B)	109.5	H(52A)-C(52)-H(52C)	109.5
C(14)-C(16)-H(16C)	109.5	H(52B)-C(52)-H(52C)	109.5
H(16A)-C(16)-H(16B)	109.5	C(50)-C(53)-H(53A)	109.5
H(16A)-C(16)-H(16C)	109.5	C(50)-C(53)-H(53B)	109.5
H(16B)-C(16)-H(16C)	109.5	C(50)-C(53)-H(53C)	109.5
N(2)-C(17)-C(18)	124.4(4)	H(53A)-C(53)-H(53B)	109.5
C(19)-C(17)-N(2)	106.7(4)	H(53A)-C(53)-H(53C)	109.5
C(19)-C(17)-C(18)	128.8(4)	H(53B)-C(53)-H(53C)	109.5
C(17)-C(18)-H(18A)	109.5	Al(1)-C(54)-H(54A)	107.7
C(17)-C(18)-H(18B)	109.5	Al(1)-C(54)-H(54B)	107.7
C(17)-C(18)-H(18C)	109.5	H(54A)-C(54)-H(54B)	107.1
H(18A)-C(18)-H(18B)	109.5	C(55)-C(54)-Al(1)	118.3(3)
H(18A)-C(18)-H(18C)	109.5	C(55)-C(54)-H(54A)	107.7
H(18B)-C(18)-H(18C)	109.5	C(55)-C(54)-H(54B)	107.7
N(3)-C(19)-C(20)	124.0(4)	C(54)-C(55)-H(55)	107.8
C(17)-C(19)-N(3)	108.1(4)	C(56)-C(55)-C(54)	111.6(4)
C(17)-C(19)-C(20)	127.8(4)	C(56)-C(55)-H(55)	107.8
C(19)-C(20)-H(20A)	109.5	C(56)-C(55)-C(57)	109.3(4)
C(19)-C(20)-H(20B)	109.5	C(57)-C(55)-C(54)	112.4(4)
C(19)-C(20)-H(20C)	109.5	C(57)-C(55)-H(55)	107.8
H(20A)-C(20)-H(20B)	109.5	C(55)-C(56)-H(56A)	109.5
H(20A)-C(20)-H(20C)	109.5	C(55)-C(56)-H(56B)	109.5
H(20B)-C(20)-H(20C)	109.5	C(55)-C(56)-H(56C)	109.5
N(3)-C(21)-H(21)	106.9	H(56A)-C(56)-H(56B)	109.5
N(3)-C(21)-C(22)	110.8(4)	H(56A)-C(56)-H(56C)	109.5
N(3)-C(21)-C(23)	112.8(3)	H(56B)-C(56)-H(56C)	109.5
C(22)-C(21)-H(21)	106.9	C(55)-C(57)-H(57A)	109.5
C(22)-C(21)-C(23)	112.1(4)	C(55)-C(57)-H(57B)	109.5
C(23)-C(21)-H(21)	106.9	C(55)-C(57)-H(57C)	109.5
C(21)-C(22)-H(22A)	109.5	H(57A)-C(57)-H(57B)	109.5
C(21)-C(22)-H(22B)	109.5	H(57A)-C(57)-H(57C)	109.5
C(21)-C(22)-H(22C)	109.5	H(57B)-C(57)-H(57C)	109.5
H(22A)-C(22)-H(22B)	109.5	C(59)-C(58)-H(58)	119.5
H(22A)-C(22)-H(22C)	109.5	C(59)-C(58)-C(60)#1	121.0(7)
H(22B)-C(22)-H(22C)	109.5	C(60)#1-C(58)-H(58)	119.5
C(21)-C(23)-H(23A)	109.5	C(58)-C(59)-H(59)	122.7
C(21)-C(23)-H(23B)	109.5	C(58)-C(59)-C(60)	114.6(7)

