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Scheme S1. Synthesis of precursors.

BODIPY precursors (B1 and B2)%! and R-COOH starting materials,>> such as 3.,4,5-
tris(dodecyloxy)benzoic acid and 4-(dodecyloxy) benzoic acid were synthesized according to the

literatures.
Synthesis of S0. To a suspension of 2-chloroethylamine hydrochloride (6.0 g, 51.7 mmol) in 80
mL acetonitrile, triethylamine (7.4 mL, 52.4 mmol) was added. The mixture was stirred at R.T. for 2

h. A white precipitate was formed during the reaction and was removed from reaction mixture by
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filtration and washed with 40 mL acetonitrile. The collected acetonitrile solution of 2-chloroethyl
amine was concentrated to half volume under vacuum.

To another 250 mL round bottle flask was charged with 4-iodopyrazole (5.0 g, 25.8 mmol), NaOH
(3.1 g, 77.5 mmol) and acetonitrile (40 mL). The mixture was stirred for 30 min at R.T. and then heated
up to 75 °C. Then the acetonitrile solution of 2-chloroethyl amine was added dropwise into the solution
over 30 min, and the mixture was stirred at 75 °C for 24 h. After cooled to R.T., the formed precipitate
was removed by filtration. The filtrate was concentrated in vacuo to obtain pale-yellow oil 6.0 g (Yield:
98 %). '"H NMR (400 MHz, CDCls): 6 (ppm) = 7.52 (s, 1H; CH), 7.48 (s, 1H; CH), 4.16 (t, J=3.6 Hz;
2H; CHa), 3.11 (t, J = 3.6 Hz, 2H; CHa). '3C NMR (100 MHz, CDCl3): 6 (ppm) = 144.62, 134.19,
55.94,55.41, 41.97. HRMS (ESI) calcd for [CsHoIN3]", 237.9836; found, 237.9839.

Synthesis of S1. SO (4.74 g, 20 mmol), 3,4,5-tris(dodecyloxy)benzoic acid (14.04 g, 20.8 mmol),
EDC-HCI (4.38 g, 22.8 mmol) and 4-DMAP (1.78 g, 14.6 mmol) were dissolved in CH>Cl> (120 mL),
and the reaction mixture was stirred at R.T. for 24 h. Then the reaction mixture was diluted with CH>Cl>
and the organic layer was washed with brine three times. The collected organic layer was dried over
anhydrous MgSO4 and concentrated in vacuo. Purification of the crude product by column
chromatography (silica gel, CH2Clo/ MeOH = 20:1 (v/v) to afford the desired product as a white solid
(Yield: 12.5 g, 70 %). 'H NMR (400 MHz, CDCl5): 6 (ppm) = 7.55 (s, 1H; CH), 7.46 (s, 1H; CH),
6.90 (s, 2H; ArH), 6.67 (t, J = 5.6 Hz, 1H; NH), 4.36 (t, J = 5.6 Hz, 2H; CH>), 3.99 (m, 6H; OCH>),
3.83 (m, 2H; CH>), 1.84-1.69 (m, 6H; CH>), 1.47 (m, 6H; CH>), 1.26 (s, 48H; CH>), 0.88 (t, J="7.2
Hz, 9H; CH3). 3*C NMR (100 MHz, CDCl3): 6 (ppm) = 167.72, 153.25, 145.27, 141.44, 134.76, 129.07,
105.68, 73.65, 69.44, 56.28, 51.53, 40.41, 32.08, 30.46, 29.80, 29.52, 26.25, 22.84, 14.26. HRMS (ESI)
calcd for [CasHgsIN3O4]", 894.5579; found, 894.5592.

