# **Supporting Information**

### Investigating the Effect of $\alpha$ -Pinene on the ROMP of $\delta$ -Pinene

*Mark R. Yarolimek, Brianna M. Coia, Heather R. Bookbinder, and Justin G. Kennemur*<sup>\*</sup>

Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL 32306-4390, United States.

## Table of Contents:

| I.   | Materials                                                                                                                                                                                                                                                                                                                                                                               | S3                                 |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| II.  | Monomer Synthesis, Purification, and Characterization<br>A. δ-pinene                                                                                                                                                                                                                                                                                                                    | S3<br>S3                           |
| III. | <ul> <li>Additional Characterization and Instrumentation Information</li> <li>A. α-Pinene Homopolymerization <sup>1</sup>H-NMR</li> <li>B. Stacked Crude <sup>1</sup>H-NMR of δ-Pinene ROMPs with Varying α-Pinene Content</li> <li>C. G3 in CDCl<sub>3</sub> <sup>1</sup>H-NMRs</li> <li>D. 10:1 α-pinene:G3 <sup>1</sup>H-NMRs</li> <li>E. 5:5:1 δ:α:G3 <sup>1</sup>H-NMRs</li> </ul> | S4<br>S4<br>S5<br>S5<br>S10<br>S13 |
| IV.  | Computational Details                                                                                                                                                                                                                                                                                                                                                                   | S19                                |
| VI.  | References                                                                                                                                                                                                                                                                                                                                                                              | S35                                |

#### I. Materials

All chemicals were used as received unless otherwise noted. Grubbs Catalyst M204 (Grubbs 2<sup>nd</sup> generation/G2) (99.95%) was obtained from Umicore. Hoveyda-Grubbs catalyst 2<sup>nd</sup> generation (HG2) (97%), Sodium hydroxide ( $\geq 85\%$ ), boron trifluoride diethyl etherate (98%), and 3-bromopyridine (99%) were obtained from Sigma-Aldrich. Hexane (>98.5%), dichloromethane (DCM) (≥99.5%), tetrahydrofuran (THF) (≥99.5%), diethyl ether (DEE) (>99.0%), and methanol (>99.8%) were obtained from EMD Millipore. Potassium *tert*-butoxide (99%), 4-toluenesulfonyl chloride (tosyl chloride) (99%), sodium borohydride (98%), pyridine (99.9%), (-)-alpha-pinene (98%), hydrogen peroxide (35%), chlorosulfonyl isocyanate (CSI) (99%), and anhydrous sodium sulfite (99%) were obtained from Oakwood Chemical. 4dimethylaminopyridine (DMAP) (99%) was obtained from Acros. Basic aluminum oxide Brockman Grade I (99%) was obtained from Alfa-Aesar. Neutral aluminum oxide Brockman Grade I (99%) was obtained from BeanTown Chemical. THF and DCM were purified with a SG Water USA Company solvent still by filtration through two columns of neutral alumina and an in-line 2 µm filter. Hydrochloric acid (HCl, 36.5-38%) was obtained from VWR. Sodium sulfate (>99%), sodium chloride (>99%), sodium bicarbonate (≥99.7%) were obtained from BDH. Silica gel, SiliaFlash P60 (40-63 μm), was obtained from SiliCycle. Chloroform-d (CDCl<sub>3</sub>) (99.8%, Sigma-Aldrich) was stored over 4 Å molecular sieves. Grubbs' 3rd generation catalyst (G3) was synthesized from G2 following previous procedures.<sup>1,2</sup>

#### II. Monomer Synthesis, Purification, and Characterization

δ-pinene [(1R, 4R, 5S)-4,6,6-trimethylbicyclo[3.1.1]hept-2-ene] was synthesized according to our previously reported procedure<sup>3</sup> and modified as described in the main manuscript.



**Figure S1.** <sup>1</sup>H NMR of  $\delta$ -pinene only purified through a hexane/silica gel plug and subsequent vacuum transfer with no attempt to remove excess  $\alpha$ -pinene (~ 28.9 mol % relative to  $\delta$ -pinene).

#### **III.** Additional Characterizations and Instrumentation

Nuclear magnetic resonance (NMR) samples were all prepared by dissolution in CDCl<sub>3</sub>. Both <sup>1</sup>H and <sup>13</sup>C NMR spectra were obtained on either a Bruker Advance III 600 MHz or 400 MHz NMR with a 1 s pulse delay for both small molecules and polymerization aliquots.

Size exclusion chromatography (SEC) samples were prepared by dissolution of between 3 - 10 mg of polymer in 1 mL of THF, followed by filtration through a 0.45  $\mu$ m polytetrafluoroethylene (PTFE) filter prior to analysis with an Agilent-Wyatt combination triple detection SEC equipped with three successive Agilent PL-gel Mixed C columns (THF mobile phase, 25 °C), an Agilent 1260 infinity series pump, degasser, autosampler and thermostatted column chamber. The triple detection unit consists of a MiniDawn TREOS 3-angle light scattering detector, Optilab TrEX refractive index detector and a Viscostar II differential viscometer in successive order. A previously determined *dn/dc* value (0.1187 mL g<sup>-1</sup>)<sup>3</sup> was utilized for all P\deltaP samples.



Figure S2. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) of 200:1 α-pinene:G3 polymerization in tol. after 20 hr.



**B.** Stacked Crude 1H-NMR of  $\delta$ -Pinene ROMPs with Varying  $\alpha$ -Pinene Content

**Figure S3.** a) Stacked <sup>1</sup>H-NMR's (400 MHz, CDCl<sub>3</sub>, 25 °C) following ROMP of  $\delta$ -pinene with varying molar ratios of  $\alpha$ -pinene (1.5 – 50 mol %) for 1 hr and termination with EVE. b) Zoomed in olefin proton signals used for determination of conversion plotted in Figure 2.





S6



Figure S8. <sup>1</sup>H-NMR (600 MHz) of Ru-alkylidene range of G3 in CDCl<sub>3</sub> after 96.61 min.

96.61 min rxn time G3 in CDCl₃ 25 °C





Figure S11. <sup>1</sup>H-NMR (600 MHz) of Ru-alkylidene range of G3 in CDCl<sub>3</sub> under  $N_2$  after 92.60 min.