C(21)-C(23)-H(23C)	109.5	C(60)-C(59)-H(59)	122.7
H(23A)-C(23)-H(23B)	109.5	C(58)#1-C(60)-H(60)	117.9
H(23A)-C(23)-H(23C)	109.5	C(59)-C(60)-C(58)#1	124.1(7)
H(23B)-C(23)-H(23C)	109.5	C(59)-C(60)-H(60)	117.9
O(3)-C(24)-C(25)	119.5(4)	C(4)-C(5)-H(5A)	109.5
O(3)-C(24)-C(29)	121.6(4)	C(4)-C(5)-H(5B)	109.5
C(29)-C(24)-C(25)	118.9(4)	C(4)-C(5)-H(5C)	109.5
C(24)-C(25)-C(30)	123.7(4)	H(5A)-C(5)-H(5B)	109.5
C(26)-C(25)-C(24)	117.2(4)	H(5A)-C(5)-H(5C)	109.5
C(26)-C(25)-C(30)	119.0(4)	H(5B)-C(5)-H(5C)	109.5
C(25)-C(26)-H(26)	117.9	O(2)-C(4A)-C(3)	104.5(4)
C(27)-C(26)-C(25)	124.2(4)	O(2)-C(4A)-C(5A)	105.8(6)
C(27)-C(26)-H(26)	117.9	O(2)-C(4A)-H(4A)	111.4
C(26)-C(27)-C(34)	122.0(4)	C(3)-C(4A)-C(5A)	111.8(5)
C(28)-C(27)-C(26)	116.3(4)	C(3)-C(4A)-H(4A)	111.4
C(28)-C(27)-C(34)	121.7(4)	C(5A)-C(4A)-H(4A)	111.4
C(27)-C(28)-H(28)	118.1	C(7)-C(9A)-H(9AA)	109.5
C(27)-C(28)-C(29)	123.8(4)	C(7)-C(9A)-H(9AB)	109.5
C(29)-C(28)-H(28)	118.1	C(7)-C(9A)-H(9AC)	109.5
C(24)-C(29)-C(35)	122.6(4)	H(9AA)-C(9A)-H(9AB)	109.5
C(28)-C(29)-C(24)	118.3(4)	H(9AA)-C(9A)-H(9AC)	109.5
C(28)-C(29)-C(35)	119.1(4)	H(9AB)-C(9A)-H(9AC)	109.5
C(31)-C(30)-C(25)	110.6(4)		

12.References

- 1. R. D. Allen, T. E. Long, J. E. McGrath, Polym. Bull. 1986, 15, 127-134.
- 2. M. Lehmann, A. Schulz, A. Villinger, Angew. Chem. Int. Ed. 2009, 48, 7444-7447
- 3. M. Karsch, H. Lund, A. Schulz, A. Villinger, K. Voss, Eur. J. Inorg. Chem. 2012, 4, 5542-5553.
- 4. P. Biagini, G. Lugli, L. Abis, P. Andreussi, U.S. Pat. 5,602269, 1997.
- 5. C. H. Lee, S. J. Lee, J. W. Park, K. H. Kim, B. Y. Lee, J. S. Oh, J. Mol. Cat., A: Chem. 1998, 132,

231–239.

- 6. S. Feng, G. R. Roof, E. Y.-X. Chen, *Organometallics*, 2002, **21**, 832-839.
- 7. N. Kuhn, T. Kratz, Synthesis, 1993, 6, 561-562.

8. M. Tamm, D. Petrovic, S. Randoll, S. Beer, T. Bannenberg, P. G. Jones, J. S Grunenberg, *Org. Biomol. Chem.* 2007, **5**, 523-530.

F. Buss, P. Mehlmann, C. Muck-Lichtenfeld, K. Bergander, F. Dielmann, J. Am. Chem. Soc.
2016, 138, 1840-1843.

10. R. A. Stapleto, A. Al-Humydi, J. Chai, B. R. Galan, S. Collins, *Organometallics* 2006, **25**, 5083-5092.

11. Evgeny E. Faingol'd, Natalia MBravaya, Andrei N. Panin, Olga NBabkina, Stanislav L. Saratovskikh, Victor I. Privalov, *J. Appl. Polym. Sci.* 2016, **133**, 43276.

12. L. Hu, J.He, Y. Zhang, E. Y. -X. Chen, *Macromolecules* 2018, **51**, 1296-1307.

13. Y. Bai, J. He, Y. Zhang, Angew. Chem., Int. Ed., 2018, 57, 17230–17234.

14. M. A. Beckett, D. S. Brassington, S. J. Coles, M. B. Hursthouse, Inorg. Chem. Commun. 2000, **3**, 530-533.

15. Z. M. Heiden, A. P. Lathem, Organometallics 2015, 34, 1818-1827.