Synthesis of S2. The procedure was similar to that used to prepare S1, except 4-dodecyloxy
benzoic acid (6.38 g, 20.8 mmol) was used in place of 3,4,5-tris(dodecyloxy)benzoic acid. Yield: 6.8
g (65 %). '"H NMR (400 MHz, CDCl5): 6 (ppm) = 7.68 (d, 2H, J = 8.8 Hz; ArH), 7.54 (s, 1H; CH),
7.43 (s, 1H; CH), 6.89 (d, J = 8.8 Hz, 2H; ArH), 6.84 (s, 1H; NH), 4.33 (t, J = 5.6 Hz, 2H; CH>), 3.97
(t, J= 6.4 Hz, 2H; OCH>), 3.82 (m, 2H; CH>), 1.78 (m, 2H; CH>), 1.44 (m, 2H; CH>), 1.25 (s, 16H;
CH>), 0.87 (t,J=7.2 Hz, 3H; CH3). '*C NMR (100 MHz, CDCls): 6 (ppm) = 167.33, 162.04, 145.16,
134.62, 128.84, 126.01, 114.36, 68.29, 56.25, 51.59, 40.23, 32.01, 29.75, 29.73, 29.69, 29.66, 29.47,
29.45,29.22,26.09, 22.79, 14.24. HRMS (ESI) calcd for [C24H37IN302]", 526.1925; found, 526.1932.

Synthesis of S3. To a two-neck round-bottom flask equipped with a condenser was charged with
S1 (2.0 g, 2.24 mmol), PACI>(PPh3)2 (80 mg, 0.12 mmol), Cul (44 mg, 0.24 mmol), PPh3 (60 mg, 0.24

mmol). This mixture was put under three vacuum-N; cycles before adding degassed iProNH (40 mL).
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After stirring for 10 min, (trimethylsilyl)acetylene (0.94 mL, 6.72 mmol) was injected into the flask
and the mixture was heated at 70 °C for 24 h. The formed solid was removed by filtration and washed
with THF. The solvent was removed under reduced pressure and the crude product was purified on a
silica-gel column [silica gel, CH>Clo/ MeOH = 20:1 (v/v)] to give compound S3 (1.3 g, 68 %) as a
white solid. '"H NMR (400 MHz, CDCl3): 6 (ppm) = 7.63 (s, 1H; CH), 7.54 (s, 1H; CH), 6.90 (s, 2H;
ArH), 6.71 (m, 1H; NH), 4.31 (m, 2H; CH>), 3.98 (m, 2H; OCH>), 3.85 (m, 2H; CH>), 1.80 (m, 6H;
CH,), 1.46 (m, 6H; CHa), 1.26 (s, 48H; CH>), 0.87 (t, J = 6.8 Hz, 9H; CH3), 0.21 (s, 9H; CH3). 1*C
NMR (100 MHz, CDCls): o (ppm) = 167.71, 153.21, 143.14, 141.37, 133.51, 129.01, 105.65, 95.81,
95.69, 73.63, 69.37, 51.36, 40.24, 32.07, 30.45, 29.79, 29.51, 26.24, 22.94, 14.26, 0.10. HRMS (ESI)
calcd for [Cs3HosN304Si]", 864.7008; found, 864.7017.

Synthesis of S4. The procedure was similar to that used to prepare S3, except S2 (1.2 g, 2.24
mmol) was used in place of S1. Yield: 0.72 g (64 %). 'H NMR (400 MHz, CDCls): 6 (ppm) = 7.68 (s,
1H; CH), 7.66 (d, J= 7.2 Hz, 2H; ArH), 7.53 (s, 1H; CH), 6.90 (d, J = 8.4 Hz, 2H; ArH), 6.72 (t, J =
5.2 Hz,1H; NH), 4.31 (t, J = 5.6 Hz, 2H; CH>), 3.97 (t, J = 6.4 Hz, 2H; OCH>), 3.84 (m, 2H; CH>),
1.78 (m, 2H; CH>), 1.44 (m, 2H; CH>), 1.26 (s, 16H; CH»), 0.87 (t,J = 6.8 Hz, 3H; CH3), 0.21 (s, 9H,
CH3). C NMR (100 MHz, CDCl3): 6 (ppm) = 167.32, 162.10, 143.18, 133.44, 128.87, 126.02, 114.40,
103.60, 95.94, 95.59, 68.32, 51.52,40.16, 32.04,29.78, 29.48, 29.25,26.12, 22.82, 14.26, 0.10. HRMS
(ESI) calcd for [C20H46N30,Si]", 496.3354; found, 496.3356.