92.60 min rxn time G3 in CDCl<sub>3</sub> Under N<sub>2</sub> 25 °C



Figure S12. <sup>1</sup>H-NMR (600 MHz) of metallacyclobutane range of G3 in CDCl<sub>3</sub> after 92.60 min.



Figure S13. <sup>1</sup>H-NMR (600 MHz, CDCl<sub>3</sub>) of 10:1  $\alpha$ -pinene:G3 polymerization attempt after 4.49 min.



**Figure S14.** <sup>1</sup>H-NMR (600 MHz, CDCl<sub>3</sub>) of Ru-alkylidene range of 10:1 α-pinene:G3 polymerization attempt after 4.49 min.



**Figure S15.** <sup>1</sup>H-NMR (600 MHz, CDCl<sub>3</sub>) of metallacyclobutane range of 10:1  $\alpha$ -pinene:G3 polymerization attempt after 4.49 min.



**Figure S16.** <sup>1</sup>H-NMR (600 MHz, CDCl<sub>3</sub>) of 10:1  $\alpha$ -pinene:G3 polymerization attempt after 67.04 min.



**Figure S17.** <sup>1</sup>H-NMR (600 MHz, CDCl<sub>3</sub>) of Ru-alkylidene range of 10:1 α-pinene:G3 polymerization attempt after 67.04 min.



**Figure S18.** <sup>1</sup>H-NMR (600 MHz, CDCl<sub>3</sub>) of metallacyclobutane range of 10:1 α-pinene:G3 polymerization attempt after 67.04 min.



**Figure S20.** <sup>1</sup>H-NMR (600 MHz, CDCl<sub>3</sub>) of Ru-alkylidene range of 5:1 δ-pinene:G3 polymerization after 5.53 min.





Figure S23. <sup>1</sup>H-NMR (600 MHz, CDCl<sub>3</sub>) of Ru-alkylidene range of 5:1 δ-pinene:G3 polymerization after 29.11 min.

29.11 min rxn time 5:5:1 δ:α:G3 25 °C CDCl<sub>3</sub>



Figure S22. <sup>1</sup>H-NMR (600 MHz, CDCl<sub>3</sub>) of 5:1 δ-pinene:G3 polymerization after 29.11 min.



**Figure S24.** <sup>1</sup>H-NMR (600 MHz, CDCl<sub>3</sub>) of metallacyclobutane range of 5:1 δ-pinene:G3 polymerization after 29.11 min.

**Figure S25.** <sup>1</sup>H-NMR (600 MHz, CDCl<sub>3</sub>) of 5:1  $\delta$ -pinene:G3 polymerization after 34.09 min, 4.09 min after 5 equivalents of  $\alpha$ -pinene was injected.



Figure S26. <sup>1</sup>H-NMR (600 MHz, CDCl<sub>3</sub>) of Ru-alkylidene range of 5:1 δ-pinene:G3 polymerization after 34.09 min, 4.09 min after 5 equivalents of α-pinene was injected.



Figure S27. <sup>1</sup>H-NMR (600 MHz, CDCl<sub>3</sub>) of metallacyclobutane range of 5:1 δ-pinene:G3 polymerization after 34.09 min, 4.09 min after 5 equivalents of α-pinene was injected.





**Figure S28.** <sup>1</sup>H-NMR (600 MHz, CDCl<sub>3</sub>) of 5:1  $\delta$ -pinene:G3 polymerization after 71.54 min, 41.54 min after 5 equivalents of  $\alpha$ -pinene was injected.



**Figure S29.** <sup>1</sup>H-NMR (600 MHz, CDCl<sub>3</sub>) of Ru-alkylidene range of 5:1  $\delta$ -pinene:G3 polymerization after 71.54 min, 41.54 min after 5 equivalents of  $\alpha$ -pinene was injected.

71.54 min rxn time 5:5:1 δ:α:G3 25 °C CDCl<sub>3</sub>



**Figure S30.** <sup>1</sup>H-NMR (600 MHz, CDCl<sub>3</sub>) of metallacyclobutane range of 5:1  $\delta$ -pinene:G3 polymerization after 71.54 min, 41.54 min after 5 equivalents of  $\alpha$ -pinene was injected. **IV. Computational Details:** 

**Figure S31.** Input files for the geometry, frequency, and GIAO calculations for the ruthenacyclobutane intermediate during a G3 metathesis with a disubstituted monomer.



-----

Optimization Calculation

%chk=GrubbNMR\_opt.chk # opt=calcfc PBE1PBE/genECP geom=connectivity int=ultrafine

GrubbNMR\_opt.com

| 01 |             |             |             |
|----|-------------|-------------|-------------|
| Ru | -0.18203033 | 1.37503253  | 0.00554809  |
| С  | 1.58364600  | 0.97151400  | 0.00042800  |
| С  | -0.91092221 | -0.40515468 | -0.01106179 |
| Ν  | -0.34632536 | -1.64144496 | 0.00698730  |
| Ν  | -2.26345315 | -0.58514453 | -0.04664059 |
| Cl | -0.51889910 | 1.91694927  | 2.25948160  |
| Cl | -0.54611314 | 1.92416768  | -2.24277142 |
| С  | -2.66189290 | -1.98387434 | 0.02095131  |
| С  | -1.33108046 | -2.71878158 | -0.07758332 |
| Н  | -1.21644755 | -3.27110522 | -1.02700410 |
| С  | 1.04135566  | -1.95082384 | 0.00119800  |
| С  | -3.22092864 | 0.47291613  | -0.01988014 |
| Н  | -3.19422821 | -2.19005583 | 0.96665417  |
| С  | 1.71266565  | -2.06101127 | -1.22727562 |
| С  | 3.08070401  | -2.34594098 | -1.20095087 |
| С  | 3.77789667  | -2.51350200 | 0.00136117  |
| С  | 3.07387807  | -2.38018280 | 1.20381131  |
| С  | -3.72214582 | 0.97545884  | -1.23707783 |
| С  | -4.61629235 | 2.04760977  | -1.18366880 |
| С  | -5.04029543 | 2.60088704  | 0.02802095  |
| С  | -4.58470261 | 2.02095982  | 1.21573795  |
| С  | -3.68980120 | 0.94835052  | 1.22129515  |
| С  | -3.38820507 | 0.34292821  | -2.55058025 |
| С  | -3.32367257 | 0.28459455  | 2.51096835  |
| С  | -5.95020708 | 3.78812699  | 0.05337102  |
|    |             |             |             |

