Supporting Information

Merging of cationic RAFT and radical RAFT polymerizations with ringopening polymerizations for the synthesis of asymmetric ABCD type tetrablock copolymers in one-pot

Yuejia Zhu, Luoyu Gao, Zhenjiang Li*, Bo Liu, Zhihao Zhang, Haoying Tong, Yuanyuan Qu, Yusheng Quan, Xin Zou, Kai Guo*

State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China.

E-mail: guok@njtech.edu.cn, zjli@njtech.edu.cn; Tel: +86 25 5813 9926

Contents

Figure S1. ¹ H NMR spectrum (DMSO, 400 MHz) of PTRA	S1
Figure S2. ¹³ C NMR spectrum (DMSO, 100 MHz) of PTRA	S2
Figure S3. ¹ H NMR spectrum (CDCl ₃ , 400 MHz) of PIBVE	S3
Figure S4. ¹ H NMR spectrum (CDCl ₃ , 400 MHz) of PIBVE- <i>b</i> -PMMA	S4
Figure S5. ¹ H NMR spectrum (CDCl ₃ , 400 MHz) of deprotected PIBVE- <i>b</i> -	S5
PMMA	
Figure S6. ¹ H NMR spectrum (CDCl ₃ , 400 MHz) of PIBVE- <i>b</i> -PMMA- <i>b</i> -PVL	S6
Figure S7. ¹ H NMR spectrum (CDCl ₃ , 400 MHz) of PIBVE- <i>b</i> -PMMA- <i>b</i> -PVL- <i>b</i> -	S7
PLLA	
Figure S8. ¹ H NMR spectrum (CDCl ₃ , 400 MHz) of PBVE	S8
Figure S9. ¹ H NMR spectrum (CDCl ₃ , 400 MHz) of poly(4-methoxystyrene)	S9

Figure S10. ¹ H NMR spectrum (CDCl ₃ , 400 MHz) of PLA.	S10
Figure S11. ¹ H NMR spectrum (CDCl ₃ , 400 MHz) of PCL.	S11
Figure S12. ¹ H NMR spectrum (CDCl ₃ , 400 MHz) of PVL.	S12
Figure S13. Merging of cationic RAFT polymerization and ROP for preparing	S13
PIBVE- <i>b</i> -PLLA	
Figure S14. Merging of radical RAFT polymerization and ROP for preparing	S14
PMMA- <i>b</i> -PLLA	
Figure S15. SEC traces of PIBVE	S15
Figure S16. SEC traces of PIBVE- <i>b</i> -PMMA	S16
Figure S17. SEC traces of PIBVE- <i>b</i> -PMMA- <i>b</i> -PVL	S17
Figure S18. SEC traces of PIBVE- <i>b</i> -PMMA- <i>b</i> -PVL- <i>b</i> -PLA	S18
Figure S19. SEC traces of PIBVE- <i>b</i> -PLA	S19
Figure S20. SEC traces of PMMA -b-PLA	S20
Figure S21. SEC traces of chain extension	S21
Figure S22. Kinetic research on cationic RAFT polymerization of IBVE and	S22
ring-opening polymerization of LA	
Figure S23. DOSY NMR spectrum (CDCl ₃) of PIBVE- <i>b</i> -PMMA- <i>b</i> -PVL- <i>b</i> -PLLA.	S23
Table S1. The effect of TABF and chlorosilane on the ROPs	S24

Figure S1. ¹H NMR spectrum (DMSO, 400 MHz) of PTRA

Figure S2. ¹³C NMR spectrum (DMSO, 100 MHz) of PTRA

Figure S3. ¹H NMR spectrum (CDCl₃, 400 MHz) of PIBVE

Figure S4. ¹H NMR spectrum (CDCl₃, 400 MHz) of PIBVE-*b*-PMMA

Figure S5. ¹H NMR spectrum (CDCl₃, 400 MHz) of deprotected PIBVE-*b*-PMMA

Figure S6. ¹H NMR spectrum (CDCl₃, 400 MHz) of PIBVE-*b*-PMMA-*b*-PVL

Figure S7. ¹H NMR spectrum (CDCl₃, 400 MHz) of PIBVE-*b*-PMMA-*b*-PVL-*b*-PLLA

Figure S9. ¹H NMR spectrum (CDCl₃, 400 MHz) of poly(4-methoxystyrene)

Figure S10. ¹H NMR spectrum (CDCl₃, 400 MHz) of PLA.