Synthesis of M1. S3 (0.86 g, 1.0 mmol) and K»,COs3 (0.68 g, 5.0 mmol) were added to THF (10
mL) and methanol (10 mL), and the mixture was stirred for 6 h at R.T. After the reaction completed
(monitored by TLC), the mixture was extracted with CH>Cl, and washed with water three times. The
combined organic layer was dried over anhydrous Na;SO4 and concentrated under reduced pressure.
The solid was dissolved in minimum volume of CH>Cl; and re-precipitated in methanol. The mixture
was kept at ice-water bath for 1 h and the white precipitate was collected by filtration (Yield: 0.72 g,
92 %). '"H NMR (400 MHz, CDCl3): § (ppm) = 7.61 (s, 1H, CH), 7.56 (s, 1H; CH), 6.90 (s, 2H; ArH),
6.89 (s, 1H; NH), 4.29 (t, J = 5.4 Hz, 2H, CH>), 3.95 (m, 2H, OCH>), 3.80 (m, 2H, CH), 2.98 (s, 1H,
C=CH), 1.80-1.69 (m, 6H, CH»), 1.46-1.42 (m, 6H, CH>), 1.25 (s, 48H, CH), 0.86 (t, J = 7.2 Hz, 9H,
CH3). *C NMR (100 MHz, CDCls): § (ppm) = 167.76, 153.22, 143.19, 141.36, 133.74, 129.03, 105.62,
102.43, 74.82,73.63, 69.36, 51.36, 40.21, 32.07, 30.45, 29.79, 29.51, 26.23,22.93, 14.26. HRMS (ESI)
calcd for [CsoHgsN304]", 792.6613; found, 792.6617.

Synthesis of M2. The procedure was similar to that used to prepare M1, except S4 (0.5 g, 1.0
mmol) was used in place of S3. Yield: 0.4 g (90 %). '"H NMR (400 MHz, CDCIs): 6 (ppm) = 7.69 (s,
1H; CH), 7.67 (d, J = 2.0 Hz, 2H; ArH), 7.55 (s, 1H; CH), 6.90 (d, J = 8.8 Hz, 2H; ArH), 6.75 (t, J =
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5.2 Hz, 1H; NH), 4.32 (t, J= 5.6 Hz, 2H; CH>), 3.98 (t, J = 6.4 Hz, 2H; OCH>), 3.86 (m, 2H; CH>),
3.00 (s, 1H; C=CH), 1.78 (m, 2H; CH>), 1.44 (m, 2H; CH>), 1.26 (s, 16H; CH>), 0.87 (t, J= 7.2 Hz,
3H; CH;). 3C NMR (100 MHz, CDCls): 6 (ppm) =167.21, 161.98, 143.09, 133.52, 128.72,
125.89114.29, 102.23, 78.47, 74.82, 68.20, 51.41, 40.03, 31.92, 29.65, 29.35, 29.12, 25.99, 22.69,
14.13. HRMS (ESI) calcd for [C26H33N302]", 424.2959; found, 424.2964.