| С | 0.99617139  | -1.77736656 | -2.50838759  |
|---|-------------|-------------|--------------|
| С | 5.23870315  | -2.83906091 | 0.00056796   |
| Н | -3.29781435 | 1.09376996  | -3.34485776  |
| Н | -4.18846983 | -0.35357478 | -2.85202009  |
| Н | -4.10150945 | -0.44210822 | 2.79997995   |
| Н | -2.36545754 | -0.24612508 | 2.46099506   |
| Н | -5.37407630 | 4.72667042  | 0.06031026   |
| Н | -6.58479525 | 3.80119892  | 0.94931859   |
| Н | 1.63383885  | -1.97104758 | -3.37923657  |
| Н | 0.08366183  | -2.38162414 | -2.62258379  |
| С | 1.70529706  | -2.09760817 | 1.22944775   |
| С | 0.97572228  | -1.86116917 | 2.51267980   |
| Η | 0.65591847  | -0.80857470 | 2.59474672   |
| Η | 0.06018272  | -2.46675041 | 2.59048759   |
| Η | 5.74360373  | -2.46263728 | 0.89999446   |
| Η | 5.40541102  | -3.92755108 | -0.02307263  |
| Η | -1.17691776 | -3.44847235 | 0.73337300   |
| Н | -3.35415542 | -2.23224487 | -0.79974006  |
| Н | -3.24330350 | 1.01298718  | 3.32680539   |
| Н | -2.44506772 | -0.21502897 | -2.52556219  |
| Н | -6.60304422 | 3.82526896  | -0.82864713  |
| Н | 0.67442262  | -0.72298409 | -2.55490175  |
| Н | 5.75126968  | -2.42348248 | -0.87711391  |
| Н | 1.60303895  | -2.08957890 | 3.38266305   |
| Н | -4.93894859 | 2.41298373  | 2.17421435   |
| Н | -4.99564500 | 2.46098214  | -2.12338707  |
| Н | 3.60948244  | -2.48392031 | 2.15266297   |
| Н | 3.62216589  | -2.42138662 | -2.14919282  |
| C | 2.55551092  | -0.16839669 | -0.35689844  |
| Н | 2.61375383  | -0.85673443 | 0.46023003   |
| Н | 2.20189360  | -0.67852590 | -1.22846198  |
| Н | 3.52614186  | 0.23805472  | -0.55073555  |
| C | 1.81175886  | 2.49452566  | 0.00049051   |
| Н | 2.07169845  | 2.81619682  | 0.98733349   |
| C | 0.47493594  | 3.06635930  | -0.45560359  |
| C | 2.95520019  | 2.84236257  | -0.97066931  |
| H | 3.84683766  | 3.04348054  | -0.41440122  |
| H | 3.12526402  | 2.01799709  | -1.63127498  |
| H | 0.52443390  | 3.54301994  | -1.412287/75 |
| H | -0.01817163 | 3.640/2608  | 0.30060255   |
| H | 1.6/288/24  | 0.78524946  | 1.05030491   |
| C | 2.5/058497  | 4.08/209/0  | -1./9166064  |
| H | 3.45814960  | 4.59689851  | -2.10366440  |
| H | 2.01008673  | 3.78756693  | -2.65244861  |
| Н | 1.97628603  | 4.74208955  | -1.18929768  |

```
1 2 1.0 3 1.0 6 1.0 7 1.0 60 1.0
2 54 1.0 58 1.0 66 1.0
3 4 1.5 5 1.5
4 9 1.0 11 1.0
5 8 1.0 12 1.0
6
7
8 9 1.0 13 1.0 43 1.0
9 10 1.0 42 1.0
10
11 14 1.5 36 1.5
12 18 1.5 22 1.5
13
14 15 1.5 26 1.0
15 16 1.5 53 1.0
16 17 1.5 27 1.0
17 36 1.5 52 1.0
18 19 1.5 23 1.0
19 20 1.5 51 1.0
20 21 1.5 25 1.0
21 22 1.5 50 1.0
22 24 1.0
23 28 1.0 29 1.0 45 1.0
24 30 1.0 31 1.0 44 1.0
25 32 1.0 33 1.0 46 1.0
26 34 1.0 35 1.0 47 1.0
27 40 1.0 41 1.0 48 1.0
28
29
30
31
32
33
34
35
36 37 1.0
37 38 1.0 39 1.0 49 1.0
38
39
40
41
42
43
44
45
46
```

47 48 49 50 51 52 53 54 55 1.0 56 1.0 57 1.0 55 56 57 58 59 1.0 60 1.0 61 1.0 59 60 64 1.0 65 1.0 61 62 1.0 63 1.0 67 1.0 62 63 64 65 66 67 68 1.0 69 1.0 70 1.0 68 69 70 H C N Cl 0 Def2SVP \*\*\*\* Ru 0 Def2SVP \*\*\*\* Ru 0 Def2SVP \_\_\_\_\_ Frequency Calculation \_\_\_\_\_ \_\_\_\_\_ %chk=GrubbNMR freq.chk # opt=calcfc freq=noraman PBE1PBE/genECP geom=connectivity int=ultrafine GrubbNMR\_freq.com 01 0.00019600 0.85737800 -0.21510700 Ru