Figure S11. ¹H NMR spectrum (CDCl₃, 400 MHz) of PCL.

Figure S12. ¹H NMR spectrum (CDCl₃, 400 MHz) of PVL.

Cationic RAFT \rightarrow Deprotection \rightarrow ROP

Figure S13. Merging of cationic RAFT polymerization and ring-opening polymerization for preparing PIBVE-*b*-PLLA

Radical RAFT \rightarrow Deprotection \rightarrow ROP

Figure S14. Merging of radical RAFT polymerization ($M_{n,NMR} = 3.4$, D = 1.17) and ringopening polymerization for preparing PMMA-*b*-PLLA ($M_{n,NMR} = 7.9$, D = 1.24)

Figure S15. SEC traces of PIBVE

Figure S16. SEC traces of PIBVE-b-PMMA

Figure S17. SEC traces of PIBVE-*b*-PMMA-*b*-PVL

Figure S18. SEC traces of PIBVE-*b*-PMMA-*b*-PVL-*b*-PLA

Figure S19. SEC traces of PIBVE-b-PLA

Figure S20. SEC traces of PMMA-b-PLA

Figure S21. SEC traces of first polylactide and post-polymerization (dashed and solid line respectively) (eluent, THF; flow rate, 0.7 ml min⁻¹).

Figure S22 (a) The semi-logarithmic kinetics plot for poly(isobutyl vinyl ether) (PIBVE) $([IBVE]_0/[RAFT agent]_0 = 40/1, toluene, -40 °C)$. (c) The semi-logarithmic kinetics plot for polylactide (PLA) $([LA]_0/[deprotected RAFT agent]_0 = 30/1, toluene, room temperature)$. (b, d) Plots of molecular weight $(M_{n,NMR})$ and dispersities (\mathcal{D}) versus the monomer conversion.

Figure S23. DOSY NMR spectrum (CDCl₃) of PIBVE-*b*-PMMA-*b*-PVL-*b*-PLLA.

Table S1. The effect of TABF and chlorosilane on the ROPs^a

$() \\ () $									
Entr	Additives	[M] ₀ /[I] ₀ /[C	Conv. ^b	$M_{n,th}^{c}$	$M_{n,NMR}^{b}$	$M_{n,GPC}^{d}$	Ðď		
У	Additives] ₀ /[A] ₀	(%)	(kg mol⁻¹)	(kg mol⁻¹)	(kg mol ⁻¹)	D		
1	-	30/1/1/0	95	3.0	3.1	2.9	1.14		
2	TBAF	30/1/2/1	96	3.0	2.8	2.5	1.16		
3	TBDPSCI	30/1/1/1	96	3.0	3.0	2.9	1.09		
	TBAF								
4	and	30/1/2/1/1	96	3.0	3.0	2.9	1.15		
	TBDPSCI								

^{*a*} Reaction conditions: benzylalcohol (I, 1 equiv), VL (M, 30 equiv), 4 hours; ringopening polymerizations processed in toluene at room temperature. ^{*b*} Determined by ¹H NMR in CDCl₃. ^{*c*} Calculated from ($[M]_0/[I]_0$) × conv. × (M_W of M) + (M_W of I). Theoretical molecular weight (full conversions) of PVL is about 3.1 kg mol⁻¹. ^{*d*} Determined by GPC in THF using PSt Standards and correction factors.