Synthesis of 1. To a two-neck round-bottom flask equipped with a condenser was charged with
M1 (250 mg, 0.32 mmol), B2 (72.3 mg, 0.15 mmol), PdCI>(PPhs3); (11 mg, 0.015 mmol), Cul (6 mg,
0.03 mmol), PPhs (8 mg, 0.03 mmol) and a solvent of THF/iPro,NH (1:1, v/v, 20 mL). The flask was
degassed by three times of freeze-pump-thaw cycles and refilled with N2 before stirring at 70 °C for
48 h. The solvent was removed under reduced pressure, and the crude product was purified on a silica-
gel column [silica gel, CH,Cl,/MeOH = 50:1 (v/v)] to give compound 1 (108 mg, 38 %). 'H NMR
(400 MHz, CDCI3): 6 (ppm) = 7.63 (s, 2H; CH), 7.55 (s, 2H; CH), 7.52 (m, 3H; ArH), 6.91 (s, 4H;
ArH), 6.70 (s, 2H; NH), 4.34 (m, 4H; CH>), 3.99 (m, 12H; OCH>), 3.86 (m, 4H; CH>), 2.67 (s, 2H;
CHs), 1.79 (m, 12H; CH>), 1.46 (m, 18H; CH>+CHs3), 1.26 (s, 96H; CH>), 1.26 (s, 32H; CH>), 0.87 (t,
J = 6.8 Hz, 18H; CHs). 3*C NMR (100 MHz, CDCl3): § (ppm) = 167.70, 158.37, 153.22, 145.27,
143.88, 142.61, 141.42,134.56,132.73,131.27,129.48, 129.05, 127.92, 116.30, 105.70, 103.76, 86.84,
82.45,73.64,69.41, 51.40, 40.27, 32.08, 30.46, 29.88, 29.85, 29.80, 29.73, 29.52, 26.24, 22.84, 14.26,
13.81, 13.47. HRMS (ESI) calcd for [C119H18sBF2NsOs]", 1904.4454; found, 1904.4463.

Synthesis of 2. The procedure was similar to that used to prepare 1, except M2 (136 mg, 0.32
mmol) was used in place of M1. Yield: 70 mg (40 %). 'H NMR (400 MHz, CDCls): J (ppm) = 7.69-
7.65 (m, 6H; CH+ArH), 7.54 (s, 2H; CH), 7.52 (m, 3H; ArH), 6.91 (d, J = 8.4 Hz, 2H; ArH), 6.69 (s,
2H; NH), 4.33 (m, 4H; CH»), 3.98 (t, J = 6.4 Hz, 4H; OCH>), 3.87 (m, 4H; CH>), 2.67 (s, 6H; CHs),
1.78 (m, 4H; CH,), 1.46 (m, 10H; CH+CHs), 1.26 (s, 32H; CH>), 0.88 (t, J = 6.8 Hz, 6H; CH3). 1°C
NMR (100 MHz, CDCl3): 6 (ppm) = 167.32, 162.11, 158.36, 143.90, 142.65, 134.55, 132.67, 131.24,
129.46, 128.86, 127.92, 126.03, 116.33, 114.40, 103.64, 86.96, 82.33, 68.34, 51.55, 40.20, 32.05,
29.79,29.77,29.73, 29.69, 29.51, 29.48, 29.26, 26.12, 22.83, 14.27, 13.83, 13.48. HRMS (ESI) calcd
for [C71HooBF2NsO4]", 1167.7152; found, 1167.7131.
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Temperature-dependent Isodesmic Model and Cooperative Model in Curve Fitting
(1) Determination of the fraction of aggregates from UV-vis absorption spectra

The fraction of aggregates o(T) at different temperatures can be calculated according to Eq. (1).

A(T)-A
o(T) = =% ()

where A(T) is the measured absorbance at temperature 75 Ay and A4 are the absorbances of the

monomer and fully aggregated state, respectively.

(2) The isodesmic model
The isodesmic model assumes a single equilibrium constant K. during all aggregation steps. It is
also known as the equal-K model.>* For an isodesmic aggregation pathway, the experimental oygq
values can be related to temperature by a sigmoidal relation. The sigmoidal function for o (0 < a< 1)
can generally be expressed as Eq. (2):
1

a(T) = -
() 1+exp[—0.908AH— 1]
RTZ,

2

Where T i1s the melting temperature when o = 0.5, 4H is the molar enthalpy release related to the
formation of non-covalent intermolecular interactions, and R is the universal gas constant.

Equation (2) could be utilized to fit the experimental data obtained from the UV-vis absorption
change at different temperature to obtain AH and Tm.