| С  | -1.36901800 | 2.15371300  | -0.71555900 |
|----|-------------|-------------|-------------|
| С  | 0.07986700  | -1.13980300 | 0.07761300  |
| Ν  | -0.99935900 | -1.93171800 | 0.15685300  |
| Ν  | 1.18703300  | -1.88483800 | 0.19734100  |
| Cl | 0.27713300  | 0.50654100  | -2.56416100 |
| Cl | -0.15507700 | 1.29018300  | 2.12949700  |
| С  | 0.87827000  | -3.29588100 | 0.44344100  |
| С  | -0.64035300 | -3.34718400 | 0.26708700  |
| Н  | -1.15736600 | -3.81161800 | 1.12010300  |
| С  | -2.36661400 | -1.51191100 | 0.11344700  |
| С  | 2.54045800  | -1.41843200 | 0.18253200  |
| Н  | 1.41494200  | -3.93826300 | -0.27020900 |
| С  | -3.03721900 | -1.26304800 | 1.32645800  |
| С  | -4.38013100 | -0.88199300 | 1.26925200  |
| С  | -5.06520600 | -0.75871200 | 0.05783300  |
| С  | -4.37929000 | -1.05935100 | -1.12120500 |
| С  | 3.14044100  | -1.00328500 | 1.38579000  |
| С  | 4.46703700  | -0.56519300 | 1.33989600  |
| С  | 5.20544900  | -0.55534100 | 0.15495800  |
| С  | 4.59389300  | -1.03314600 | -1.00667500 |
| С  | 3.27072100  | -1.48017500 | -1.01938900 |
| С  | 2.40141300  | -1.03665600 | 2.68975700  |
| С  | 2.66381800  | -2.01471100 | -2.28135700 |
| С  | 6.61545100  | -0.03991200 | 0.12718100  |
| С  | -2.34299200 | -1.39632400 | 2.64790100  |
| С  | -6.49624600 | -0.30520500 | 0.02512300  |
| Н  | 3.07791200  | -0.80151800 | 3.52262800  |
| Н  | 1.96411100  | -2.02850700 | 2.88603600  |
| Н  | 2.26523000  | -3.03287700 | -2.14472800 |
| Н  | 1.83209000  | -1.37226700 | -2.61384800 |
| Н  | 6.63422600  | 1.03139500  | -0.13471400 |
| Н  | 7.22462000  | -0.56760900 | -0.62125000 |
| Н  | -3.06260200 | -1.31735500 | 3.47401700  |
| Н  | -1.82320800 | -2.36231000 | 2.74511100  |
| С  | -3.03740600 | -1.45175100 | -1.12269200 |
| С  | -2.35614800 | -1.80956600 | -2.40907800 |
| Н  | -1.53122500 | -1.11293000 | -2.63558800 |
| Н  | -1.92502400 | -2.82279100 | -2.37206700 |
| Н  | -7.02146300 | -0.68522300 | -0.86296700 |
| Н  | -7.04565000 | -0.63550500 | 0.91878500  |
| Н  | -0.94367300 | -3.88852100 | -0.64418900 |
| Н  | 1.19862900  | -3.58225500 | 1.45878400  |
| Н  | 3.41286800  | -2.05645800 | -3.08368000 |
| Н  | 1.57485700  | -0.30637800 | 2.70061700  |
| Н  | 7.10463300  | -0.14503900 | 1.10635500  |
| Н  | -1.58753500 | -0.60120200 | 2.76648000  |

| Н | -6.55641400 | 0.79576600  | -0.00514800 |
|---|-------------|-------------|-------------|
| Н | -3.06955200 | -1.78381400 | -3.24389900 |
| Н | 5.16552300  | -1.06815100 | -1.93874300 |
| Н | 4.93877900  | -0.23220800 | 2.26904800  |
| Н | -4.90665200 | -1.00209100 | -2.07791000 |
| Н | -4.90661700 | -0.68077100 | 2.20678400  |
| С | -2.53789400 | 2.47826700  | 0.17181500  |
| Н | -3.25380900 | 1.64257800  | 0.12629500  |
| Н | -2.25732900 | 2.62939800  | 1.22008900  |
| Н | -3.06652600 | 3.37303300  | -0.20380100 |
| С | -0.04986600 | 3.06571900  | -0.66639000 |
| Н | 0.05297700  | 3.37025500  | -1.71988300 |
| С | 1.29192100  | 2.28999300  | -0.37872700 |
| С | -0.19685400 | 4.26344100  | 0.27423100  |
| Η | -1.18203700 | 4.72732000  | 0.10894300  |
| Η | -0.19009700 | 3.89610800  | 1.31248900  |
| Н | 1.76705200  | 2.58770800  | 0.56578400  |
| Η | 1.96440400  | 2.23918300  | -1.24328000 |
| Н | -1.66582000 | 2.01780900  | -1.76557500 |
| С | 0.88378000  | 5.31428100  | 0.06755300  |
| Н | 0.71972000  | 6.17785500  | 0.72986200  |
| Н | 1.88850600  | 4.91927500  | 0.28259500  |
| Н | 0.89056300  | 5.68795400  | -0.96943600 |

69 70

H C N Cl 0 Def2SVP \*\*\*\* Ru 0 Def2SVP \*\*\*\*

RU 0 Def2SVP

-----

GIAO Calculation

-----

%mem=80MW

%chk=GrubbNMR\_NMR.chk # nmr=giao scrf=(solvent=chloroform) guess=tcheck geom=connectivity M06/genecp

GrubbNMR\_NMR.com

01

| Ru | 0.00035300  | 0.85725800  | -0.21516000 |
|----|-------------|-------------|-------------|
| С  | -1.36842400 | 2.15421700  | -0.71537600 |
| С  | 0.07949200  | -1.13993400 | 0.07762600  |
| Ν  | -0.99981300 | -1.93174300 | 0.15671900  |
| Ν  | 1.18658400  | -1.88507300 | 0.19749500  |
| Cl | 0.27674300  | 0.50640200  | -2.56427100 |
| Cl | -0.15459700 | 1.29008400  | 2.12947200  |
| С  | 0.87765800  | -3.29609300 | 0.44347500  |
| С  | -0.64097200 | -3.34723400 | 0.26703000  |
| Η  | -1.15809000 | -3.81158800 | 1.12002600  |
| С  | -2.36699100 | -1.51166100 | 0.11336600  |
| С  | 2.54004100  | -1.41876500 | 0.18265700  |
| Η  | 1.41429400  | -3.93848800 | -0.27019200 |
| С  | -3.03748100 | -1.26253700 | 1.32637500  |
| С  | -4.38030200 | -0.88112700 | 1.26918300  |
| С  | -5.06538700 | -0.75777800 | 0.05778600  |
| С  | -4.37959700 | -1.05872400 | -1.12126000 |
| С  | 3.14011100  | -1.00378800 | 1.38593200  |
| С  | 4.46671100  | -0.56571600 | 1.34001200  |
| С  | 5.20505100  | -0.55573500 | 0.15502900  |
| С  | 4.59342300  | -1.03341300 | -1.00661800 |
| С  | 3.27023800  | -1.48041300 | -1.01930700 |

| С      | 2.40113700  | -1.03722600              | 2.68993000  |
|--------|-------------|--------------------------|-------------|
| С      | 2.66329300  | -2.01491000              | -2.28127200 |
| С      | 6.61507600  | -0.04036600              | 0.12725000  |
| С      | -2.34325600 | -1.39590300              | 2.64781300  |
| С      | -6.49630300 | -0.30389100              | 0.02504500  |
| Н      | 3.07780000  | -0.80271500              | 3.52284400  |
| Н      | 1.96329500  | -2.02889200              | 2.88589600  |
| Н      | 2.26485600  | -3.03314100              | -2.14468100 |
| Н      | 1.83147700  | -1.37253800              | -2.61368100 |
| Н      | 6.63388900  | 1.03102500               | -0.13429000 |
| Н      | 7.22412900  | -0.56786400              | -0.62141500 |
| Н      | -3.06284600 | -1.31681900              | 3.47393600  |
| Н      | -1.82361300 | -2.36196200              | 2.74502300  |
| С      | -3.03782200 | -1.45145700              | -1.12275800 |
| С      | -2.35667300 | -1.80954900              | -2.40912500 |
| Н      | -1.53173400 | -1.11298000              | -2.63578000 |
| Н      | -1.92560600 | -2.82278900              | -2.37197000 |
| Н      | -7.02169700 | -0.68402200              | -0.86289200 |
| Н      | -7.04573600 | -0.63375700              | 0.91885000  |
| Н      | -0.94428400 | -3.88857600              | -0.64424700 |
| Н      | 1.19792300  | -3.58259400              | 1.45881400  |
| Н      | 3.41229000  | -2.05650200              | -3.08365200 |
| Н      | 1.57496000  | -0.30651800              | 2.70101200  |
| Н      | 7.10436700  | -0.14585200              | 1.10633300  |
| Н      | -1.58768700 | -0.60088600              | 2.76638500  |
| Н      | -6.55616100 | 0.79708800               | -0.00556400 |
| Н      | -3.07012400 | -1.78388100              | -3.24390900 |
| Н      | 5.16500400  | -1.06834300              | -1.93871800 |
| H      | 4 93851300  | -0 23285200              | 2 26917700  |
| H      | -4 90699000 | -1 00143300              | -2 07794600 |
| H      | -4 90669900 | -0 67969500              | 2 20671900  |
| C      | -2 53707900 | 2 47918100               | 0 17214300  |
| H      | -3 25326800 | 1 64371900               | 0.12677300  |
| H      | -2 25634200 | 2 63027400               | 1 22037500  |
| Н      | -3.06546900 | 3 37409200               | -0 20345800 |
| C      | -0.04897900 | 3.06562300               | -0 66638600 |
| н      | 0.05399700  | 3 37011500               | -1 71987700 |
| C II   | 1 29259900  | 2 28932200               | -0.37880000 |
| C<br>C | -0 19527900 | 4 26341100               | 0.27426100  |
| н      | -1.18020100 | 4.72771700               | 0.1001/1800 |
| Н      | _0 18850000 | 3 89608000               | 1 31252000  |
| Ц      | 1 76700000  | 2 28602800               | 0 56565800  |
| Н      | 1.70790900  | 2.30032000               | -1 2/2/2200 |
| Ц      | -1 665/2600 | 2.23033300               | -1.27572500 |
| C      | -1.00343000 | 2.01030300<br>5 21277600 | -1.70555500 |
|        | 0.003//300  | 5.515//000<br>6 177/0700 | 0.00/3/800  |
| 11     | 0.12221900  | 0.1//42/00               | 0.129/0800  |

**Figure S32.** Exemplary abbreviated output files for the geometry and frequency calculations for the ruthenacyclobutane intermediate during a G3 metathesis with a disubstituted monomer.

Optimization Output Standard Orientation: Center Atomic Atomic Coordinates (Angstroms)