Furthermore, the average stack length DPx as well as the equilibrium constant K. can be obtained,

with concentration ¢, by the equation (3) below:

1 1 1
DPN = \/?(T) =3 + > 4Ke(T)CT +1 (3)

(3) The Cooperative model

The cooperative model consists of two steps, nucleation and elongation processes, which are
divided by the corresponding elongation temperature 7.. According to the nucleation and elongation
model developed and by Meijer and coworkers,>*>* the nucleation (7 < T.) and elongation (T > T)

regime are governed by Eq. (4) and (5) respectively.
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—AH,

ol = YReewp (3=~ 1) 32 (T =T} ()

a(T) = asar{l — exp <_RATZE (T - Te))} &)

Where AH. is the molecular enthalpy released due to non-covalent interactions during elongation
process, 7" and 7. stand for the absolute temperature and elongation temperature, respectively, K, is the
dimensionless equilibrium constant of the nucleation process at 7¢, R is the universal gas constant, asar
is a parameter that is introduced to prevent the relation a(7) /as4r surpassing the value of 1.

Determination of the cooperativity factor o is given by Eq. (6)

Kn
Ke

(6)

O =

Where K, and K. are the binding constants for the nucleation and elongation steps, respectively.

Mathematical curve fitting for luminescent temperature sensing

Firstly, the thermometric parameters 4 was calculated based on the ratio of the maximum values
of peaks. In detail, 4 was determined by the intensity ratios of /652/I606 for 1 in response to the variation
of temperature in heptane.

Then 4 is fitted employing modified Arrhenius-type equation (7):

4o

Ad=———7— (7

1+aexp (‘kTET)

Where 4, is thermometric parameter corresponding to starting temperature. a is the pre-
exponential factor. AE is the energy gap between the lowest excited state and a crossing point to a non-
radiatively decaying state and kp is the Boltzmann constant. T is the real-time temperature. All
calculations were performed using the TeSen software tool.5>S7

The relative thermal sensitivity (S;) was evaluated using the expression as equation (8). The S;

indicates the relative change of the thermometric parameter per degree of temperature change (% K™).

S, =100%x | 322 (8)

The repeatability R was calculated as equation (9): 5°-%7

S7



__ max (IAmean—4;l)

R=1 (9)

Amean

Where Amean 1s the mean value of the thermometric parameter as obtained from the calibration

curve, and 4, is the value of the thermometric parameter obtained for each considered measurement.

Procedures for self-assembly experiments

Compound 1, 2 were suspended in hydrocarbon-based solvents such as n-hexanes, heptane, and MCH
at a concentration of 1 x 10~ M, gently heated to ensure complete dissolution, then allowed to cool to
ambient temperature over 24 h. A drop of each solution was dropcast onto carbon-coated copper grids
for analysis by TEM. Atomic force microscopy (AFM) images were collected by dropcasting from

solution (1 x 10 M) onto carbon coated mica.
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Figure S1. 'H NMR spectrum of S0 in CDCls.
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Figure S2. 1°C NMR spectrum of S0 in CDCls.
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Figure S18. HRMS spectrum of M1.
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Figure S20. '°C NMR spectrum of M2 in CDCls.
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Figure S29. (a) Concentration-dependent UV-vis spectra of 2mono in CHCl3 with 1 mm cuvette at 298

K; (b) Temperature-dependent UV-vis spectra of 2umono in CHCI3 (c = 1.0 X 107 M).

Although 1mm cuvette was employed, the absorbance is still far out of the detection range at 4

mM, 2 mM and 1 mM. However, the absorption peak at ca. 407 is almost the same, and the major

peaks give the very similar sharp in different concentration in CHClI3, indicating that the monomeric

species are dominant even at high concentration up to 4 mM (Fig. S29a).

In addition, we also tried the temperature dependent (298K to 338 K) UV-vis experiment (Fig.