| Number | Number |   | Туре      | X         | Y | Z         |
|--------|--------|---|-----------|-----------|---|-----------|
|        |        |   |           |           |   |           |
| 1      | 44     | 0 | 0.000196  | 0.857378  | 8 | -0.215107 |
| 2      | 6      | 0 | -1.369018 | 2.15371   | 3 | -0.715559 |
| 3      | 6      | 0 | 0.079867  | -1.13980  | 3 | 0.077613  |
| 4      | 7      | 0 | -0.999359 | -1.93171  | 8 | 0.156853  |
| 5      | 7      | 0 | 1.187033  | -1.88483  | 8 | 0.197341  |
| 6      | 17     | 0 | 0.277133  | 0.50654   | 1 | -2.564161 |
| 7      | 17     | 0 | -0.155077 | 1.29018   | 3 | 2.129497  |
| 8      | 6      | 0 | 0.878270  | -3.29588  | 1 | 0.443441  |
| 9      | 6      | 0 | -0.640353 | -3.34718  | 4 | 0.267087  |
| 10     | 1      | 0 | -1.157366 | -3.81161  | 8 | 1.120103  |
| 11     | 6      | 0 | -2.366614 | -1.51191  | 1 | 0.113447  |
| 12     | 6      | 0 | 2.540458  | -1.418432 | 2 | 0.182532  |
| 13     | 1      | 0 | 1.414942  | -3.93826  | 3 | -0.270209 |
| 14     | 6      | 0 | -3.037219 | -1.26304  | 8 | 1.326458  |
| 15     | 6      | 0 | -4.380131 | -0.88199  | 3 | 1.269252  |
| 16     | 6      | 0 | -5.065206 | -0.75871  | 2 | 0.057833  |
| 17     | 6      | 0 | -4.379290 | -1.05935  | 1 | -1.121205 |
| 18     | 6      | 0 | 3.140441  | -1.00328  | 5 | 1.385790  |
| 19     | 6      | 0 | 4.467037  | -0.56519  | 3 | 1.339896  |
| 20     | 6      | 0 | 5.205449  | -0.55534  | 1 | 0.154958  |
| 21     | 6      | 0 | 4.593893  | -1.03314  | 6 | -1.006675 |
| 22     | 6      | 0 | 3.270721  | -1.48017  | 5 | -1.019389 |
| 23     | 6      | 0 | 2.401413  | -1.03665  | 6 | 2.689757  |
| 24     | 6      | 0 | 2.663818  | -2.01471  | 1 | -2.281357 |
| 25     | 6      | 0 | 6.615451  | -0.039912 | 2 | 0.127181  |
| 26     | 6      | 0 | -2.342992 | -1.39632  | 4 | 2.647901  |
| 27     | 6      | 0 | -6.496246 | -0.30520  | 5 | 0.025123  |
| 28     | 1      | 0 | 3.077912  | -0.80151  | 8 | 3.522628  |
| 29     | 1      | 0 | 1.964111  | -2.02850  | 7 | 2.886036  |
| 30     | 1      | 0 | 2.265230  | -3.03287  | 7 | -2.144728 |
| 31     | 1      | 0 | 1.832090  | -1.37226  | 7 | -2.613848 |
| 32     | 1      | 0 | 6.634226  | 1.03139   | 5 | -0.134714 |
| 33     | 1      | 0 | 7.224620  | -0.56760  | 9 | -0.621250 |
| 34     | 1      | 0 | -3.062602 | -1.31735  | 5 | 3.474017  |
| 35     | 1      | 0 | -1.823208 | -2.36231  | 0 | 2.745111  |
| 36     | 6      | 0 | -3.037406 | -1.45175  | 1 | -1.122692 |
| 37     | 6      | 0 | -2.356148 | -1.80956  | 6 | -2.409078 |
| 38     | 1      | 0 | -1.531225 | -1.11293  | 0 | -2.635588 |
| 39     | 1      | 0 | -1.925024 | -2.82279  | 1 | -2.372067 |
| 40     | 1      | 0 | -7.021463 | -0.68522  | 3 | -0.862967 |
| 41     | 1      | 0 | -7.045650 | -0.63550  | 5 | 0.918785  |
| 42     | 1      | 0 | -0.943673 | -3.88852  | 1 | -0.644189 |

| 43                      | 1                       | 0         | 1.198629      | -3.582255   | 1.45878    | 4                |    |  |
|-------------------------|-------------------------|-----------|---------------|-------------|------------|------------------|----|--|
| 44                      | 1                       | 0         | 3.412868      | -2.056458   | -3.08368   | 30               |    |  |
| 45                      | 1                       | 0         | 1.574857      | -0.306378   | 2.70061    | 7                |    |  |
| 46                      | 1                       | 0         | 7.104633      | -0.145039   | 1.10635    | 5                |    |  |
| 47                      | 1                       | 0         | -1.587535     | -0.601202   | 2.76648    | 0                |    |  |
| 48                      | 1                       | 0         | -6.556414     | 0.795766    | -0.00514   | -8               |    |  |
| 49                      | 1                       | 0         | -3.069552     | -1.783814   | -3.24389   | 99               |    |  |
| 50                      | 1                       | 0         | 5.165523      | -1.068151   | -1.93874   | -3               |    |  |
| 51                      | 1                       | 0         | 4.938779      | -0.232208   | 2.26904    | 8                |    |  |
| 52                      | 1                       | 0         | -4.906652     | -1.002091   | -2.07791   | 0                |    |  |
| 53                      | 1                       | 0         | -4.906617     | -0.680771   | 2.20678    | 34               |    |  |
| 54                      | 6                       | 0         | -2.537894     | 2.478267    | 0.17181    | 5                |    |  |
| 55                      | 1                       | 0         | -3.253809     | 1.642578    | 0.12629    | 5                |    |  |
| 56                      | 1                       | 0         | -2.257329     | 2.629398    | 1.22008    | 9                |    |  |
| 57                      | 1                       | 0         | -3.066526     | 3.373033    | -0.20380   | 01               |    |  |
| 58                      | 6                       | 0         | -0.049866     | 3.065719    | -0.66639   | 0                |    |  |
| 59                      | 1                       | 0         | 0.052977      | 3.370255    | -1.71988   | 3                |    |  |
| 60                      | 6                       | 0         | 1.291921      | 2.289993    | -0.37872   | 7                |    |  |
| 61                      | 6                       | 0         | -0.196854     | 4.263441    | 0.27423    | 1                |    |  |
| 62                      | 1                       | 0         | -1.182037     | 4.727320    | 0.10894    | 3                |    |  |
| 63                      | 1                       | 0         | -0.190097     | 3.896108    | 1.31248    | 9                |    |  |
| 64                      | 1                       | 0         | 1.767052      | 2.587708    | 0.56578    | 4                |    |  |
| 65                      | 1                       | 0         | 1.964404      | 2.239183    | -1.24328   | 0                |    |  |
| 66                      | 1                       | 0         | -1.665820     | 2.017809    | -1.76557   | '5               |    |  |
| 67                      | 6                       | 0         | 0.883780      | 5.314281    | 0.06755    | 3                |    |  |
| 68                      | 1                       | 0         | 0.719720      | 6.177855    | 0.72986    | 2                |    |  |
| 69                      | 1                       | 0         | 1.888506      | 4.919275    | 0.28259    | 5                |    |  |
| 70                      | 1                       | 0         | 0.890563      | 5.687954    | -0.96943   | 6                |    |  |
|                         |                         |           |               |             |            |                  |    |  |
| Ite                     | em                      |           | Value         | e T         | hreshold   | Converged?       |    |  |
| Maximu                  | ım Fo                   | orce      | 0.000         | 0022 0      | .000450    | YES              |    |  |
| RMS                     | Force                   | e         | 0.000         | 0002 0      | .000300    | YES              |    |  |
| Maximu                  | ım Di                   | splaceme  | nt 0.001      | .197 C      | .001800    | YES              |    |  |
| RMS                     | Displ                   | lacement  | 0.000         | 0254 0      | .001200    | YES              |    |  |
| Predicte                | ed cha                  | nge in En | ergy=-6.380   | 383D-09     |            |                  |    |  |
| Optimization completed. |                         |           |               |             |            |                  |    |  |
| Stat                    | Stationary point found. |           |               |             |            |                  |    |  |
|                         |                         |           |               |             |            |                  |    |  |
| Job cpu                 | time:                   | 2 day     | vs 20 hours 3 | 4 minutes 4 | 16.3 secon | ds.              |    |  |
| File leng               | gths (                  | MBytes):  | RWF = 11      | 04 Int= 0   | DD2E=      | 0  Chk= 40  Scr= | 16 |  |
| Normal                  | termi                   | nation of | Gaussian 09   | at Fri Apr  | 23 09:01:  | 53 2021.         |    |  |
|                         |                         |           |               |             |            |                  |    |  |

Frequency Output

\_\_\_\_\_

\_\_\_\_\_

Standard Orientation:

| Center | Atomic | nic Atomic |           | dinates (Ang | gstroms)  |
|--------|--------|------------|-----------|--------------|-----------|
| Number | Number |            | Туре      | X Y          | Ζ         |
|        |        |            |           |              |           |
| 1      | 44     | 0          | 0.000353  | 0.857258     | -0.215160 |
| 2      | 6      | 0          | -1.368424 | 2.154217     | -0.715376 |
| 3      | 6      | 0          | 0.079492  | -1.139934    | 0.077626  |
| 4      | 7      | 0          | -0.999813 | -1.931743    | 0.156719  |
| 5      | 7      | 0          | 1.186584  | -1.885073    | 0.197495  |
| 6      | 17     | 0          | 0.276743  | 0.506402     | -2.564271 |
| 7      | 17     | 0          | -0.154597 | 1.290084     | 2.129472  |
| 8      | 6      | 0          | 0.877658  | -3.296093    | 0.443475  |
| 9      | 6      | 0          | -0.640972 | -3.347234    | 0.267030  |
| 10     | 1      | 0          | -1.158090 | -3.811588    | 1.120026  |
| 11     | 6      | 0          | -2.366991 | -1.511661    | 0.113366  |
| 12     | 6      | 0          | 2.540041  | -1.418765    | 0.182657  |
| 13     | 1      | 0          | 1.414294  | -3.938488    | -0.270192 |
| 14     | 6      | 0          | -3.037481 | -1.262537    | 1.326375  |
| 15     | 6      | 0          | -4.380302 | -0.881127    | 1.269183  |
| 16     | 6      | 0          | -5.065387 | -0.757778    | 0.057786  |
| 17     | 6      | 0          | -4.379597 | -1.058724    | -1.121260 |
| 18     | 6      | 0          | 3.140111  | -1.003788    | 1.385932  |
| 19     | 6      | 0          | 4.466711  | -0.565716    | 1.340012  |
| 20     | 6      | 0          | 5.205051  | -0.555735    | 0.155029  |
| 21     | 6      | 0          | 4.593423  | -1.033413    | -1.006618 |
| 22     | 6      | 0          | 3.270238  | -1.480413    | -1.019307 |
| 23     | 6      | 0          | 2.401137  | -1.037226    | 2.689930  |
| 24     | 6      | 0          | 2.663293  | -2.014910    | -2.281272 |
| 25     | 6      | 0          | 6.615076  | -0.040366    | 0.127250  |
| 26     | 6      | 0          | -2.343256 | -1.395903    | 2.647813  |
| 27     | 6      | 0          | -6.496303 | -0.303891    | 0.025045  |
| 28     | 1      | 0          | 3.077800  | -0.802715    | 3.522844  |
| 29     | 1      | 0          | 1.963295  | -2.028892    | 2.885896  |
| 30     | 1      | 0          | 2.264856  | -3.033141    | -2.144681 |
| 31     | 1      | 0          | 1.831477  | -1.372538    | -2.613681 |
| 32     | 1      | 0          | 6.633889  | 1.031025     | -0.134290 |
| 33     | 1      | 0          | 7.224129  | -0.567864    | -0.621415 |
| 34     | 1      | 0          | -3.062846 | -1.316819    | 3.473936  |
| 35     | 1      | 0          | -1.823613 | -2.361962    | 2.745023  |
| 36     | 6      | 0          | -3.037822 | -1.451457    | -1.122758 |
| 37     | 6      | 0          | -2.356673 | -1.809549    | -2.409125 |
| 38     | 1      | 0          | -1.531734 | -1.112980    | -2.635780 |
| 39     | 1      | 0          | -1.925606 | -2.822789    | -2.371970 |
| 40     | 1      | 0          | -7.021697 | -0.684022    | -0.862892 |
| 41     | 1      | 0          | -7.045736 | -0.633757    | 0.918850  |
| 42     | 1      | 0          | -0.944284 | -3.888576    | -0.644247 |