S29b), almost identical UV-vis profiles were observed for 2 in CHCls, indicating that the compound 2

1S in monomeric state.
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Figure S30. Photophysical properties of 1 (¢ =1 x 10 M) in various solvents (CHCl3, Toluene, THF,
MCH and Heptane) at 298 K. (a) UV-vis absorption and (b) emission spectra, as well as (c, d)

illustration of the solution colors (¢) under ambient light and (d) UV-light.
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Figure S31. Photophysical properties of 2 (¢ = 1 x 10> M) in various solvents (CHCls, Toluene, THF,
MCH and Heptane) at 298 K. (a) UV-vis absorption and (b) emission spectra, as well as (c, d)

illustration of the solution colors (¢) under ambient light and (d) UV-light.
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Figure S32. UV-vis absorption spectra of 2mone (black), 2y-agg (blue) and 2n-agg (red) in MCH (1 x 10
5> M). 2mono was prepared by heating the MCH solution to 353 K; 2j.agg Was prepared by cooling from
353 K to 288 K; and 2n-agg was prepared by the stirring of the MCH solution of 2j-agg at 288 K overnight.
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Figure S33. (a) Temperature-dependent UV-vis absorption spectra of 2y.agg in MCH (c = 1 x 10 M)
upon heating from 288 K to 353 K with a rate of 1 K min' showing the showing the transformation
from 2j-agg (blue line) to 2mene (black line). (b) Temperature-dependent UV/Vis absorption spectra of
2H-agg in MCH (c = 1 x 10> M) upon heating from 288 K to 353 K with a rate of 1 K min™! showing

the showing the transformation from 2H-agg (red line) to 2mono (black line).
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Figure S34. (a) Temperature-dependent degree of 1y-agg (0age) calculated from the absorption at A =

560 nm observed in the cooling (black) and heating (red) processes at a rate of 1 K min™'. Condition:

¢ =1.0 x 10° M in heptane.
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Figure S35. Plot of aagg of 15-Agg monitored at 560 nm versus temperatures upon cooling at various

concentrations of 1 in heptane. (b) Plot of @agg 0f 13-agg monitored at 560 nm versus temperatures upon

cooling the heptane solution of 1 (c = 1.0 x 10> M) with different cooling rate.

Increasing the concentration leads to higher 7, (temperature at which aage is 0.5) values; while

decreasing the cooling rate from 1 to 0.1 K/min™! exerts little effect of Tp.
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Figure S36. Photographs of the solutions showing the transformation from 1j-agg to 1H-agg in heptane

under different agitation.
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Figure S37. (a) Temperature-dependent UV-vis absorption spectra of 1 in heptane (c = 1.0 x 10> M)

showing the transformation from 1mono to 1H-agg directly. Firstly, 1 heptane solution (¢ = 1.0 x 10 M)

was cooled from 353 K (red line) to 308 K (green line) (10 K min'). Then the seeds of 1H-agg Was

added, followed by cooling to 298 K (10 K min™'). Finally, 1n.age Was observed in ca. 2h (blue line).

(b) Degree of 1H-agg (0lage) monitored at 560 nm versus time observed in 1 in heptane (c = 1.0 x 10 M)

at 298 K.

Figure S38. TEM images of (a) 1y-agg, (b) 1H-agg and 2H-agg.
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Figure S39. FT-IR spectra of 1J-agg and 1H-agg.
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Figure S40. Concentration-dependent 'H NMR spectra of 1 in CDCl5 at 298 K.
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Figure S41. Concentration-dependent 'H NMR spectra of 2 in CDCl5 at 298 K.
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Figure S43. Photographs of the solutions showing the various emission of 1 in Heptane.
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Table S1. Photophysical data for 1-2.

Compounds Solvents A, /am (ex10*/ dm?® mol! cm™) A_/nm (D))

Heptane 417 (1.39), 581 (5.16) 607, 654 (0.03)
MCH 409 (1.99), 576 (6.59) 611 (0.12)

1 Toluene 410 (1.52), 575 (7.06) 614 (0.25)
Tetrahydrofuran 408 (1.76), 574 (7.28) 623 (0.07)
CHCl3 406 (1.60), 575 (7.12) 611 (0.13)
Heptane 422 (0.95), 605 (3.31) 603 (0.01)
MCH 426 (1.13), 606 (3.89) 607, 655 (0.05)

2 Toluene 409 (1.07), 574 (5.28) 614 (0.26)
Tetrahydrofuran 409 (1.25), 573 (5.33) 621 (0.09)
CHCl3 406 (1.30), 570 (5.72) 610 (0.33)
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