| 43                                                 | 1                                                      | 0         | 1.197923     | -3.582594 | 1.458814  | 1              |  |  |
|----------------------------------------------------|--------------------------------------------------------|-----------|--------------|-----------|-----------|----------------|--|--|
| 44                                                 | 1                                                      | 0         | 3.412290     | -2.056502 | -3.083652 | 2              |  |  |
| 45                                                 | 1                                                      | 0         | 1.574960     | -0.306518 | 2.701012  | 2              |  |  |
| 46                                                 | 1                                                      | 0         | 7.104367     | -0.145852 | 1.106333  | 3              |  |  |
| 47                                                 | 1                                                      | 0         | -1.587687    | -0.600886 | 2.76638   | 5              |  |  |
| 48                                                 | 1                                                      | 0         | -6.556161    | 0.797088  | -0.005564 | 4              |  |  |
| 49                                                 | 1                                                      | 0         | -3.070124    | -1.783881 | -3.24390  | 9              |  |  |
| 50                                                 | 1                                                      | 0         | 5.165004     | -1.068343 | -1.93871  | 8              |  |  |
| 51                                                 | 1                                                      | 0         | 4.938513     | -0.232852 | 2.26917   | 7              |  |  |
| 52                                                 | 1                                                      | 0         | -4.906990    | -1.001433 | -2.07794  | 6              |  |  |
| 53                                                 | 1                                                      | 0         | -4.906699    | -0.679695 | 2.20671   | 9              |  |  |
| 54                                                 | 6                                                      | 0         | -2.537079    | 2.479181  | 0.172143  | 3              |  |  |
| 55                                                 | 1                                                      | 0         | -3.253268    | 1.643719  | 0.126773  | 3              |  |  |
| 56                                                 | 1                                                      | 0         | -2.256342    | 2.630274  | 1.220375  | 5              |  |  |
| 57                                                 | 1                                                      | 0         | -3.065469    | 3.374092  | -0.20345  | 8              |  |  |
| 58                                                 | 6                                                      | 0         | -0.048979    | 3.065623  | -0.66638  | 6              |  |  |
| 59                                                 | 1                                                      | 0         | 0.053997     | 3.370115  | -1.71987  | 7              |  |  |
| 60                                                 | 6                                                      | 0         | 1.292599     | 2.289322  | -0.378800 | )              |  |  |
| 61                                                 | 6                                                      | 0         | -0.195279    | 4.263411  | 0.27426   | l              |  |  |
| 62                                                 | 1                                                      | 0         | -1.180291    | 4.727717  | 0.109148  | 3              |  |  |
| 63                                                 | 1                                                      | 0         | -0.188509    | 3.896080  | 1.312520  | )              |  |  |
| 64                                                 | 1                                                      | 0         | 1.767909     | 2.586928  | 0.565658  | 3              |  |  |
| 65                                                 | 1                                                      | 0         | 1.964982     | 2.238333  | -1.243423 | 3              |  |  |
| 66                                                 | 1                                                      | 0         | -1.665436    | 2.018365  | -1.76533  | 5              |  |  |
| 67                                                 | 6                                                      | 0         | 0.885775     | 5.313776  | 0.067378  | 3              |  |  |
| 68                                                 | 1                                                      | 0         | 0.722219     | 6.177427  | 0.729708  | 3              |  |  |
| 69                                                 | 1                                                      | 0         | 1.890369     | 4.918333  | 0.282229  | )              |  |  |
| 70                                                 | 1                                                      | 0         | 0.892524     | 5.687435  | -0.96961  | 5              |  |  |
| Iter                                               | n                                                      |           | Value        | Thr       | eshold Co | -<br>onverged? |  |  |
| Maximu                                             | m Force                                                |           | 0.0000       | 0.0       | 00450 Y   | ΈS             |  |  |
| RMS                                                | Force                                                  |           | 0.0000       | 0.0       | 00300 Y   | ΈS             |  |  |
| Maximu                                             | m Displa                                               | acement   | 0.0000       | 0.00      | 01800 Y   | ΈS             |  |  |
| RMS ]                                              | Displace                                               | ement     | 0.0000       | 0.0       | 01200 Y   | ES             |  |  |
| Predicted                                          | l change                                               | in Ener   | gy=-1.7106   | 58D-11    |           |                |  |  |
| Optimiza                                           | ation cor                                              | npleted.  |              |           |           |                |  |  |
| Stati                                              | onary po                                               | oint four | nd.          |           |           |                |  |  |
|                                                    |                                                        |           |              |           |           |                |  |  |
| - Thermochemistry -                                |                                                        |           |              |           |           |                |  |  |
| Tempera                                            | Temperature 208 150 Kelvin Pressure 1 00000 Atm        |           |              |           |           |                |  |  |
| Zero-point correction= 0 594836 (Hartree/Particle) |                                                        |           |              |           |           |                |  |  |
| Thermal                                            | Thermal correction to Energy= 0.631754                 |           |              |           |           |                |  |  |
| Thermal                                            | correct                                                | ion to E  | nthalnv=     | 0.63      | 32698     |                |  |  |
| Thermal                                            | correct                                                | ion to G  | ibbs Free E  | nergv=    | 0.52      | 4548           |  |  |
| Sum of                                             | electron                                               | ic and z  | ero-point En | ergies=   | -2173.25  | 59549          |  |  |
|                                                    | Sum of electronic and zero-point Energies -2175.257547 |           |              |           |           |                |  |  |

| Sum of electronic and thermal Energies= -2173.222631 |                   |              |          |         |  |
|------------------------------------------------------|-------------------|--------------|----------|---------|--|
| Sum of electronic and therma                         | al Enthalpies=    | -2173.2      | 21687    |         |  |
| Sum of electronic and therma                         | al Free Energies= | -2173.3      | 29837    |         |  |
| Item                                                 | Value             | Threshold    | Converge | ed?     |  |
| Maximum Force                                        | 0.000000          | 0.000450     | YES      |         |  |
| RMS Force                                            | 0.000000          | 0.000300     | YES      |         |  |
| Maximum Displacement                                 | 0.000105          | 0.001800     | YES      |         |  |
| RMS Displacement                                     | 0.000026          | 0.001200     | YES      |         |  |
| Predicted change in Energy=                          | -2.072470D-11     |              |          |         |  |
| Optimization completed.                              |                   |              |          |         |  |
| Stationary point found.                              |                   |              |          |         |  |
| [NImag=0]                                            |                   |              |          |         |  |
|                                                      |                   |              |          |         |  |
| Job cpu time: 1 days 8 ho                            | ours 54 minutes 2 | 20.1 seconds | 5.       |         |  |
| File lengths (MBytes): RWF                           | = 4160 Int=       | 0 D2E=       | 0 Chk=   | 48 Scr= |  |

Figure S33. Example <sup>1</sup>H NMR  $\delta$  (ppm) determination for proton H<sub>a</sub>.

Normal termination of Gaussian 09 at Sat May 1 10:11:22 2021.



16

#### $\delta$ = (TMS Absolute Shielding – Ru-H# Absolute Shielding)

H#59 δ = (31.565 - 33.2519)δ = -1.69 ppm

#### V. References

- 1. V. Forcina, A. García-Domínguez and G. C. Lloyd-Jones, *Faraday Discussions*, 2019, **220**, 179-195.
- 2. M. S. Sanford, J. A. Love and R. H. Grubbs, *Organometallics*, 2001, **20**, 5314-5318.
- 3. M. R. Yarolimek, H. R. Bookbinder, B. M. Coia and J. G. Kennemur, *ACS Macro Letters*, 2021, **10**, 760-766.